1
|
Yang L, Mei D, Liu Y, Gao L. Genetic analysis of four cases of Poirier Bienvenu neurodevelopmental syndrome associated with CSNK2B variant. BMC Med Genomics 2025; 18:68. [PMID: 40211296 PMCID: PMC11983931 DOI: 10.1186/s12920-025-02132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND CSNK2B deficiency underlies the pathogenesis of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). In this study, we present four cases of pediatric seizures caused by de novo variants in CSNK2B, with the aim to reinforce the clinical and variant data pertaining to early genetic factors associated with epilepsy. METHODS Trio whole exome sequencing were used to detect variants in the proband and her family members, and bioinformatics annotation was performed for the variant. Sanger sequencing and CSNK2B cDNA sequencing were employed to ascertain the carrier status of additional family members and evaluate the potential impact of variants on splicing. RESULTS All four cases presented with epilepsy as the initial manifestation, accompanied by global developmental delay, particularly in language and motor developmental delay. Cases 1, 3 and 4 exhibited full-scale tonic-clonic seizures, while case 2 displayed myoclonic and typical absence seizures. Furthermore, case 2 demonstrated delayed growth and development compared to age-matched peers. No abnormality was detected in the head magnetic resonance imaging (MRI). Genetic analysis revealed novel heterozygous variants in the CSNK2B gene in all four cases, including c.175 + 1G > A, c.73-2A > G, c.291 + 1G > A and c.481delA. In case 2, reverse transcription analysis of CSNK2B mRNA revealed the retention of the 3' end sequence of Intron 2 and deletion of the 5' end sequence of Exon 3. In treatment, four case received a combination of one to three types of antiseizure medication and rehabilitation training individually. Case 1 continued to experience seizures to varying degrees, while cases 2-4 demonstrated effective seizure control. Overall motor and intellectual development improved in all four cases, however, there was slow recovery in language function. CONCLUSION This study elucidates the molecular etiology of epilepsy in four cases with POBINDS and expands the mutational spectrum of pathogenic variants in the CSNK2B, highlighting their impact on splicing. The highly genetic heterogeneous phenotype of POBINDS relies on the detection of pathogenic variants in CSNK2B. Conventional antiseizure medication effectively control seizures, while rehabilitation treatment can significantly improve intelligence and motor function to varying degrees; however, language recovery tends to be relatively slow.
Collapse
Affiliation(s)
- Liu Yang
- Department of Pediatrics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Daoqi Mei
- Department of Neurology, Children's Hospital of Soochow University, Suzhou, Jiangshu, 215127, China
| | - Yanping Liu
- Department of Pediatrics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China
| | - Li Gao
- Department of Pediatrics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, China.
| |
Collapse
|
2
|
Dahlin M, Stödberg T, Ekman E, Töhönen V, Wedell A. Genetic aetiologies in relation to response to the ketogenic diet in 226 children with epilepsy. Brain Commun 2025; 7:fcaf134. [PMID: 40290421 PMCID: PMC12022961 DOI: 10.1093/braincomms/fcaf134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
A ketogenic diet is used in children with drug-resistant epilepsy but predictors for efficacy are largely lacking. Our aim was to evaluate if causative genetic variants could predict seizure response to the ketogenic diet. A cohort study of 226 children with refractory epilepsy and classic ketogenic diet treatment for at least 3 months (76.9% of the 294 who started) was performed. The median age at diet start was 5.1 years (range 0.1-17.8), 118 were girls and 108 boys. They had previous trials of a median of 6.0 anti-seizure medications (range 0-12) and intellectual disability was found in 87%. Seizure response (≥50% reduction) was found in 138/226 patients (61.1%) at 3 months, 121 (53.5%) at 6 months, 107 (47.3%) at 1 year and in 80 (37.0%) at 2 years follow-up of ketogenic diet. Age of epilepsy onset was lower and combined epilepsy type less common in responders compared to non-responders but no differences were found for specific seizure types, ketogenic ratio or beta-hydroxybutyric acid blood levels. A causative pathogenic/likely pathogenic variant was detected in 107/153 = 69.9% in 48 different genes. Next generation sequencing was used in 91/226 (40%) cases with a diagnostic yield of 58.2% (53/91). In comparison with cases without a revealed genetic aetiology, patients with a causative genetic variant had less atonic seizures and epileptic spasms and a better seizure response with 17.3% seizure free and 25% with >90% seizure reduction at 2-year follow-up. Causative variants in SLC2A1, SCN1A, STXBP1 and PAFAH1B1 showed significant diet response (P < 0.05) and good efficacy was also associated with DEPDC5, GLDC, KCNT1, PDHA1, SLC25A12 and TSC1. Causative variants in COL4A1 and DYNC1H1 were among genes linked to a lack of response. To our knowledge not described previously, we report a good ketogenic diet response related to causative variants in CSNK2A1, FARS2, GABRB3, GRIN1, KCNA2, KCTD3, STX1B and SLC16A2 but a lack of response for causative variants in CLN5, GLI3, MACF1, MAGEL2, NANS, NEMO/IKBKG, RORB, SLC17A5 and UFSP2. After grouping of genes into functional groups, causative variants in transporter genes had the best response (P = 0.009) and variants in other membrane-related proteins (ion channels and neurotransmitter receptors) also showed good efficacy. However, the gene group related to cell structural integrity and/or homeostasis had the worst diet response (P = 0.00006). In conclusion, our results support that causative genetic variants may be used as prognostic markers of ketogenic diet response, constituting an example in the expanding area of precision medicine.
Collapse
Affiliation(s)
- Maria Dahlin
- Neuropaediatric Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Neuropediatric Department, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Tommy Stödberg
- Neuropaediatric Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm 171 77, Sweden
- Neuropediatric Department, Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Elin Ekman
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 171 76, Sweden
| | - Virpi Töhönen
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Anna Wedell
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm 171 76, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm 171 77, Sweden
| |
Collapse
|
3
|
Aouchiche K, Romanet P, Barlier A, Brue T, Pertuit M, Reynaud R, Saveanu A. CSNK2B Mutation: A Rare Cause of IGHD. Clin Endocrinol (Oxf) 2025; 102:421-426. [PMID: 39676320 PMCID: PMC11874222 DOI: 10.1111/cen.15174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare neurodevelopmental syndrome, resulting from germline heterozygous CSNKB2 pathogenic variants. The main presentations are severe epilepsy, delayed psychomotor development, and/or profound intellectual disability. More recently, CSNK2B pathogenic variants have been reported in patients with mild intellectual disability and no history of epileptic symptoms. Short stature is present in 66% of patients, in half of these cases due to proven growth hormone deficiency. METHODS Whole genome sequencing (WGS) was performed through a French genomic program for a patient with isolated growth hormone deficiency after negative next generation sequencing (NGS) results. NGS panel analysis of CSNK2B and genes involved in isolated growth hormone deficiency (IGHD) was performed in 44 patients from the Genhypopit network (n = 2144) with growth hormone deficiency (GHD) and intellectual disability (ID) or epilepsy and in a convenience cohort of 68 GHD patients. RESULTS We present the first case of POBINDS presenting mainly as growth delay due to GHD. Genome analysis revealed a de novo pathogenic variant in the translation initiation codon of CSNK2B (c.1 A > G, p.(Met1?)). The patient had mild intellectual disability and subsequent analysis of the patient's clinical history revealed that he had had febrile convulsions, compatible with POBINDS. No CSNK2B pathogenic variants were identified among the 44 selected patients with GHD and ID or epilepsy, or in a convenience cohort of 68 patients with GHD. CONCLUSION Although rare, pediatricians should be aware that POIBNDS syndrome may present as IGHD with mild ID.
Collapse
Affiliation(s)
- Karine Aouchiche
- Multidisciplinary Pediatric DepartmentAix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone Children's HospitalMarseilleFrance
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPéMarseilleFrance
- GCS AURAGENLyonFrance
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPéMarseilleFrance
- Department of EndocrinologyAix Marseille Univ, APHM, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University HospitalMarseilleFrance
| | - Thierry Brue
- Department of EndocrinologyAix Marseille Univ, APHM, INSERM, MMG, MarMaRa Institute, UMR 1251, La Conception University HospitalMarseilleFrance
| | - Morgane Pertuit
- Assistance‐Publique des Hôpitaux de Marseille (AP‐HM), La Timone University Hospital, Laboratory of Molecular BiologyMarseilleFrance
| | - Rachel Reynaud
- Multidisciplinary Pediatric DepartmentAix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone Children's HospitalMarseilleFrance
| | - Alexandru Saveanu
- Aix Marseille Univ, APHM, INSERM, MMG, UMR 1251, La Timone University Hospital, Laboratory of Molecular Biology GEnOPéMarseilleFrance
- GCS AURAGENLyonFrance
| |
Collapse
|
4
|
Demidov G, Yaldiz B, Garcia-Pelaez J, de Boer E, Schuermans N, Van de Vondel L, Paramonov I, Johansson LF, Musacchia F, Benetti E, Bullich G, Sablauskas K, Beltran S, Gilissen C, Hoischen A, Ossowski S, de Voer R, Lohmann K, Oliveira C, Topf A, Vissers LELM, Laurie S. Comprehensive reanalysis for CNVs in ES data from unsolved rare disease cases results in new diagnoses. NPJ Genom Med 2024; 9:49. [PMID: 39461972 PMCID: PMC11513043 DOI: 10.1038/s41525-024-00436-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
We report the results of a comprehensive copy number variant (CNV) reanalysis of 9171 exome sequencing datasets from 5757 families affected by a rare disease (RD). The data reanalysed was extremely heterogeneous, having been generated using 28 different enrichment kits by 42 different research groups across Europe partnering in the Solve-RD project. Each research group had previously undertaken their own analysis of the data but failed to identify disease-causing variants. We applied three CNV calling algorithms to maximise sensitivity, and rare CNVs overlapping genes of interest, provided by four partner European Reference Networks, were taken forward for interpretation by clinical experts. This reanalysis has resulted in a molecular diagnosis being provided to 51 families in this sample, with ClinCNV performing the best of the three algorithms. We also identified partially explanatory pathogenic CNVs in a further 34 individuals. This work illustrates the value of reanalysing ES cold cases for CNVs.
Collapse
Affiliation(s)
- German Demidov
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany.
| | - Burcu Yaldiz
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - José Garcia-Pelaez
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Elke de Boer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Nika Schuermans
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Liedewei Van de Vondel
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Ida Paramonov
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Lennart F Johansson
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Francesco Musacchia
- Center for Human Technologies, Italian Institute of Technology (IIT), Genova, Italy
- Telethon Institute for Genetics and Medicine, 80078, Pozzuoli (Napoli), Italy
| | - Elisa Benetti
- Department of Medical Biotechnologies, Med Biotech Hub and Competence Center, University of Siena, 53100, Siena, Italy
| | - Gemma Bullich
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
| | - Karolis Sablauskas
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Institute of Data Science and Digital Technologies, Vilnius University, Vilnius, Lithuania
| | - Sergi Beltran
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain
- Universitat de Barcelona (UB), Barcelona, Spain
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander Hoischen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, Tübingen, Germany
| | - Richarda de Voer
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ana Topf
- John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lisenka E L M Vissers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Steven Laurie
- Centro Nacional de Análisis Genómico (CNAG), C/Baldiri Reixac 4, 08028, Barcelona, Spain.
- Universitat de Barcelona (UB), Barcelona, Spain.
| |
Collapse
|
5
|
Zhang X, Lu H, Ji Y, Sun W. Case report: Novel deletions in the 6p21.33 involving the CSNK2B gene in patients with Poirier-Bienvenu neurodevelopmental syndrome and literature review. Front Med (Lausanne) 2024; 11:1441573. [PMID: 39493709 PMCID: PMC11527643 DOI: 10.3389/fmed.2024.1441573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/09/2024] [Indexed: 11/05/2024] Open
Abstract
Background Seizures have been identified in most patients with CSNK2B-related Poirer-Bienvenu Neurodevelopment syndrome (POBINDS). Detailed descriptions of seizure phenotypes, various genotypes, and long-term follow-up visits are required for clinicians to provide reasonable clinical management for such patients. Case summary We report two new Chinese patients with varying sizes of 6p21.33 deletions encompassing the CSNK2B gene who presented with intellectual disability and seizures. Furthermore, we conducted a literature review of previously reported patients with 6p21.33 deletions or CSNK2B variants. We summarized and analyzed the clinical characteristics of these patients with seizures. The occurrence of a biphasic pattern of epilepsy and pharmacoresistant epilepsy in patients with CSNK2B variants is severely underestimated. One of our patients underwent a long follow-up period and presented with comprehensive disease progression. Conclusion Our data suggest that the CSNK2B variant or 6p21.33 deletion should be considered in patients with intellectual disability and epilepsy, especially those characterized by biphasic patterns and digital anomalies.
Collapse
Affiliation(s)
| | | | | | - Wei Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
6
|
Andjelkovic M, Klaassen K, Skakic A, Marjanovic I, Kravljanac R, Djordjevic M, Vucetic Tadic B, Kecman B, Pavlovic S, Stojiljkovic M. Characterization of 13 Novel Genetic Variants in Genes Associated with Epilepsy: Implications for Targeted Therapeutic Strategies. Mol Diagn Ther 2024; 28:645-663. [PMID: 39003674 PMCID: PMC11349789 DOI: 10.1007/s40291-024-00720-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Childhood epilepsies are caused by heterogeneous underlying disorders where approximately 40% of the origins of epilepsy can be attributed to genetic factors. The application of next-generation sequencing (NGS) has revolutionized molecular diagnostics and has enabled the identification of disease-causing genes and variants in childhood epilepsies. The objective of this study was to use NGS to identify variants in patients with childhood epilepsy, to expand the variant spectrum and discover potential therapeutic targets. METHODS In our study, 55 children with epilepsy of unknown etiology were analyzed by combining clinical-exome and whole-exome sequencing. Novel variants were characterized using various in silico algorithms for pathogenicity and structure prediction. RESULTS The molecular genetic cause of epilepsy was identified in 28 patients and the overall diagnostic success rate was 50.9%. We identified variants in 22 different genes associated with epilepsy that correlate well with the described phenotype. SCN1A gene variants were found in five unrelated patients, while ALDH7A1 and KCNQ2 gene variants were found twice. In the other 19 genes, variants were found only in a single patient. This includes genes such as ASH1L, CSNK2B, RHOBTB2, and SLC13A5, which have only recently been associated with epilepsy. Almost half of diagnosed patients (46.4%) carried novel variants. Interestingly, we identified variants in ALDH7A1, KCNQ2, PNPO, SCN1A, and SCN2A resulting in gene-directed therapy decisions for 11 children from our study, including four children who all carried novel SCN1A genetic variants. CONCLUSIONS Described novel variants will contribute to a better understanding of the European genetic landscape, while insights into the genotype-phenotype correlation will contribute to a better understanding of childhood epilepsies worldwide. Given the expansion of molecular-based approaches, each newly identified genetic variant could become a potential therapeutic target.
Collapse
Affiliation(s)
- Marina Andjelkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Kristel Klaassen
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Anita Skakic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Irena Marjanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Ruzica Kravljanac
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Maja Djordjevic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Biljana Vucetic Tadic
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozica Kecman
- Institute for Mother and Child Healthcare of Serbia, "Dr Vukan Cupic", Belgrade, Serbia
| | - Sonja Pavlovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia
| | - Maja Stojiljkovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade, Serbia.
| |
Collapse
|
7
|
Blanc A, Bonnet C, Wandzel M, Roth V, Duffourd Y, Safraou H, Leheup B, Muller F, D Colne J, Feillet F, Schmitt E, Castro M, Savatt J, Burcheri A, Nemos C, Philippe C, Lambert L. Patient with a heterozygous pathogenic variant in CSNK2A1 gene: A new case to update the Okur-Chung neurodevelopmental syndrome. Am J Med Genet A 2024; 194:e63642. [PMID: 38711237 DOI: 10.1002/ajmg.a.63642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/07/2024] [Accepted: 04/11/2024] [Indexed: 05/08/2024]
Abstract
The autosomal dominant Okur-Chung neurodevelopmental syndrome (OCNDS: OMIM #617062) is a rare neurodevelopmental disorder first described in 2016. Features include developmental delay (DD), intellectual disability (ID), behavioral problems, hypotonia, language deficits, congenital heart abnormalities, and non-specific dysmorphic facial features. OCNDS is caused by heterozygous pathogenic variants in CSNK2A1 (OMIM *115440; NM_177559.3). To date, 160 patients have been diagnosed worldwide. The number will likely increase due to the growing use of exome sequencing (ES) and genome sequencing (GS). Here, we describe a novel OCNDS patient carrying a CSNK2A1 variant (NM_177559.3:c.140G>A; NP_808227.1:p.Arg47Gln). Phenotypically, he presented with DD, ID, generalized hypotonia, speech delay, short stature, microcephaly, and dysmorphic features such as low-set ears, hypertelorism, thin upper lip, and a round face. The patient showed several signs not yet described that may extend the phenotypic spectrum of OCNDS. These include prenatal bilateral clubfeet, exotropia, and peg lateral incisors. However, unlike the majority of descriptions, he did not present sleep disturbance, seizures or gait difficulties. A literature review shows phenotypic heterogeneity for OCNDS, whether these patients have the same variant or not. This case report is an opportunity to refine the phenotype of this syndrome and raise the question of the genotype-phenotype correlation.
Collapse
Affiliation(s)
- Albin Blanc
- Service de génétique clinique, CHRU de Nancy, Nancy, France
| | - Céline Bonnet
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Marion Wandzel
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Virginie Roth
- Laboratoire de génétique médicale, CHRU Nancy, Nancy, France
| | - Yannis Duffourd
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Hanna Safraou
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Bruno Leheup
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| | - Florence Muller
- Service de Chirurgie orthopédique infantile, CHRU Nancy, Nancy, France
| | | | - François Feillet
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
- Centre de Référence des maladies métaboliques, CHRU Nancy, Nancy, France
| | | | - Matheus Castro
- Mendelics Genomic Analysis, São Paulo, Brazil
- Medical Genetics Unit, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo HCFMUSP, São Paulo, Brazil
| | - Jullian Savatt
- Autism & Developmental Medicine Institute, Danville, Pennsylvania, USA
| | - Adriano Burcheri
- Département de Biopathologie - Anatomie et Cytologie Pathologiques, CHRU de Nancy, Nancy, France
| | - Christophe Nemos
- Laboratoire de fœtopathologie et de placentologie, CHRU Nancy, Nancy, France
- Département d'histologie, embryologie et cytogénétique de la faculté de médecine, Université de Lorraine, Nancy, France
- Département de Génie Biologique Santé de l'IUT Nancy-Brabois, Université de Lorraine, Nancy, France
- Université de Lorraine Biofonctionnalités et Risques Neurotoxiques (Calbinotox), Nancy, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, CHU Dijon Bourgogne, Dijon, France
- Université de Bourgogne, INSERM UMR_1231 GAD, Dijon, France
| | - Laëtitia Lambert
- Service de génétique clinique, CHRU de Nancy, Nancy, France
- Université de Lorraine, INSERM UMR_S1256, NGERE, Nancy, France
| |
Collapse
|
8
|
Goel H, O'Donnell S. Inherited loss of function variant in CSNK2A1: the oldest reported cases of Okur-Chung syndrome in a single family. Clin Dysmorphol 2024; 33:121-124. [PMID: 38818820 DOI: 10.1097/mcd.0000000000000502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Affiliation(s)
- Himanshu Goel
- General Genetics Service, Hunter Genetics, Waratah, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia
| | | |
Collapse
|
9
|
Liu Y, Xia D, Zhong L, Chen L, Zhang L, Ai M, Mei R, Pang R. Casein Kinase 2 Affects Epilepsy by Regulating Ion Channels: A Potential Mechanism. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:894-905. [PMID: 37350003 DOI: 10.2174/1871527322666230622124618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 06/24/2023]
Abstract
Epilepsy, characterized by recurrent seizures and abnormal brain discharges, is the third most common chronic disorder of the Central Nervous System (CNS). Although significant progress has been made in the research on antiepileptic drugs (AEDs), approximately one-third of patients with epilepsy are refractory to these drugs. Thus, research on the pathogenesis of epilepsy is ongoing to find more effective treatments. Many pathological mechanisms are involved in epilepsy, including neuronal apoptosis, mossy fiber sprouting, neuroinflammation, and dysfunction of neuronal ion channels, leading to abnormal neuronal excitatory networks in the brain. CK2 (Casein kinase 2), which plays a critical role in modulating neuronal excitability and synaptic transmission, has been shown to be associated with epilepsy. However, there is limited research on the mechanisms involved. Recent studies have suggested that CK2 is involved in regulating the function of neuronal ion channels by directly phosphorylating them or their binding partners. Therefore, in this review, we will summarize recent research advances regarding the potential role of CK2 regulating ion channels in epilepsy, aiming to provide more evidence for future studies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Di Xia
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Lianmei Zhong
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Ling Chen
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
- Yunnan Provincial Clinical Research Center for Neurological Disease, Kunming, Yunnan, 650032, China
| | - Linming Zhang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Mingda Ai
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| | - Rong Mei
- Department of Neurology, the First People's Hospital of Yunnan Province, Kunming, Yunnan, 650034, China
| | - Ruijing Pang
- Department of Neurology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
10
|
Li D, Zhou B, Tian X, Chen X, Wang Y, Hao S, Zhang C, Hui L. Genetic analysis and literature review of a Poirier-Bienvenu neurodevelopmental syndrome family line caused by a de novo frameshift variant in CSNK2B. Mol Genet Genomic Med 2024; 12:e2327. [PMID: 38037515 PMCID: PMC10767686 DOI: 10.1002/mgg3.2327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/21/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare autosomal dominant neurologic disorder caused by a heterozygous variant of CSNK2B, which is characterized by early onset epilepsy, hypotonia, varying degrees of intellectual disability (ID), developmental delay (DD), and facial dysmorphism. This study clarifies the molecular diagnosis and causative factors of a Chinese boy with POBINDS. METHODS The clinical phenotypes and ancillary laboratory tests were collected and analyzed by trio whole exome sequencing (WES) and copy number variant sequencing (CNV-seq) in the follow-up proband's families. The candidate variant was validated by Sanger sequencing and bioinformatics software was used to further explore the effect of the de novo frameshift variant on the protein structure. RESULTS The proband carries a de novo frameshift variant c.453_c.454insAC (p.H152fs*76) in CSNK2B. According to the ACMG genetic variant classification criteria and guidelines, the locus is a pathogenic variant (PVS1+PS2+PM2) and the associated disease was POBINDS. Protein structure prediction suggests significant differences in amino acid sequences before and after mutation. CONCLUSION A rare case of POBINDS caused by a novel frameshift variant in CSNK2B was diagnosed. The novel variant extends the variation spectrum of CSNK2B, which provides guidance for early clinical diagnosis, genetic counseling and treatment of this family. A review of the currently reported cases of POBINDS further enriches and summarizes the relationship between genotype and phenotype of POBINDS.
Collapse
Affiliation(s)
- Danyang Li
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
- School of Public HealthGansu University of Traditional Chinese MedicineLanzhouGansuChina
| | - Bingbo Zhou
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
| | - Xinyuan Tian
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
- School of Public HealthGansu University of Traditional Chinese MedicineLanzhouGansuChina
| | - Xue Chen
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
| | - Yupei Wang
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
| | - Shengju Hao
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
| | - Chuan Zhang
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
| | - Ling Hui
- Gansu Provincial Maternity and Child‐care Hospital, Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare DiseasesLanzhouGansuChina
- School of Public HealthGansu University of Traditional Chinese MedicineLanzhouGansuChina
| |
Collapse
|
11
|
Brauner R, Bignon-Topalovic J, Bashamboo A, McElreavey K. Exome sequencing in 16 patients with pituitary stalk interruption syndrome: A monocentric study. PLoS One 2023; 18:e0292664. [PMID: 38096238 PMCID: PMC10721018 DOI: 10.1371/journal.pone.0292664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/26/2023] [Indexed: 12/17/2023] Open
Abstract
Pituitary stalk interruption syndrome (PSIS) is a rare disorder characterized by an absent or ectopic posterior pituitary, absent or interrupted pituitary stalk and anterior pituitary hypoplasia on magnetic resonance imaging (MRI), as well in some cases a range of heterogeneous somatic anomalies. The triad can be incomplete. Here, we performed exome sequencing on 16 sporadic patients, aged 0.4 to 13.7 years diagnosed with isolated or complex PSIS. Growth hormone deficiency was isolated in 10 cases, or associated with thyrotropin deficiency in 6 others (isolated (2 cases), associated with adrenocorticotropin deficiency (1 case), gonadotropins deficiency (1 case), or multiple deficiencies (2 cases)). Additional phenotypic anomalies were present in six cases (37.5%) including four with ophthalmic disorders. In 13 patients variants were identified that may contribute to the phenotype. However, only a single individual carried a variant classified as pathogenic. This child presented with the typical clinical presentation of Okur-Chung neurodevelopmental syndrome due to a CSNK2A1 missense variant. We also identified variants in the holoprosencephaly associated genes GLI2 and PTCH1. A likely pathogenic novel splice site variant in the GLI2 gene was observed in a child with PSIS and megacisterna magna. In the remaining 11 cases 26 variants in genes associated with pituitary development or function were identified and were classified of unknown significance. Compared with syndromic forms the diagnostic yield in the isolated forms of PSIS is low. Although we identified rare or novel missense variants in several hypogonadotropic hypogonadism genes (e.g. FGF17, HS6ST1, KISS1R, CHD7, IL17RD) definitively linking them to the PSIS phenotype is premature. A major challenge remains to identify pathogenic variants in cases with isolated PSIS.
Collapse
Affiliation(s)
- Raja Brauner
- Pediatric Endocrinology Unit, Hôpital Fondation Adolphe de Rothschild and Université Paris Cité, Paris, France
| | | | - Anu Bashamboo
- Human Developmental Genetic Unit, Institut Pasteur, Paris, France
| | - Ken McElreavey
- Human Developmental Genetic Unit, Institut Pasteur, Paris, France
| |
Collapse
|
12
|
Zhong X, Moresco JJ, Keller K, Lazaro DR, Ely C, Moresco EMY, Beutler B, Choi JH. Essential requirement for IER3IP1 in B cell development. Proc Natl Acad Sci U S A 2023; 120:e2312810120. [PMID: 37934820 PMCID: PMC10655558 DOI: 10.1073/pnas.2312810120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/05/2023] [Indexed: 11/09/2023] Open
Abstract
In a forward genetic screen of mice with N-ethyl-N-nitrosourea-induced mutations for aberrant immune function, we identified animals with low percentages of B220+ cells in the peripheral blood. The causative mutation was in Ier3ip1, encoding immediate early response 3 interacting protein 1 (IER3IP1), an endoplasmic reticulum membrane protein mutated in an autosomal recessive neurodevelopmental disorder termed Microcephaly with simplified gyration, Epilepsy and permanent neonatal Diabetes Syndrome (MEDS) in humans. However, no immune function for IER3IP1 had previously been reported. The viable hypomorphic Ier3ip1 allele uncovered in this study, identical to a reported IER3IP1 variant in a MEDS patient, reveals an essential hematopoietic-intrinsic role for IER3IP1 in B cell development and function. We show that IER3IP1 forms a complex with the Golgi transmembrane protein 167A and limits activation of the unfolded protein response mediated by inositol-requiring enzyme-1α and X-box binding protein 1 in B cells. Our findings suggest that B cell deficiency may be a feature of MEDS.
Collapse
Affiliation(s)
- Xue Zhong
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - James J. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Katie Keller
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Danielle Renee Lazaro
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Claire Ely
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Eva Marie Y. Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
| | - Jin Huk Choi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX75390-8505
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
13
|
Fujisawa Y, Masunaga Y, Tanikawa W, Nakashima S, Ueda D, Sano S, Fukami M, Saitsu H, Yazawa T, Ogata T. Serum steroid metabolite profiling by LC-MS/MS in two phenotypic male patients with HSD17B3 deficiency: Implications for hormonal diagnosis. J Steroid Biochem Mol Biol 2023; 234:106403. [PMID: 37741351 DOI: 10.1016/j.jsbmb.2023.106403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Although 17β-hydroxysteroid dehydrogenase type 3 (HSD17B3) deficiency is diagnosed when a testosterone/androstenedione (T/A-dione) ratio after human chorionic gonadotropin (hCG) stimulation is below 0.8, this cut-off value is primarily based on hormonal data measured by conventional immunoassay (IA) in patients with feminized or ambiguous genitalia. We examined two 46,XY Japanese patients with undermasculinized genitalia including hypospadias (patient 1 and patient 2). Endocrine studies by IA showed well increased serum T value after hCG stimulation (2.91 ng/mL) and a high T/A-dione ratio (4.04) in patient 1 at 2 weeks of age and sufficiently elevated basal serum T value (2.60 ng/mL) in patient 2 at 1.5 months of age. Despite such partial androgen insensitivity syndrome-like findings, whole exome sequencing identified biallelic ″pathogenic″ or ″likely pathogenic″ variants in HSD17B3 (c .188 C>T:p.(Ala63Val) and c .194 C>T:p.(Ser65Leu) in patient 1, and c.139 A>G:p.(Met47Val) and c.672 + 1 G>A in patient 2) (NM_000197.2), and functional analysis revealed reduced HSD17B3 activities of the missense variants (∼ 43% for p.Met47Val, ∼ 14% for p.Ala63Val, and ∼ 0% for p.Ser65Leu). Thus, we investigated hCG-stimulated serum steroid metabolite profiles by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patient 1 at 7 months of age and in patient 2 at 11 months of age as well as in five control males with idiopathic micropenis aged 1 - 8 years, and found markedly high T/A-dione ratios (12.3 in patient 1 and 5.4 in patient 2) which were, however, obviously lower than those in the control boys (25.3 - 56.1) and sufficiently increased T values comparable to those of control males. The elevated T/A-dione ratios are considered be due to the residual HSD17B3 function and the measurement by LC-MS/MS. Thus, it is recommended to establish the cut-off value for the T/A-dione ratio according to the phenotypic sex reflecting the residual function and the measurement method.
Collapse
Affiliation(s)
- Yasuko Fujisawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Regional Medical Care Support, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Wataru Tanikawa
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichi Nakashima
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Daisuke Ueda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinichiro Sano
- Department of Pediatric Endocrinology and Metabolism, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan; Department of Pediatrics, Hamamatsu Medical Center, Hamamatsu, Japan.
| |
Collapse
|
14
|
Trivisano M, Dominicis AD, Stregapede F, Quintavalle C, Micalizzi A, Cappelletti S, Dentici ML, Sinibaldi L, Calabrese C, Terracciano A, Vigevano F, Novelli A, Specchio N. Refining of the electroclinical phenotype in familial and sporadic cases of CSNK2B-related Neurodevelopmental Syndrome. Epilepsy Behav 2023; 147:109436. [PMID: 37717460 DOI: 10.1016/j.yebeh.2023.109436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
CSNK2B encodes a regulatory subunit of casein kinase II, which is highly expressed in the brain. Heterozygous pathogenic variants in CSNK2B are associated with Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) (OMIM #618732), characterized by facial dysmorphisms, seizures, intellectual disability, and behavioral disturbances. We report ten new patients with CSNK2B-related Neurodevelopmental Syndrome associated with heterozygous variants of CSNK2B. In three patients, a pathogenic variant was inherited from an affected parent. We describe both molecular and clinical features, focusing on epileptic and neurodevelopmental phenotypes. The median age at follow-up was 8.5 years (range 21 months-42 years). All patients had epilepsy, with onset at a median age of 10.5 months range 6 days-10 years). Seizures were both focal and generalized and were resistant to anti-seizure medications in two out of ten patients. Six patients had mild to moderate cognitive delays, whereas four patients had no cognitive disability. Although all previously reported patients had a de novo CSNK2B pathogenic variant, here we report, for the first time, two familial cases of CSNK2B-related Neurodevelopmental Syndrome. We confirmed the highly variable expressivity of the disease among both interfamilial and intrafamilial cases. Furthermore, this study provides information about the long-term outcome in adult patients and underlines the importance of detailed family history collection before performing genetic testing in patients with epilepsy and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Marina Trivisano
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy.
| | - Angela De Dominicis
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy; Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Fabrizia Stregapede
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Chiara Quintavalle
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessia Micalizzi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Simona Cappelletti
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Maria Lisa Dentici
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Lorenzo Sinibaldi
- Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
| | - Costanza Calabrese
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Alessandra Terracciano
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Federico Vigevano
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, Rome, Italy
| | - Nicola Specchio
- Clinical and Experimental Neurology, Bambino Gesù Children's Hospital, IRCCS, Full Member of European Reference Network EpiCARE, Rome, Italy
| |
Collapse
|
15
|
Wafik M, Kuoppamaa H, Hirani P, Hignett J, Lillis S, Lascelles K, Sardesai S, Gomez K, Holder-Espinasse M. Two novel CSNK2A1 variants associated with mild Okur-Chung neurodevelopmental syndrome phenotype. Clin Dysmorphol 2023; 32:116-123. [PMID: 37195306 DOI: 10.1097/mcd.0000000000000456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Affiliation(s)
- Mohamed Wafik
- Department of Clinical Genetics, Guy's and St Thomas' NHS Foundation Trust
| | | | | | - John Hignett
- Viapath LLP, Guy's Hospital, 5th Floor Tower Wing
| | | | | | - Shweta Sardesai
- Community Paediatrics Medical Service, Oxleas NHS Foundation Trust
| | - Kumudini Gomez
- Department of Paediatrics, University Hospital Lewisham, London, UK
| | | |
Collapse
|
16
|
Nickelsen A, Götz C, Lenz F, Niefind K, König S, Jose J. Analyzing the interactome of human CK2β in prostate carcinoma cells reveals HSP70-1 and Rho guanin nucleotide exchange factor 12 as novel interaction partners. FASEB Bioadv 2023; 5:114-130. [PMID: 36876296 PMCID: PMC9983076 DOI: 10.1096/fba.2022-00098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/19/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
CK2β is the non-catalytic modulating part of the S/T-protein kinase CK2. However, the overall function of CK2β is poorly understood. Here, we report on the identification of 38 new interaction partners of the human CK2β from lysates of DU145 prostate cancer cells using photo-crosslinking and mass spectrometry, whereby HSP70-1 was identified with high abundance. The KD value of its interaction with CK2β was determined as 0.57 μM by microscale thermophoresis, this being the first time, to our knowledge, that a KD value of CK2β with another protein than CK2α or CK2α' was quantified. Phosphorylation studies excluded HSP70-1 as a substrate or activity modulator of CK2, suggesting a CK2 activity independent interaction of HSP70-1 with CK2β. Co-immunoprecipitation experiments in three different cancer cell lines confirmed the interaction of HSP70-1 with CK2β in vivo. A second identified CK2β interaction partner was Rho guanin nucleotide exchange factor 12, indicating an involvement of CK2β in the Rho-GTPase signal pathway, described here for the first time to our knowledge. This points to a role of CK2β in the interaction network affecting the organization of the cytoskeleton.
Collapse
Affiliation(s)
- Anna Nickelsen
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Claudia Götz
- Department of Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Florian Lenz
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| | - Karsten Niefind
- Department of Chemistry, Institute of BiochemistryUniversity of CologneKölnGermany
| | - Simone König
- Interdisciplinary Center for Clinical Research, Core Unit Proteomics, Medical FacultyUniversity of MünsterMünsterGermany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal ChemistryUniversity of MünsterMünsterGermany
| |
Collapse
|
17
|
Web-accessible application for identifying pathogenic transcripts with RNA-seq: Increased sensitivity in diagnosis of neurodevelopmental disorders. Am J Hum Genet 2023; 110:251-272. [PMID: 36669495 PMCID: PMC9943747 DOI: 10.1016/j.ajhg.2022.12.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/21/2022] [Indexed: 01/20/2023] Open
Abstract
For neurodevelopmental disorders (NDDs), a molecular diagnosis is key for management, predicting outcome, and counseling. Often, routine DNA-based tests fail to establish a genetic diagnosis in NDDs. Transcriptome analysis (RNA sequencing [RNA-seq]) promises to improve the diagnostic yield but has not been applied to NDDs in routine diagnostics. Here, we explored the diagnostic potential of RNA-seq in 96 individuals including 67 undiagnosed subjects with NDDs. We performed RNA-seq on single individuals' cultured skin fibroblasts, with and without cycloheximide treatment, and used modified OUTRIDER Z scores to detect gene expression outliers and mis-splicing by exonic and intronic outliers. Analysis was performed by a user-friendly web application, and candidate pathogenic transcriptional events were confirmed by secondary assays. We identified intragenic deletions, monoallelic expression, and pseudoexonic insertions but also synonymous and non-synonymous variants with deleterious effects on transcription, increasing the diagnostic yield for NDDs by 13%. We found that cycloheximide treatment and exonic/intronic Z score analysis increased detection and resolution of aberrant splicing. Importantly, in one individual mis-splicing was found in a candidate gene nearly matching the individual's specific phenotype. However, pathogenic splicing occurred in another neuronal-expressed gene and provided a molecular diagnosis, stressing the need to customize RNA-seq. Lastly, our web browser application allowed custom analysis settings that facilitate diagnostic application and ranked pathogenic transcripts as top candidates. Our results demonstrate that RNA-seq is a complementary method in the genomic diagnosis of NDDs and, by providing accessible analysis with improved sensitivity, our transcriptome analysis approach facilitates wider implementation of RNA-seq in routine genome diagnostics.
Collapse
|
18
|
Di Stazio M, Zanus C, Faletra F, Pesaresi A, Ziccardi I, Morgan A, Girotto G, Costa P, Carrozzi M, d’Adamo AP, Musante L. Haploinsufficiency as a Foreground Pathomechanism of Poirer-Bienvenu Syndrome and Novel Insights Underlying the Phenotypic Continuum of CSNK2B-Associated Disorders. Genes (Basel) 2023; 14:genes14020250. [PMID: 36833176 PMCID: PMC9957394 DOI: 10.3390/genes14020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
CSNK2B encodes for the regulatory subunit of the casein kinase II, a serine/threonine kinase that is highly expressed in the brain and implicated in development, neuritogenesis, synaptic transmission and plasticity. De novo variants in this gene have been identified as the cause of the Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) characterized by seizures and variably impaired intellectual development. More than sixty mutations have been described so far. However, data clarifying their functional impact and the possible pathomechanism are still scarce. Recently, a subset of CSNK2B missense variants affecting the Asp32 in the KEN box-like domain were proposed as the cause of a new intellectual disability-craniodigital syndrome (IDCS). In this study, we combined predictive functional and structural analysis and in vitro experiments to investigate the effect of two CSNK2B mutations, p.Leu39Arg and p.Met132LeufsTer110, identified by WES in two children with POBINDS. Our data prove that loss of the CK2beta protein, due to the instability of mutant CSNK2B mRNA and protein, resulting in a reduced amount of CK2 complex and affecting its kinase activity, may underlie the POBINDS phenotype. In addition, the deep reverse phenotyping of the patient carrying p.Leu39Arg, with an analysis of the available literature for individuals with either POBINDS or IDCS and a mutation in the KEN box-like motif, might suggest the existence of a continuous spectrum of CSNK2B-associated phenotypes rather than a sharp distinction between them.
Collapse
Affiliation(s)
- Mariateresa Di Stazio
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Caterina Zanus
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Flavio Faletra
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Alessia Pesaresi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Ilaria Ziccardi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Anna Morgan
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Giorgia Girotto
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
| | - Paola Costa
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Marco Carrozzi
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| | - Adamo P. d’Adamo
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence:
| | - Luciana Musante
- Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”—Trieste, 34137 Trieste, Italy
| |
Collapse
|
19
|
Chen X, Han Y, Li X, Huang S, Yuan H, Qin Y. Case report: Two cases of Poirier-Bienvenu neurodevelopmental syndrome and review of literature. Front Pediatr 2023; 11:967701. [PMID: 37020656 PMCID: PMC10067874 DOI: 10.3389/fped.2023.967701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/28/2023] [Indexed: 04/07/2023] Open
Abstract
The Poirier-Bienvenu neurodevelopmental syndrome (POBINDS) is a rare disease caused by mutations in the CSNK2B gene, which is characterized by intellectual disability and early-onset epilepsy. Mosaicism has not been previously reported in CSNK2B gene. POBINDS is autosomal dominant and almost all reported cases were de novo variants. Here, we report two patients were diagnosed with POBINDS. Using Whole Exome Sequencing (WES), we detected two novel CSNK2B variants in the two unrelated individuals: c.634_635del (p.Lys212AspfsTer33) and c.142C > T (p.Gln48Ter) respectively. Both of them showed mild developmental delay with early-onset and clustered seizures. The patient with c.634_635del(p.Lys212AspfsTer33) variant was mutant mosaicism, and the proportion of alleles in peripheral blood DNA was 28%. Further, the literature of patients with a de novo mutation of the CSNK2B gene was reviewed, particularly seizure semiology and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Xiaolan Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yunli Han
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xing Li
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqin Huang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hai Yuan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yuanhan Qin
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Correspondence: Yuanhan Qin
| |
Collapse
|
20
|
Wu E, Fan X, Tang T, Li J, Wang J, Liu X, Zungar Z, Ren J, Wu C, Shen B. Biomarkers discovery for endometrial cancer: A graph convolutional sample network method. Comput Biol Med 2022; 150:106200. [PMID: 37859290 DOI: 10.1016/j.compbiomed.2022.106200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/20/2022] [Accepted: 10/09/2022] [Indexed: 11/03/2022]
Abstract
BACKGROUND Endometrial carcinoma is the sixth most common cancer in women worldwide. Importantly, endometrial cancer is among the few types of cancers with patient mortality that is still increasing, which indicates that the improvement in its diagnosis and treatment is still urgent. Moreover, biomarker discovery is essential for precise classification and prognostic prediction of endometrial cancer. METHODS A novel graph convolutional sample network method was used to identify and validate biomarkers for the classification of endometrial cancer. The sample networks were first constructed for each sample, and the gene pairs with high frequencies were identified to construct a subtype-specific network. Putative biomarkers were then screened using the highest degrees in the subtype-specific network. Finally, simplified sample networks are constructed using the biomarkers for the graph convolutional network (GCN) training and prediction. RESULTS Putative biomarkers (23) were identified using the novel bioinformatics model. These biomarkers were then rationalised with functional analyses and were found to be correlated to disease survival with network entropy characterisation. These biomarkers will be helpful in future investigations of the molecular mechanisms and therapeutic targets of endometrial cancers. CONCLUSIONS A novel bioinformatics model combining sample network construction with GCN modelling is proposed and validated for biomarker discovery in endometrial cancer. The model can be generalized and applied to biomarker discovery in other complex diseases.
Collapse
Affiliation(s)
- Erman Wu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xuemeng Fan
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China; Department of Computer Science and Information Technologies, Elviña Campus, University of A Coruña, A Coruña, Spain
| | - Jingjing Li
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Jiao Wang
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xingyun Liu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Zayatta Zungar
- School of Medicine, University of New England, Armidale, NSW, 2351, Australia
| | - Jiaojiao Ren
- School of Electronic Information and Electrical Engineering, Chengdu University, Chengdu, China
| | - Cong Wu
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| | - Bairong Shen
- Institutes for Systems Genetics, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
21
|
Unni P, Friend J, Weinberg J, Okur V, Hochscherf J, Dominguez I. Predictive functional, statistical and structural analysis of CSNK2A1 and CSNK2B variants linked to neurodevelopmental diseases. Front Mol Biosci 2022; 9:851547. [PMID: 36310603 PMCID: PMC9608649 DOI: 10.3389/fmolb.2022.851547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/29/2022] [Indexed: 12/02/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) and Poirier-Bienvenu Neurodevelopmental Syndrome (POBINDS) were recently identified as rare neurodevelopmental disorders. OCNDS and POBINDS are associated with heterozygous mutations in the CSNK2A1 and CSNK2B genes which encode CK2α, a serine/threonine protein kinase, and CK2β, a regulatory protein, respectively, which together can form a tetrameric enzyme called protein kinase CK2. A challenge in OCNDS and POBINDS is to understand the genetic basis of these diseases and the effect of the various CK2⍺ and CK2β mutations. In this study we have collected all variants available to date in CSNK2A1 and CSNK2B, and identified hotspots. We have investigated CK2⍺ and CK2β missense mutations through prediction programs which consider the evolutionary conservation, functionality and structure or these two proteins, compared these results with published experimental data on CK2α and CK2β mutants, and suggested prediction programs that could help predict changes in functionality of CK2α mutants. We also investigated the potential effect of CK2α and CK2β mutations on the 3D structure of the proteins and in their binding to each other. These results indicate that there are functional and structural consequences of mutation of CK2α and CK2β, and provide a rationale for further study of OCNDS and POBINDS-associated mutations. These data contribute to understanding the genetic and functional basis of these diseases, which is needed to identify their underlying mechanisms.
Collapse
Affiliation(s)
- Prasida Unni
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Jack Friend
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
| | - Janice Weinberg
- Department of Biostatistics, Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Volkan Okur
- New York Genome Center, New York, NY, United States
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston University, Boston, MA, United States
- *Correspondence: Isabel Dominguez,
| |
Collapse
|
22
|
Protein kinase CK2 phosphorylates a conserved motif in the Notch effector E(spl)-Mγ. Mol Cell Biochem 2022; 478:781-790. [PMID: 36087252 DOI: 10.1007/s11010-022-04539-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 08/08/2022] [Indexed: 11/27/2022]
Abstract
Across metazoan animals, the effects of Notch signaling are mediated via the Enhancer of Split (E(spl)/HES) basic Helix-Loop-Helix-Orange (bHLH-O) repressors. Although these repressors are generally conserved, their sequence diversity is, in large part, restricted to the C-terminal domain (CtD), which separates the Orange (O) domain from the penultimate WRPW tetrapeptide motif that binds the obligate co-repressor Groucho. While the kinases CK2 and MAPK target the CtD and regulate Drosophila E(spl)-M8 and mammalian HES6, the generality of this regulation to other E(spl)/HES repressors has remained unknown. To determine the broader impact of phosphorylation on this large family of repressors, we conducted bioinformatics, evolutionary, and biochemical analyses. Our studies identify E(spl)-Mγ as a new target of native CK2 purified from Drosophila embryos, reveal that phosphorylation is specific to CK2 and independent of the regulatory CK2-β subunit, and identify that the site of phosphorylation is juxtaposed to the WRPW motif, a feature unique to and conserved in the Mγ homologues over 50 × 106 years of Drosophila evolution. Thus, a preponderance of E(spl) homologues (four out of seven total) in Drosophila are targets for CK2, and the distinct positioning of the CK2 and MAPK sites raises the prospect that phosphorylation underlies functional diversity of bHLH-O proteins.
Collapse
|
23
|
Asif M, Kaygusuz E, Shinawi M, Nickelsen A, Hsieh TC, Wagle P, Budde BS, Hochscherf J, Abdullah U, Höning S, Nienberg C, Lindenblatt D, Noegel AA, Altmüller J, Thiele H, Motameny S, Fleischer N, Segal I, Pais L, Tinschert S, Samra NN, Savatt JM, Rudy NL, De Luca C, Paola Fortugno, White SM, Krawitz P, Hurst ACE, Niefind K, Jose J, Brancati F, Nürnberg P, Hussain MS. De novo variants of CSNK2B cause a new intellectual disability-craniodigital syndrome by disrupting the canonical Wnt signaling pathway. HGG ADVANCES 2022; 3:100111. [PMID: 35571680 PMCID: PMC9092267 DOI: 10.1016/j.xhgg.2022.100111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
CSNK2B encodes for casein kinase II subunit beta (CK2β), the regulatory subunit of casein kinase II (CK2), which is known to mediate diverse cellular pathways. Variants in this gene have been recently identified as a cause of Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), but functional evidence is sparse. Here, we report five unrelated individuals: two of them manifesting POBINDS, while three are identified to segregate a new intellectual disability-craniodigital syndrome (IDCS), distinct from POBINDS. The three IDCS individuals carried two different de novo missense variants affecting the same codon of CSNK2B. Both variants, NP_001311.3; p.Asp32His and NP_001311.3; p.Asp32Asn, lead to an upregulation of CSNK2B expression at transcript and protein level, along with global dysregulation of canonical Wnt signaling. We found impaired interaction of the two key players DVL3 and β-catenin with mutated CK2β. The variants compromise the kinase activity of CK2 as evident by a marked reduction of phosphorylated β-catenin and consequent absence of active β-catenin inside nuclei of the patient-derived lymphoblastoid cell lines (LCLs). In line with these findings, whole-transcriptome profiling of patient-derived LCLs harboring the NP_001311.3; p.Asp32His variant confirmed a marked difference in expression of genes involved in the Wnt signaling pathway. In addition, whole-phosphoproteome analysis of the LCLs of the same subject showed absence of phosphorylation for 313 putative CK2 substrates, enriched in the regulation of nuclear β-catenin and transcription of the target genes. Our findings suggest that discrete variants in CSNK2B cause dominant-negative perturbation of the canonical Wnt signaling pathway, leading to a new craniodigital syndrome distinguishable from POBINDS.
Collapse
Affiliation(s)
- Maria Asif
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Emrah Kaygusuz
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Bilecik Şeyh Edebali University, Molecular Biology and Genetics, Gülümbe Campus, 11230 Bilecik, Turkey
| | - Marwan Shinawi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich Wilhelms, Universität Bonn, Bonn, Germany
| | - Prerana Wagle
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Birgit S Budde
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Uzma Abdullah
- University Institute of Biochemistry and Biotechnology (UIBB), PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Stefan Höning
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Christian Nienberg
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Core Facility Genomics, Charitéplatz 1, 10117 Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Holger Thiele
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Susanne Motameny
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | | | | | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sigrid Tinschert
- Zentrum Medizinische Genetik, Medizinische Universität, Innsbruck, Austria
| | - Nadra Nasser Samra
- Hospital Center, Safed, Israel.,Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Natasha L Rudy
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chiara De Luca
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy
| | | | - Paola Fortugno
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy.,IRCCS, San Raffaele Roma, 00163 Roma, Italy
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, VIC, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich Wilhelms, Universität Bonn, Bonn, Germany
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westphalian Wilhelms-University, Münster, Germany
| | - Francesco Brancati
- Department of Life, Health and Environmental Science, University of L'Aquila, 67100 L'Aquila, Italy.,IRCCS, San Raffaele Roma, 00163 Roma, Italy
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Muhammad Sajid Hussain
- Cologne Center for Genomics (CCG), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany.,Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| |
Collapse
|
24
|
Zhang W, Ye F, Chen S, Peng J, Pang N, Yin F. Splicing Interruption by Intron Variants in CSNK2B Causes Poirier–Bienvenu Neurodevelopmental Syndrome: A Focus on Genotype–Phenotype Correlations. Front Neurosci 2022; 16:892768. [PMID: 35774559 PMCID: PMC9237577 DOI: 10.3389/fnins.2022.892768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
CSNK2B has recently been identified as the causative gene for Poirier–Bienvenu neurodevelopmental syndrome (POBINDS). POBINDS is a rare neurodevelopmental disorder characterized by early-onset epilepsy, developmental delay, hypotonia, and dysmorphism. Limited by the scarcity of patients, the genotype–phenotype correlations in POBINDS are still unclear. In the present study, we describe the clinical and genetic characteristics of eight individuals with POBINDS, most of whom suffered developmental delay, generalized epilepsy, and hypotonia. Minigene experiments confirmed that two intron variants (c.367+5G>A and c.367+6T>C) resulted in the skipping of exon 5, leading to a premature termination of mRNA transcription. Combining our data with the available literature, the types of POBINDS-causing variants included missense, nonsense, frameshift, and splicing, but the variant types do not reflect the clinical severity. Reduced casein kinase 2 holoenzyme activity may represent a unifying pathogenesis. We also found that individuals with missense variants in the zinc finger domain had manageable seizures (p = 0.009) and milder intellectual disability (p = 0.003) than those with missense variants in other domains of CSNK2B. This is the first study of genotype–phenotype correlations in POBINDS, drawing attention to the pathogenicity of intron variants and expanding the understanding of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fanghua Ye
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Shimeng Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Nan Pang,
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Fei Yin,
| |
Collapse
|
25
|
Ballardin D, Cruz-Gamero JM, Bienvenu T, Rebholz H. Comparing Two Neurodevelopmental Disorders Linked to CK2: Okur-Chung Neurodevelopmental Syndrome and Poirier-Bienvenu Neurodevelopmental Syndrome—Two Sides of the Same Coin? Front Mol Biosci 2022; 9:850559. [PMID: 35693553 PMCID: PMC9182197 DOI: 10.3389/fmolb.2022.850559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/01/2022] [Indexed: 12/27/2022] Open
Abstract
In recent years, variants in the catalytic and regulatory subunits of the kinase CK2 have been found to underlie two different, yet symptomatically overlapping neurodevelopmental disorders, termed Okur-Chung neurodevelopmental syndrome (OCNDS) and Poirier-Bienvenu neurodevelopmental syndrome (POBINDS). Both conditions are predominantly caused by de novo missense or nonsense mono-allelic variants. They are characterized by a generalized developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, motricity and verbalization deficits. One of the main features of POBINDS is epilepsies, which are present with much lower prevalence in patients with OCNDS. While a role for CK2 in brain functioning and development is well acknowledged, these findings for the first time clearly link CK2 to defined brain disorders. Our review will bring together patient data for both syndromes, aiming to link symptoms with genotypes, and to rationalize the symptoms through known cellular functions of CK2 that have been identified in preclinical and biochemical contexts. We will also compare the symptomatology and elaborate the specificities that distinguish the two syndromes.
Collapse
Affiliation(s)
- Demetra Ballardin
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
| | - Jose M. Cruz-Gamero
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
| | - Thierry Bienvenu
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- Service de Médecine Génomique des Maladies de Système et d’organe, Hôpital Cochin, APHP, Centre Université de Paris, Paris, France
| | - Heike Rebholz
- INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Université de Paris, Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Sainte Anne, Paris, France
- Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria
- *Correspondence: Heike Rebholz,
| |
Collapse
|
26
|
Caefer DM, Phan NQ, Liddle JC, Balsbaugh JL, O'Shea JP, Tzingounis AV, Schwartz D. The Okur-Chung Neurodevelopmental Syndrome Mutation CK2 K198R Leads to a Rewiring of Kinase Specificity. Front Mol Biosci 2022; 9:850661. [PMID: 35517865 PMCID: PMC9062000 DOI: 10.3389/fmolb.2022.850661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Okur-Chung Neurodevelopmental Syndrome (OCNDS) is caused by heterozygous mutations to the CSNK2A1 gene, which encodes the alpha subunit of protein kinase CK2. The most frequently occurring mutation is lysine 198 to arginine (K198R). To investigate the impact of this mutation, we first generated a high-resolution phosphorylation motif of CK2WT, including the first characterization of specificity for tyrosine phosphorylation activity. A second high resolution motif representing CK2K198R substrate specificity was also generated. Here we report the impact of the OCNDS associated CK2K198R mutation. Contrary to prior speculation, the mutation does not result in a complete loss of function, but rather shifts the substrate specificity of the kinase. Broadly speaking the mutation leads to 1) a decreased preference for acidic residues in the +1 position, 2) a decreased preference for threonine phosphorylation, 3) an increased preference for tyrosine phosphorylation, and 4) an alteration of the tyrosine phosphorylation specificity motif. To further investigate the result of this mutation we have developed a probability-based scoring method, allowing us to predict shifts in phosphorylation in the K198R mutant relative to the wild type kinase. As an initial step we have applied the methodology to the set of axonally localized ion channels in an effort to uncover potential alterations of the phosphoproteome associated with the OCNDS disease condition.
Collapse
Affiliation(s)
- Danielle M Caefer
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Nhat Q Phan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Jennifer C Liddle
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Jeremy L Balsbaugh
- Center for Open Research Resources and Equipment, Proteomics and Metabolomics Facility, University of Connecticut, Storrs, CT, United States
| | - Joseph P O'Shea
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Anastasios V Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| | - Daniel Schwartz
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
27
|
Werner C, Gast A, Lindenblatt D, Nickelsen A, Niefind K, Jose J, Hochscherf J. Structural and Enzymological Evidence for an Altered Substrate Specificity in Okur-Chung Neurodevelopmental Syndrome Mutant CK2αLys198Arg. Front Mol Biosci 2022; 9:831693. [PMID: 35445078 PMCID: PMC9014129 DOI: 10.3389/fmolb.2022.831693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Specific de novo mutations in the CSNK2A1 gene, which encodes CK2α, the catalytic subunit of protein kinase CK2, are considered as causative for the Okur-Chung neurodevelopmental syndrome (OCNDS). OCNDS is a rare congenital disease with a high phenotypic diversity ranging from neurodevelopmental disabilities to multi-systemic problems and characteristic facial features. A frequent OCNDS mutation is the exchange of Lys198 to Arg at the center of CK2α′s P+1 loop, a key element of substrate recognition. According to preliminary data recently made available, this mutation causes a significant shift of the substrate specificity of the enzyme. We expressed the CK2αLys198Arg recombinantly and characterized it biophysically and structurally. Using isothermal titration calorimetry (ITC), fluorescence quenching and differential scanning fluorimetry (Thermofluor), we found that the mutation does not affect the interaction with CK2β, the non-catalytic CK2 subunit, and that the thermal stability of the protein is even slightly increased. However, a CK2αLys198Arg crystal structure and its comparison with wild-type structures revealed a significant shift of the anion binding site harboured by the P+1 loop. This observation supports the notion that the Lys198Arg mutation causes an alteration of substrate specificity which we underpinned here with enzymological data.
Collapse
Affiliation(s)
- Christian Werner
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Alexander Gast
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Dirk Lindenblatt
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Anna Nickelsen
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Karsten Niefind
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Münster, Germany
| | - Jennifer Hochscherf
- Department of Chemistry, Institute of Biochemistry, University of Cologne, Cologne, Germany
- *Correspondence: Jennifer Hochscherf,
| |
Collapse
|
28
|
Takahashi Y, Date H, Oi H, Adachi T, Imanishi N, Kimura E, Takizawa H, Kosugi S, Matsumoto N, Kosaki K, Matsubara Y, Mizusawa H. Six years' accomplishment of the Initiative on Rare and Undiagnosed Diseases: nationwide project in Japan to discover causes, mechanisms, and cures. J Hum Genet 2022; 67:505-513. [PMID: 35318459 PMCID: PMC9402437 DOI: 10.1038/s10038-022-01025-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 11/09/2022]
Abstract
The identification of causative genetic variants for hereditary diseases has revolutionized clinical medicine and an extensive collaborative framework with international cooperation has become a global trend to understand rare disorders. The Initiative on Rare and Undiagnosed Diseases (IRUD) was established in Japan to provide accurate diagnosis, discover causes, and ultimately provide cures for rare and undiagnosed diseases. The fundamental IRUD system consists of three pillars: IRUD diagnostic coordination, analysis centers (IRUD-ACs), and a data center (IRUD-DC). IRUD diagnostic coordination consists of clinical centers (IRUD-CLs) and clinical specialty subgroups (IRUD-CSSs). In addition, the IRUD coordinating center (IRUD-CC) manages the entire IRUD system and temporarily operates the IRUD resource center (IRUD-RC). By the end of March 2021, 6301 pedigrees consisting of 18,136 individuals were registered in the IRUD. The whole-exome sequencing method was completed in 5136 pedigrees, and a final diagnosis was established in 2247 pedigrees (43.8%). The total number of aberrated genes and pathogenic variants was 657 and 1718, among which 1113 (64.8%) were novel. In addition, 39 novel disease entities or phenotypes with 41 aberrated genes were identified. The 6-year endeavor of IRUD has been an overwhelming success, establishing an all-Japan comprehensive diagnostic and research system covering all geographic areas and clinical specialties/subspecialties. IRUD has accurately diagnosed diseases, identified novel aberrated genes or disease entities, discovered many candidate genes, and enriched phenotypic and pathogenic variant databases. Further promotion of the IRUD is essential for determining causes and developing cures for rare and undiagnosed diseases.
Collapse
Affiliation(s)
- Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hidetoshi Date
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hideki Oi
- Department of Clinical Data Science, Clinical Research and Education Promotion Division, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takeya Adachi
- Keio Frontier Research & Education Collaborative Square (K-FRECS) at Tonomachi, Keio University, Kawasaki, Japan.,Department of Medical Regulatory Science, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Noriaki Imanishi
- Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Department of Research Promotion and Management, National Cerebral and Cardiovascular Center, Suita, Japan
| | - En Kimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan.,Astellas Pharma Incorporated, Tokyo, Japan
| | - Hotake Takizawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Japan Agency for Medical Research and Development (AMED), Tokyo, Japan
| | - Shinji Kosugi
- Department of Medical Ethics/Medical Genetics, Kyoto University School of Public Health, Kyoto, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | | | | | - Hidehiro Mizusawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.
| |
Collapse
|
29
|
ACAN biallelic variants in a girl with severe idiopathic short stature. J Hum Genet 2022; 67:481-486. [PMID: 35314765 DOI: 10.1038/s10038-022-01030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 11/08/2022]
Abstract
Although ACAN heterozygous loss-of-function variants often cause idiopathic short stature (ISS) phenotype, there is no report describing ISS phenotype caused by ACAN biallelic loss-of-function variants. We encountered a 4 1/12-year-old Japanese girl with a height of 80.4 cm (-5.2 SD), a weight of 11.4 kg (-1.9 SD), a head circumference of 48.7 cm (-0.6 SD), and an arm span/height ratio of 1.0 (+1.1 SD). Endocrine studies and bone survey showed no abnormal findings. Whole exome sequencing revealed biallelic rare variants in ACAN, i.e., NM_013227.4:c.4214delC:p.(Pro1405Leufs*3) derived from her father and paternal grandfather with short stature (-2.9 and -2.0 SD, respectively) and NM_013227.4:c.7124 A>G:p.(Gln2375Arg) inherited from her mother and maternal grandmother with short stature (-2.1 and -3.0 SD, respectively). The frameshift variant underwent nonsense mediated mRNA decay, and the missense variant was assessed to have high pathogenicity. The results imply for the first time that ACAN biallelic loss-of-function variants can cause severe ISS phenotype.
Collapse
|
30
|
Yang Q, Zhang Q, Yi S, Qin Z, Shen F, Ou S, Luo J, He S. De Novo CSNK2B Mutations in Five Cases of Poirier–Bienvenu Neurodevelopmental Syndrome. Front Neurol 2022; 13:811092. [PMID: 35370893 PMCID: PMC8965697 DOI: 10.3389/fneur.2022.811092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
The Poirier–Bienvenu neurodevelopmental syndrome is an autosomal dominant disorder characterized by intellectual disability and epilepsy. The disease is caused by mutations in the CSNK2B gene, which encodes the beta subunit of casein kinase II, and it has important roles in neuron development and synaptic transmission. In this study, five Chinese patients were diagnosed with Poirier–Bienvenu neurodevelopmental syndrome caused by CSNK2B mutations by whole exome sequencing. We detected four different de novo variants of the CSNK2B gene in these five unrelated Chinese patients: two novel mutations, namely, c.100delT (p.Phe34fs*16) and c.158_159insA (p.Asp55fs*4), and two recurrent mutations, namely, c.1A>G (p.Met1?) and c.332 G >C (p.R111P). All five patients showed mild-to-profound intellectual disabilities/or learning disabilities and developmental delays, with or without seizures. Although intellectual disability/developmental delay and epilepsy are the most common manifestations of CSNK2B deficiency, the clinical phenotypes of probands are highly variable, and there is no significant correlation between genotype and phenotype. An abnormal stature may be another common manifestation of CSNK2B deficiency. Here, we report the effects of growth hormone (GH) therapy on the patients' linear height. In conclusion, Poirier–Bienvenu neurodevelopmental syndrome is a highly heterogeneous disease caused by mutations in the CSNK2B gene. The phenotype was highly variable, and no significant correlation of genotype and phenotype was found. Patients with short-stature and CSNK2B deficiency may benefit from GH therapy. The identification and characterization of these novel variants will expand the genotypic and phenotypic spectrum of Poirier–Bienvenu neurodevelopmental syndrome.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fei Shen
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Shang Ou
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Jingsi Luo
| | - Sheng He
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- *Correspondence: Sheng He
| |
Collapse
|
31
|
Murakami H, Uehara T, Enomoto Y, Nishimura N, Kumaki T, Kuroda Y, Asano M, Aida N, Kosaki K, Kurosawa K. Persistent Hyperplastic Primary Vitreous with Microphthalmia and Coloboma in a Patient with Okur-Chung Neurodevelopmental Syndrome. Mol Syndromol 2022; 13:75-79. [PMID: 35221879 PMCID: PMC8832215 DOI: 10.1159/000517977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/18/2021] [Indexed: 07/23/2024] Open
Abstract
Okur-Chung neurodevelopmental syndrome is a rare autosomal dominant disorder caused by pathogenic variants in CSNK2A1, which encodes the alpha 1 catalytic subunit of -casein kinase II. This syndrome is characterized by intellectual disability, developmental delay, and multisystemic -abnormalities including those of the brain, extremities, and skin as well as cardiovascular, gastrointestinal, and immune systems. In this study, we describe a 5-year-old boy with a de novo novel nonsense variant in CSNK2A1, NM_001895.3:c.319C>T (p.Arg107*). He showed bilateral persistent hyperplastic primary vitreous with microphthalmia, lens dysplasia, and coloboma. Ocular manifestations are very rare in this syndrome, and this study expands the spectrum of the clinical presentations of this syndrome.
Collapse
Affiliation(s)
- Hiroaki Murakami
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tomoko Uehara
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Enomoto
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Naoto Nishimura
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Tatsuro Kumaki
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yukiko Kuroda
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mizuki Asano
- Department of Ophthalmology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Noriko Aida
- Department of Radiology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Kurosawa
- Division of Medical Genetics, Kanagawa Children's Medical Center, Yokohama, Japan
| |
Collapse
|
32
|
Expanding Phenotype of Poirier–Bienvenu Syndrome: New Evidence from an Italian Multicentrical Cohort of Patients. Genes (Basel) 2022; 13:genes13020276. [PMID: 35205321 PMCID: PMC8872204 DOI: 10.3390/genes13020276] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Poirier–Bienvenu Neurodevelopmental Syndrome (POBINDS) is a rare disease linked to mutations of the CSNK2B gene, which encodes for a subunit of caseinkinase CK2 involved in neuronal growth and synaptic transmission. Its main features include early-onset epilepsy and intellectual disability. Despite the lack of cases described, it appears that POBINDS could manifest with a wide range of phenotypes, possibly related to the different mutations of CSNK2B. Methods: Our multicentric, retrospective study recruited nine patients with POBINDS, detected using next-generation sequencing panels and whole-exome sequencing. Clinical, laboratory, and neuroimaging data were reported for each patient in order to assess the severity of phenotype, and eventually, a correlation with the type of CSNK2B mutation. Results: We reported nine unrelated patients with heterozygous de novo mutations of the CSNK2B gene. All cases presented epilepsy, and eight patients were associated with a different degree of intellectual disability. Other features detected included endocrinological and vascular abnormalities and dysmorphisms. Genetic analysis revealed six new variants of CSNK2B that have not been reported previously. Conclusion: Although it was not possible to assess a genotype–phenotype correlation in our patients, our research further expands the phenotype spectrum of POBINDS patients, identifying new mutations occurring in the CSNK2B gene.
Collapse
|
33
|
Wilke MVMB, Oliveira BM, Pereira A, Doriqui MJR, Kok F, Souza CFM. Two different presentations of de novo variants of CSNK2B: two case reports. J Med Case Rep 2022; 16:4. [PMID: 34983633 PMCID: PMC8728954 DOI: 10.1186/s13256-021-03184-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Background Poirier–Bienvenu neurodevelopmental syndrome is a neurologic disorder caused by mutations in the CSNK2B gene. It is mostly characterized by early-onset seizures, hypotonia, and mild dysmorphic features. Craniodigital syndrome is a recently described disorder also related to CSNK2B, with a single report in the literature. Objective To report two unrelated cases of children harboring CSNK2B variants (NM_001320.6) who presented with distinct diseases. Case report Case 1 is a 7-month-old, Caucasian, female patient with chief complaints of severe hypotonia and drug-refractory myoclonic epilepsy, with a likely pathogenic de novo variant c.494A>G (p.His165Arg). Case 2 is a 5-year-old male, Latino patient with craniodigital intellectual disability syndrome subjacent to a de novo, likely pathogenic variant c.94G>T (p.Asp32Tyr). His dysmorphic features included facial dysmorphisms, supernumerary nipples, and left-hand postaxial polydactyly. Conclusion This report suggest that the CSNK2B gene may be involved in the physiopathology of neurodevelopmental disorders and variable dysmorphic features.
Collapse
Affiliation(s)
- Matheus V M B Wilke
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - 3º andar, Porto Alegre, RS, 90035-007, Brazil.,Post Graduate Program in Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Bibiana M Oliveira
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - 3º andar, Porto Alegre, RS, 90035-007, Brazil.,Post Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.,Mendelics Genomic Analysis, São Paulo, SP, Brazil
| | - Alessandra Pereira
- Pediatrics Service, Neuropediatrics, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | | | - Fernando Kok
- Mendelics Genomic Analysis, São Paulo, SP, Brazil
| | - Carolina F M Souza
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350 - 3º andar, Porto Alegre, RS, 90035-007, Brazil.
| |
Collapse
|
34
|
Bonanni P, Baggio M, Duma GM, Negrin S, Danieli A, Giorda R. Developmental and epilepsy spectrum of Poirier-Bienvenu neurodevelopmental syndrome: Description of a new case study and review of the available literature. Seizure 2021; 93:133-139. [PMID: 34740143 DOI: 10.1016/j.seizure.2021.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022] Open
Abstract
AIM To better characterize the clinical phenotype of Poirier-Bienvenu neurodevelopmental syndrome (OMIM ID: 618,732) due to pathogenic variants of the CSNK2B gene. METHOD We reviewed the electro-clinical and developmental data of all 14 patients with de novo mutations of the CSNK2B gene reported in the literature and describe a further individual with a novel CSNK2B pathogenic variant. RESULTS Clustered generalized tonic-clonic or myoclonic seizures with onset before the age of 18 months and delayed neurodevelopment were present in more than 75% of patients. Epilepsy was pharmaco-resistant in 40%. All the individuals (27%) with normal neurological development had pharmaco-sensitive epilepsy. The severity of cognitive and motor impairments was higher in the group with pharmaco-resistant epilepsy, and a statistically significant correlation between seizure control and the severity of cognitive impairment was documented (χ2(3) = 9.44; p = .024) INTERPRETATION: Early seizure onset, clustered seizures and delayed development in both males and females were early clinical markers in most patients with CSNK2B mutations. The entity of neurodevelopmental abnormalities was related to epilepsy severity. Prospective studies are required to better assess the relationship between epilepsy and developmental outcomes in this condition.
Collapse
Affiliation(s)
- Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
| | - Martina Baggio
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
| | - Gian Marco Duma
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
| | - Susanna Negrin
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
| | - Alberto Danieli
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy.
| | - Roberto Giorda
- IRCCS E. Medea Scientific Institute, Molecular Biology Laboratory, Bosisio Parini, Lecco, Italy.
| |
Collapse
|
35
|
Yang S, Wu L, Liao H, Lu X, Zhang X, Kuang X, Yang L. Clinical and genetic analysis of six Chinese children with Poirier-Bienvenu neurodevelopmental syndrome caused by CSNK2B mutation. Neurogenetics 2021; 22:323-332. [PMID: 34370157 DOI: 10.1007/s10048-021-00649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/17/2021] [Indexed: 12/31/2022]
Abstract
Mutations in CSNK2B lead to Poirier-Bienvenu neurodevelopmental syndrome (POBINDS), a rare neurodevelopmental disorder. Only 14 cases of POBINDS have been reported worldwide. The main manifestations are seizures, often tonic-clonic, with or without intellectual disability, growth retardation, and developmental language retardation. We conducted a comprehensive phenotypic mining and trio-whole exome sequencing on six children with POBINDS for gene diagnosis and analyzed the different variants using bioinformatics analysis software and related experiments. This paper reviews previous literature and discusses two common missense variants that lead to structural changes. Among the six patients, four, one, and one had tonic-clonic, myoclonic, and febrile seizures, respectively. Language development disorder, motor development disorder, and developmental delay/intellectual disability (DD/ID) are the main clinical features. All children had de novo mutations in CSNK2B, including three missense variants (c.410G > T/p.(Cys137Phe), c.494A > G/p.(His165Arg), and c.3G > A/p.(Met1Ile)), two splice variants (c.292-2A > T, c.558-3 T > G), and one frameshift variant (c.499delC/p.(Leu167Serfs*60)). Three missense variants were predicted to be harmful by various software programs, and two splicing variants were found to produce new exonic splicing enhancers by the minigene assay. Western blot analysis showed that the frameshift variant resulted in decreased protein expression. According to a literature review, c.3G > A/p.(Met1Ile), c.292-2A > T, c.558-3 T > G, and c.499delC/p.(Leu167Serfs*60) are novel variants of CSNK2B. The decrease or loss of protein function caused by CSNK2B mutations may be a pathogenic factor in this cohort. The severity of the POBINDS phenotype differs, and refractory epilepsy may be accompanied by a more serious DD/ID, language disorder, and motor retardation. At present, there is no specific treatment, and antiepileptic therapy usually requires the combination of two or more anti-epileptic drugs.
Collapse
Affiliation(s)
- Sai Yang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China
| | - Liwen Wu
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China
| | - Hongmei Liao
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China
| | - Xiulan Lu
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China
| | - Xiao Zhang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China
| | - Xiaojun Kuang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China
| | - Liming Yang
- Department of Neurology, Hunan Children's Hospital, Ziyuan Road & No. 86, Changsha, 410001, Hunan, China.
| |
Collapse
|
36
|
Wu RH, Tang WT, Qiu KY, Li XJ, Tang DX, Meng Z, He ZW. Identification of novel CSNK2A1 variants and the genotype-phenotype relationship in patients with Okur-Chung neurodevelopmental syndrome: a case report and systematic literature review. J Int Med Res 2021; 49:3000605211017063. [PMID: 34038195 PMCID: PMC8161887 DOI: 10.1177/03000605211017063] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
De novo germline variants of the casein kinase 2α subunit (CK2α) gene (CSNK2A1) have been reported in individuals with the congenital neuropsychiatric disorder Okur-Chung neurodevelopmental syndrome (OCNS). Here, we report on two unrelated children with OCNS and review the literature to explore the genotype-phenotype relationship in OCNS. Both children showed facial dysmorphism, growth retardation, and neuropsychiatric disorders. Using whole-exome sequencing, we identified two novel de novo CSNK2A1 variants: c.479A>G p.(H160R) and c.238C>T p.(R80C). A search of the literature identified 12 studies that provided information on 35 CSNK2A1 variants in various protein-coding regions of CK2α. By quantitatively analyzing data related to these CSNK2A1 variants and their corresponding phenotypes, we showed for the first time that mutations in protein-coding CK2α regions appear to influence the phenotypic spectrum of OCNS. Mutations altering the ATP/GTP-binding loop were more likely to cause the widest range of phenotypes. Therefore, any assessment of clinical spectra for this disorder should be extremely thorough. This study not only expands the mutational spectrum of OCNS, but also provides a comprehensive overview to improve our understanding of the genotype-phenotype relationship in OCNS.
Collapse
Affiliation(s)
- Ruo-Hao Wu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Wen-Ting Tang
- Department of Research and Molecular Diagnostics, Sun Yat-sen Cancer Center, Sun Yat-sen University Guangzhou, P. R. China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 71067Sun Yat-sen University Cancer Center Guangzhou, P. R. China
| | - Kun-Yin Qiu
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Xiao-Juan Li
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China.,Department of Research and Molecular Diagnostics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China
| | - Dan-Xia Tang
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhe Meng
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| | - Zhan-Wen He
- Department of Children's Neuroendocrinology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, P. R. China.,Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong High Education Institutes, Sun Yat-sen University Guangzhou, P. R. China
| |
Collapse
|
37
|
Ernst ME, Baugh EH, Thomas A, Bier L, Lippa N, Stong N, Mulhern MS, Kushary S, Akman CI, Heinzen EL, Yeh R, Bi W, Hanchard NA, Burrage LC, Leduc MS, Chong JSC, Bend R, Lyons MJ, Lee JA, Suwannarat P, Brilstra E, Simon M, Koopmans M, van Binsbergen E, Groepper D, Fleischer J, Nava C, Keren B, Mignot C, Mathieu S, Mancini GMS, Madan-Khetarpal S, Infante EM, Bluvstein J, Seeley A, Bachman K, Klee EW, Schultz-Rogers LE, Hasadsri L, Barnett S, Ellingson MS, Ferber MJ, Narayanan V, Ramsey K, Rauch A, Joset P, Steindl K, Sheehan T, Poduri A, Vasquez A, Ruivenkamp C, White SM, Pais L, Monaghan KG, Goldstein DB, Sands TT, Aggarwal V. CSNK2B: A broad spectrum of neurodevelopmental disability and epilepsy severity. Epilepsia 2021; 62:e103-e109. [PMID: 34041744 DOI: 10.1111/epi.16931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
CSNK2B has recently been implicated as a disease gene for neurodevelopmental disability (NDD) and epilepsy. Information about developmental outcomes has been limited by the young age and short follow-up for many of the previously reported cases, and further delineation of the spectrum of associated phenotypes is needed. We present 25 new patients with variants in CSNK2B and refine the associated NDD and epilepsy phenotypes. CSNK2B variants were identified by research or clinical exome sequencing, and investigators from different centers were connected via GeneMatcher. Most individuals had developmental delay and generalized epilepsy with onset in the first 2 years. However, we found a broad spectrum of phenotypic severity, ranging from early normal development with pharmacoresponsive seizures to profound intellectual disability with intractable epilepsy and recurrent refractory status epilepticus. These findings suggest that CSNK2B should be considered in the diagnostic evaluation of patients with a broad range of NDD with treatable or intractable seizures.
Collapse
Affiliation(s)
- Michelle E Ernst
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Amanda Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Maureen S Mulhern
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sulagna Kushary
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Cigdem I Akman
- Department of Neurology, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, NY, USA
| | - Erin L Heinzen
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Raymond Yeh
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Magalie S Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Josephine S C Chong
- Joint CUHK-Baylor Center of Medical Genetics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Renee Bend
- Greenwood Genetic Center, Greenwood, SC, USA
| | | | | | - Pim Suwannarat
- Mid-Atlantic Permanente Medical Group, Rockville, MD, USA
| | - Eva Brilstra
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marleen Simon
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marije Koopmans
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel Groepper
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Julie Fleischer
- Department of Pediatrics, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Caroline Nava
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Boris Keren
- Department of Genetics, APHP Sorbonne University, Paris, France
| | - Cyril Mignot
- Department of Genetics, APHP Sorbonne University, Paris, France.,Reference Center for Intellectual Disabilities of Rare Causes, Paris, France
| | - Sophie Mathieu
- Department of Neuropediatrics, APHP Sorbonne University, Trousseau Hospital, Paris, France
| | - Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center, Rotterdam, The Netherlands
| | | | - Elena M Infante
- Department of Medical Genetics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Laura E Schultz-Rogers
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Sarah Barnett
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marissa S Ellingson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Matthew J Ferber
- Clinical Genome Sequencing Laboratory, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Anita Rauch
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Pascal Joset
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zürich, Schlieren, Zürich, Switzerland
| | - Theodore Sheehan
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Annapurna Poduri
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Alejandra Vasquez
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA.,Division of Child and Adolescent Neurology, Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Claudia Ruivenkamp
- Department of Clinical Genetics, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Susan M White
- Victorian Clinical Genetics Service, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, University of Melbourne, Melbourne, Australia
| | - Lynn Pais
- Center for Mendelian Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tristan T Sands
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Neurology, The Neurological Institute of New York, Columbia University Irving Medical Center, New York, NY, USA
| | - Vimla Aggarwal
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
38
|
Savatt JM, Azzariti DR, Ledbetter DH, Palen E, Rehm HL, Riggs ER, Martin CL. Recontacting registry participants with genetic updates through GenomeConnect, the ClinGen patient registry. Genet Med 2021; 23:1738-1745. [PMID: 34007001 DOI: 10.1038/s41436-021-01197-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Variant classifications and gene-disease relationships may evolve. Professional societies have suggested patients share the responsibility to remain up-to-date on the implications genetic results have on their health, and that novel methods of recontact are needed. GenomeConnect, the ClinGen patient registry, has implemented a process to provide variant classification and gene-disease relationship updates to participants. Here, we report on our experience with this recontacting process. METHODS GenomeConnect shares data with ClinVar and Matchmaker Exchange enabling the identification of updates to variant classifications and gene-disease relationships. For any updates identified, the reporting laboratory is contacted, and updates are shared with participants opting to receive them. RESULTS Of 1,419 variants shared with ClinVar by GenomeConnect, 49 (3.4%) variant reclassifications were identified and 34 were shared with participants. Of 97 candidate genes submitted to Matchmaker Exchange, 10 (10.3%) gene-disease relationships have been confirmed and 9 were shared with participants. Details available from a subset of participants highlight that updated information is not always shared with the patient by testing laboratories. CONCLUSION Patient registries can provide a mechanism for patients and their providers to remain informed about changes to the interpretation and clinical significance of their genetic results, leading to important implications for care.
Collapse
Affiliation(s)
- Juliann M Savatt
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA.,Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | | | - David H Ledbetter
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA.,Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Emily Palen
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Heidi L Rehm
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Erin Rooney Riggs
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA
| | - Christa Lese Martin
- Autism & Developmental Medicine Institute, Geisinger, Danville, PA, USA. .,Genomic Medicine Institute, Geisinger, Danville, PA, USA.
| |
Collapse
|
39
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
40
|
Dominguez I, Cruz-Gamero JM, Corasolla V, Dacher N, Rangasamy S, Urbani A, Narayanan V, Rebholz H. Okur-Chung neurodevelopmental syndrome-linked CK2α variants have reduced kinase activity. Hum Genet 2021; 140:1077-1096. [PMID: 33944995 DOI: 10.1007/s00439-021-02280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.
Collapse
Affiliation(s)
- I Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - J M Cruz-Gamero
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - V Corasolla
- Laboratorio di Proteomica e Metabonomica, CERC-Fondazione S.Lucia, Via del Fosso di Fiorano 64, 00143, Roma, Italy
| | - N Dacher
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - S Rangasamy
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - A Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168, Roma, Italy
| | - V Narayanan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - H Rebholz
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy. .,GHU Psychiatrie et Neurosciences, Paris, France. .,Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
41
|
6p21.33 Deletion encompassing CSNK2B is associated with relative macrocephaly, facial dysmorphism, and mild intellectual disability. Clin Dysmorphol 2021; 30:139-141. [PMID: 33758130 DOI: 10.1097/mcd.0000000000000372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Hiraide T, Yamoto K, Masunaga Y, Asahina M, Endoh Y, Ohkubo Y, Matsubayashi T, Tsurui S, Yamada H, Yanagi K, Nakashima M, Hirano K, Sugimura H, Fukuda T, Ogata T, Saitsu H. Genetic and phenotypic analysis of 101 patients with developmental delay or intellectual disability using whole-exome sequencing. Clin Genet 2021; 100:40-50. [PMID: 33644862 DOI: 10.1111/cge.13951] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/25/2021] [Indexed: 12/20/2022]
Abstract
Whole-exome sequencing (WES) enables identification of pathogenic variants, including copy number variants (CNVs). In this study, we performed WES in 101 Japanese patients with unexplained developmental delay (DD) or intellectual disability (ID) (63 males and 38 females), 98 of them with trio-WES. Pathogenic variants were identified in 54 cases (53.5%), including four cases with pathogenic CNVs. In one case, a pathogenic variant was identified by reanalysis of exome data; and in two cases, two molecular diagnoses were identified. Among 58 pathogenic variants, 49 variants occurred de novo in 48 patients, including two somatic variants. The accompanying autism spectrum disorder and external ear anomalies were associated with detection of pathogenic variants with odds ratios of 11.88 (95% confidence interval [CI] 2.52-56.00) and 3.46 (95% CI 1.23-9.73), respectively. These findings revealed the importance of reanalysis of WES data and detection of CNVs and somatic variants in increasing the diagnostic yield for unexplained DD/ID. In addition, genetic testing is recommended when patients suffer from the autism spectrum disorder or external ear anomalies, which potentially suggests the involvement of genetic factors associated with gene expression regulation.
Collapse
Affiliation(s)
- Takuya Hiraide
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yohei Masunaga
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Miki Asahina
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yusaku Endoh
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Yumiko Ohkubo
- Department of Pediatrics, Shizuoka Saiseikai Hospital, Shizuoka, Japan
| | - Tomoko Matsubayashi
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Pediatric Neurology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Satoshi Tsurui
- Department of Pediatrics, Seirei-Numazu Hospital, Numazu, Japan
| | - Hidetaka Yamada
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kouichi Hirano
- Department of Pediatrics, Hamamatsu City Welfare and Medical Center for Development, Hamamatsu, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tokiko Fukuda
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
43
|
Mizuno T, Miyata R, Hojo A, Tamura Y, Nakashima M, Mizuguchi T, Matsumoto N, Kato M. Clinical variations of epileptic syndrome associated with PACS2 variant. Brain Dev 2021; 43:343-347. [PMID: 33243487 DOI: 10.1016/j.braindev.2020.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/15/2023]
Abstract
BACKGROUND Recent studies have suggested that two PACS2 pathogenic variants, c.625G > A (p.Glu209Lys) and c.631G > A (p.Glu211Lys), have been causally linked to the characteristic developmental and epileptic encephalopathy, including autistic behaviors, hypotonia, cerebellar dysgenesis and facial dysmorphism. Their seizures appear most difficult to control in neonatal and infant period, but improve after the first year of life. We herein report three patients with the same PACS2 variant, c.625G > A (p.Glu209Lys), showing different characteristics from previous reports. CASE REPORT Case 1, a 2-year-old girl, developed frequent tonic convulsions 2 weeks after birth. Brain magnetic resonance imaging showed a decrease in posterior periventricular white matter volume, an enlargement of the inferior horn of lateral ventricles and old subependymal hemorrhage. Epilepsy is now controlled with antiepileptic drugs. Case 2, a 12-year-old girl, developed generalized tonic convulsions 3 days after birth. Although epilepsy had been controlled since the age of 4, she developed Lennox-Gastaut syndrome at 9 years old. Case 3, a 3-year-old girl, developed tonic convulsions 3 days after birth. She now exhibits normal psychomotor development, and epilepsy is controlled without medicine. CONCLUSION PACS2-related epileptic syndrome presents variable phenotypes than previously reported. We think that our findings expand the clinical spectrum of this disease, and provide important information about the differential diagnosis of neonatal-onset epileptic syndrome.
Collapse
Affiliation(s)
- Tomoko Mizuno
- Department of Pediatrics, Tokyo Medical and Dental University, Japan.
| | - Rie Miyata
- Department of Pediatrics, Tokyo-Kita Medical Center, Japan
| | - Akira Hojo
- Department of Pediatrics, Showa University School of Medicine, Japan
| | - Yumie Tamura
- Department of Pediatrics, Tokyo Medical and Dental University, Japan
| | - Mitsuko Nakashima
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan; Department of Biochemistry, Hamamatsu University School of Medicine, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Japan
| |
Collapse
|
44
|
Rosiles-Abonce A, Rubio C, Taddei E, Rosiles D, Rubio-Osornio M. Antiepileptogenic Effect of Retinoic Acid. Curr Neuropharmacol 2021; 19:383-391. [PMID: 32351181 PMCID: PMC8033965 DOI: 10.2174/1570159x18666200429232104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022] Open
Abstract
Retinoic acid, a metabolite of vitamin A, acts through either genomic or nongenomic actions. The genomic action of retinoids exerts effects on gene transcription through interaction with retinoid receptors such as retinoic acid receptors (RARα, β, and γ) and retinoid X receptors (RXRα, β, and γ) that are primarily concentrated in the amygdala, pre-frontal cortex, and hippocampal areas in the brain. In response to retinoid binding, RAR/RXR heterodimers undergo major conformational changes and orchestrate the transcription of specific gene networks. Previous experimental studies have reported that retinoic acid exerts an antiepileptogenic effect through diverse mechanisms, including the modulation of gap junctions, neurotransmitters, long-term potentiation, calcium channels and some genes. To our knowledge, there are no previous or current clinical trials evaluating the use of retinoic acid for seizure control.
Collapse
Affiliation(s)
| | | | | | | | - Moisés Rubio-Osornio
- Address correspondence to this author at the Laboratorio Experimental de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico; E-mail:
| |
Collapse
|
45
|
Hemizygous FLNA variant in West syndrome without periventricular nodular heterotopia. Hum Genome Var 2020; 7:43. [PMID: 33298907 PMCID: PMC7713383 DOI: 10.1038/s41439-020-00131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 11/21/2022] Open
Abstract
Pathogenic FLNA variants can be identified in patients with seizures accompanied by periventricular nodular heterotopia (PVNH). It is unusual to find FLNA aberrations in epileptic patients without PVNH on brain imaging. We report a boy with cryptogenic West syndrome followed by refractory seizures and psychomotor delay. We performed whole-exome sequencing and identified a de novo missense variant in FLNA. It is noteworthy that this patient showed no PVNH. As no other pathogenic variants were found in epilepsy-related genes, this FLNA variant likely caused West syndrome but with no PVNH.
Collapse
|
46
|
Selvam P, Jain A, Cheema A, Atwal H, Forghani I, Atwal PS. Poirier-Bienvenu neurodevelopmental syndrome: A report of a patient with a pathogenic variant in CSNK2B with abnormal linear growth. Am J Med Genet A 2020; 185:539-543. [PMID: 33166063 DOI: 10.1002/ajmg.a.61960] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/04/2020] [Accepted: 10/10/2020] [Indexed: 02/03/2023]
Abstract
Casein kinase 2-related disorders have been linked to pathogenic variants in CSNK2A1 and CSNK2B. CSNK2B-related disease is predominantly associated with neurodevelopmental abnormalities affecting cognition; however, the extent of the phenotype associated with CSNK2B pathogenic variants is yet to be fully explored. Here, we describe a patient with features suggestive of Poirier-Bienvenu neurodevelopmental syndrome, harboring a novel CSNK2B pathogenic variant. We also report that the linear growth abnormalities could be a recurrent presentation in patients with this syndrome and suggest the effect of growth hormone therapy in our patient's stature.
Collapse
Affiliation(s)
- Pavalan Selvam
- Atwal Clinic: Genomic & Personalized Medicine, Palm Beach, United States, USA
| | - Angita Jain
- Atwal Clinic: Genomic & Personalized Medicine, Palm Beach, United States, USA
| | - Anvir Cheema
- Atwal Clinic: Genomic & Personalized Medicine, Palm Beach, United States, USA
| | - Herjot Atwal
- Atwal Clinic: Genomic & Personalized Medicine, Palm Beach, United States, USA
| | - Irman Forghani
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Paldeep S Atwal
- Atwal Clinic: Genomic & Personalized Medicine, Palm Beach, United States, USA
| |
Collapse
|
47
|
Togashi N, Fujita A, Shibuya M, Uneoka S, Miyabayashi T, Sato R, Okubo Y, Endo W, Inui T, Jin K, Matsumoto N, Haginoya K. Fifteen-year follow-up of a patient with a DHDDS variant with non-progressive early onset myoclonic tremor and rare generalized epilepsy. Brain Dev 2020; 42:696-699. [PMID: 32654954 DOI: 10.1016/j.braindev.2020.06.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Generalized epilepsy and tremor phenotypes have been reported in some genetic disorders. Among them benign adult familial myoclonus epilepsy (BAFME) has been confirmed as a clearly defined clinical and genetic entity. On the other hand, non-progressive tremor and generalized epilepsy phenotypes have also been reported in patients with DHDDS variants. CASE PRESENTATION We report on a long term follow-up of patient with de novo missense variant of DHDDS, who revealed non progressive nature. This 18-year-old woman presented non-progressive tremor since her early infancy. She had rare seizures. Her tremor was considered as cortical myoclonic tremor with giant somatosensory evoked potentials. CONCLUSION In patients with early onset, non-progressive tremor and rare generalized epilepsy phenotypes, DHDDS variants may be considered in the genetic differential diagnosis.
Collapse
Affiliation(s)
- Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Saki Uneoka
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Takuya Miyabayashi
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Ryo Sato
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan
| | - Kazutaka Jin
- Department of Epileptology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Miyagi Children's Hospital, Sendai 989-3126, Japan.
| |
Collapse
|
48
|
Shi VH, Craig TJ, Bishop P, Nakamura Y, Rocca D, Wilkinson KA, Henley JM. Phosphorylation of Syntaxin-1a by casein kinase 2α regulates pre-synaptic vesicle exocytosis from the reserve pool. J Neurochem 2020; 156:614-623. [PMID: 32852799 PMCID: PMC8237229 DOI: 10.1111/jnc.15161] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/24/2020] [Accepted: 08/17/2020] [Indexed: 02/03/2023]
Abstract
The t-soluble NSF-attachment protein receptor protein Syntaxin-1a (Stx-1a) is abundantly expressed at pre-synaptic terminals where it plays a critical role in the exocytosis of neurotransmitter-containing synaptic vesicles. Stx-1a is phosphorylated by Casein kinase 2α (CK2α) at Ser14, which has been proposed to regulate the interaction of Stx-1a and Munc-18 to control of synaptic vesicle priming. However, the role of CK2α in synaptic vesicle dynamics remains unclear. Here, we show that CK2α over-expression reduces evoked synaptic vesicle release. Furthermore, shRNA-mediated knockdown of CK2α in primary hippocampal neurons strongly enhanced vesicle exocytosis from the reserve pool, with no effect on the readily releasable pool of primed vesicles. In neurons in which endogenous Stx-1a was knocked down and replaced with a CK2α phosphorylation-deficient mutant, Stx-1a(D17A), vesicle exocytosis was also increased. These results reveal a previously unsuspected role of CK2α phosphorylation in specifically regulating the reserve synaptic vesicle pool, without changing the kinetics of release from the readily releasable pool.
Collapse
Affiliation(s)
- Vanilla Hua Shi
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Tim J Craig
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK.,Department of Applied Sciences, University of the West of England, Bristol, UK
| | - Paul Bishop
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Yasuko Nakamura
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Dan Rocca
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Kevin A Wilkinson
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| | - Jeremy M Henley
- School of Biochemistry, Centre for Synaptic Plasticity, Biomedical Sciences Building, University of Bristol, Bristol, UK
| |
Collapse
|
49
|
Xu S, Lian Q, Wu J, Li L, Song J. Dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in one Chinese patient: a case report. BMC MEDICAL GENETICS 2020; 21:158. [PMID: 32746809 PMCID: PMC7398275 DOI: 10.1186/s12881-020-01096-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Background Okur-Chung neurodevelopmental syndrome (OCNDS) and tricho-rhino-phalangeal syndrome type I (TRPSI) are rare Mendelian diseases. OCNDS is caused by CSNK2A1 gene variants and TRPSI is caused by the TRPS1gene. However, to have two Mendelian diseases in one patient is even rarer. Case presentation A 6-year-10-month-old boy characterized by special facial features, short stature and mental retardation was referred to our pediatric endocrinology department. Whole-exome sequencing (WES) was done to detect the molecular basis of his disease. This patient was confirmed to carry two variants in the CSNK2A1 gene and one in the TRPS1 gene. The variant in the CSNK2A1 gene was vertically transmitted from his father, and the variant in TRPS1 gene from his mother. These two variants are classified as pathogenic and the causes of the presentation in this child. This patient’s father and mother have subsequently been diagnosed as having OCNDS and TRPSI respectively. Conclusion This is the first reported case of a dual molecular diagnosis of tricho-rhino-phalangeal syndrome type I and Okur-Chung neurodevelopmental syndrome in the same patient. This patient is the first published example of vertical transmission of this recurrent CSN2A1 variant from parent to child. A novel variant in the TRPS1 gene that is pathogenic was also identified. In conclusion, identification of the variants in this patient expands the phenotypes and molecular basis of dual Mendelian diseases.
Collapse
Affiliation(s)
- Shanshan Xu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Qun Lian
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China. .,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China. .,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China.
| | - Jinzhun Wu
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Lingli Li
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| | - Jia Song
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, No.55 Zhenhai Road, Xiamen, 316003, Fujian Province, China.,Pediatric Key Laboratory of Xiamen, No.55 Zhenhai Road, Xiamen, 361003, China.,Institute of Pediatrics, School of Medicine, Xiamen University, No.55 Zhenhai Road, Xiamen, 361003, China
| |
Collapse
|
50
|
Kurtz-Nelson EC, Beighley JS, Hudac CM, Gerdts J, Wallace AS, Hoekzema K, Eichler EE, Bernier RA. Co-occurring medical conditions among individuals with ASD-associated disruptive mutations. CHILDRENS HEALTH CARE 2020; 49:361-384. [PMID: 33727758 PMCID: PMC7958308 DOI: 10.1080/02739615.2020.1741361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Children with autism spectrum disorder (ASD) are at risk for co-occurring medical conditions, many of which have also been reported among individuals with mutations in ASD-associated genes. This study examined rates of co-occurring medical conditions across 301 individuals with disruptive mutations to 1 of 18 ASD-risk genes in comparison to rates of conditions in an idiopathic ASD sample. Rates of gastrointestinal problems, seizures, physical anomalies, and immune problems were generally elevated, with significant differences in rates observed between groups. Results may inform medical care of individuals with ASD-associated mutations and research into mechanisms of co-occurring medical conditions in ASD.
Collapse
Affiliation(s)
| | - Jennifer S. Beighley
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Caitlin M. Hudac
- Center for Youth Development and Interventions, Department of Psychology, University of Alabama, Tuscaloosa, AL 35401
| | - Jennifer Gerdts
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Arianne S. Wallace
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Raphael A. Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|