1
|
Morali B, Miranda V, Raelson J, Grimard G, Glavas P, Audibert F, Dumont NA, Barone J, Bamshad M, Lemyre E, Campeau PM. Bi-allelic variants in MYH3 cause recessively-inherited arthrogryposis. Clin Genet 2024; 106:483-487. [PMID: 38856159 DOI: 10.1111/cge.14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
Arthrogryposis is a clinical feature defined by congenital joint contractures in two or more different body areas which occurs in between 1/3000 and 1/5000 live births. Variants in multiple genes have been associated with distal arthrogryposis syndromes. Heterozygous variants in MYH3 have been identified to cause the dominantly-inherited distal arthrogryposis conditions, Freeman-Sheldon syndrome, Sheldon-Hall syndrome, and multiple pterygium syndrome. In contrast, MYH3 variants underlie both dominantly and recessively inherited Contractures, Pterygia, and Spondylocarpotarsal Fusion syndromes (CPSFS) which are characterized by extensive bony abnormalities in addition to congenital contractures. Here we report two affected sibs with distal arthrogryposis born to unaffected, distantly related parents. Sequencing revealed that both sibs were homozygous for two ultra-rare MYH3 variants, c.3445G>A (p.Glu1149Lys) and c.4760T>C (p.Leu1587Pro). Sequencing and deletion/duplication analysis of 169 other arthrogryposis genes yielded no other compelling candidate variants. This is the first report of biallelic variants in MYH3 being implicated in a distal arthrogryposis phenotype without the additional features of CPSFS. Thus, akin to CPSFS, both dominant and recessively inherited distal arthrogryposis can be caused by variants in MYH3.
Collapse
Affiliation(s)
- Burcin Morali
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Valancy Miranda
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - John Raelson
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Guy Grimard
- Department of Orthopedics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Peter Glavas
- Department of Orthopedics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - François Audibert
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Montreal, Montreal, Quebec, Canada
| | | | - Julia Barone
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Michael Bamshad
- Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics and Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Emmanuelle Lemyre
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Philippe M Campeau
- Division of Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Ramos-Mejía R, del Pino M, Aza-Carmona M, Abbate S, Obregon MG, Heath KE, Fano V. Novel FLNB Variants in Seven Argentinian Cases with Spondylocarpotarsal Synostosis Syndrome. J Pediatr Genet 2024; 13:167-174. [PMID: 39086440 PMCID: PMC11288708 DOI: 10.1055/s-0042-1759782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/08/2022] [Indexed: 12/23/2022]
Abstract
Spondylocarpotarsal synostosis syndrome (SCT) is a very rare skeletal dysplasia characterized by vertebral, carpal, and tarsal fusion; growth retardation; and mild dysmorphic facial features. Variants in FLNB, MYH3, and RFLNA have been implicated in this dysplasia. We report the clinical and radiological follow-up of seven SCT pediatric cases associated with biallelic FLNB variants, from four Argentinian families. The seven cases share previously described facial characteristics: round facies, large eyes, and wide based nose; all of them had variable height deficit, in one case noted early in life. Other findings included clinodactyly, joint limitation without bone fusion, neurosensorial hearing loss, and ophthalmological compromise. All cases presented with spinal fusion with variable severity and location, carpal bones coalition, and also delay in carpal ossification. The heterozygous carrier parents had normal height values to -2.5 score standard deviation, without skeletal defects detected. Three different FLNB variants, one nonsense and two frameshift, were detected, all of which were predicted to result in a truncated protein or are degraded by nonsense mediated decay. All cases had at least one copy of the nonsense variant, c.1128C> G; p. (Tyr376*), suggesting the presence of a common ancestor.
Collapse
Affiliation(s)
- R Ramos-Mejía
- Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
| | - M del Pino
- Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
| | - M Aza-Carmona
- Centro de Investigacion Biomédica en Red Enfermedades Raras (CIBERER), ISCIII, Madrid, España
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, España
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, España
| | - S Abbate
- Genetics Department, Hospital Garrahan, Buenos Aires, Argentina
| | - M G. Obregon
- Genetics Department, Hospital Garrahan, Buenos Aires, Argentina
| | - K E. Heath
- Centro de Investigacion Biomédica en Red Enfermedades Raras (CIBERER), ISCIII, Madrid, España
- Institute of Medical and Molecular Genetics (INGEMM), Hospital Universitario La Paz, Universidad Autónoma de Madrid, Madrid, España
- Skeletal Dysplasia Multidisciplinary Unit (UMDE-ERN BOND), Hospital Universitario La Paz, Universidad Autonóma de Madrid, Madrid, España
| | - V Fano
- Growth and Development Department, Hospital Garrahan, Buenos Aires, Argentina
| |
Collapse
|
3
|
Zhao S, Zhang Y, Hallgrimsdottir S, Zuo Y, Li X, Batkovskyte D, Liu S, Lindelöf H, Wang S, Hammarsjö A, Yang Y, Ye Y, Wang L, Yan Z, Lin J, Yu C, Chen Z, Niu Y, Wang H, Zhao Z, Liu P, Qiu G, Posey JE, Wu Z, Lupski JR, Micule I, Anderlid BM, Voss U, Sulander D, Kuchinskaya E, Nordgren A, Nilsson O, Zhang TJ, Grigelioniene G, Wu N. Expanding the mutation and phenotype spectrum of MYH3-associated skeletal disorders. NPJ Genom Med 2022; 7:11. [PMID: 35169139 PMCID: PMC8847563 DOI: 10.1038/s41525-021-00273-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/15/2021] [Indexed: 01/05/2023] Open
Abstract
Pathogenic variants in MYH3 cause distal arthrogryposis type 2A and type 2B3 as well as contractures, pterygia and spondylocarpotarsal fusion syndromes types 1A and 1B. These disorders are ultra-rare and their natural course and phenotypic variability are not well described. In this study, we summarize the clinical features and genetic findings of 17 patients from 10 unrelated families with vertebral malformations caused by dominant or recessive pathogenic variants in MYH3. Twelve novel pathogenic variants in MYH3 (NM_002470.4) were identified: three of them were de novo or inherited in autosomal dominant way and nine were inherited in autosomal recessive way. The patients had vertebral segmentation anomalies accompanied with variable joint contractures, short stature and dysmorphic facial features. There was a significant phenotypic overlap between dominant and recessive MYH3-associated conditions regarding the degree of short stature as well as the number of vertebral fusions. All monoallelic variants caused significantly decreased SMAD3 phosphorylation, which is consistent with the previously proposed pathogenic mechanism of impaired canonical TGF-β signaling. Most of the biallelic variants were predicted to be protein-truncating, while one missense variant c.4244T>G,p.(Leu1415Arg), which was inherited in an autosomal recessive way, was found to alter the phosphorylation level of p38, suggesting an inhibition of the non-canonical pathway of TGF-β signaling. In conclusion, the identification of 12 novel pathogenic variants and overlapping phenotypes in 17 affected individuals from 10 unrelated families expands the mutation and phenotype spectrum of MYH3-associated skeletal disorders. We show that disturbances of canonical or non-canonical TGF-β signaling pathways are involved in pathogenesis of MYH3-associated skeletal fusion (MASF) syndrome.
Collapse
Affiliation(s)
- Sen Zhao
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yuanqiang Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Sigrun Hallgrimsdottir
- Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Yuzhi Zuo
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Xiaoxin Li
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sen Liu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Hillevi Lindelöf
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Shengru Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Yang Yang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yongyu Ye
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Lianlei Wang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zihui Yan
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Jiachen Lin
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Chenxi Yu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Zefu Chen
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China
| | - Yuchen Niu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Huizi Wang
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi Zhao
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Baylor Genetics, Houston, TX, 77021, USA
| | - Guixing Qiu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhihong Wu
- Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China.,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.,Departments of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, TX, 77030, USA.,Texas Children's Hospital, Houston, TX, 77030, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ieva Micule
- Clinic of Medical Genetics and Prenatal Diagnostics, Children's Clinical University Hospital, Vienibas gatve 45, Riga, LV-1004, Latvia
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ulrika Voss
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Dennis Sulander
- Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ekaterina Kuchinskaya
- Department of Clinical Genetics and Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Nilsson
- Division of Pediatric Endocrinology and Center for Molecular Medicine, Department of Women's and Children's Health, Karolinska Institutet and University Hospital, Stockholm, Sweden.,School of Medical Sciences, Örebro University and Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
| | | | - Terry Jianguo Zhang
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China.
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden.
| | - Nan Wu
- Department of Orthopedic Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China. .,Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing, 100730, China. .,Key laboratory of big data for spinal deformities, Chinese Academy of Medical Sciences, Beijing, China. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|