1
|
Li M, Zhu Q, Yang H, Hu Y, Zhao L, Zhao Y. Identification of key genes regulating brown adipose tissue thermogenesis in goat kids ( Capra hircus) by using weighted gene co-expression network analysis. Front Vet Sci 2025; 12:1525437. [PMID: 40438410 PMCID: PMC12116553 DOI: 10.3389/fvets.2025.1525437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/28/2025] [Indexed: 06/01/2025] Open
Abstract
Brown adipose tissue (BAT) is crucial for the maintenance of body temperature in newborn animals through non-shivering thermogenesis (NST). However, which kind key genes involved in the regulation of BAT thermogenesis and the internal regulation mechanism of heat production in goat BAT were still unclear. In this study, we analyzed the perirenal adipose tissue transcriptome of Dazu black goats from 0, 7, 14, 21 and 28 days after birth using weighted gene co-expression network analysis (WGCNA) to identify key genes involved in the thermogenesis of BAT. Genes were classified into 22 co-expression modules by WGCNA. The turquoise module exhibited high gene expression in D0, with generally lower expression in the later dates. This pattern is consistent with the rapid color, morphological, and thermogenic changes observed in perirenal adipose tissue shortly after birth. GO functional annotation revealed that the genes in the turquoise module were significantly enriched in the mitochondrion, mitochondrial protein-containing complex, cytoplasm, and mitochondrial inner membrane. KEGG pathway enrichment analysis indicated that these genes were predominantly enriched in the signaling pathways of oxidative phosphorylation, thermogenesis, and TCA cycle. By combining the gene co-expression network analysis of the turquoise module genes and the differentially expression genes (DEG) analysis, we identified 5 candidate key genes (ACO2, MRPS27, IMMT, MRPL12, and TUFM) involved in regulation of perirenal adipose tissue thermogenesis. This finding offer candidate genes that in the regulation of BAT thermogenesis and body temperature maintenance in goat kids.
Collapse
Affiliation(s)
| | | | | | | | - Le Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yongju Zhao
- Chongqing Key Laboratory of Herbivore Science, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Brischigliaro M, Ahn A, Hong S, Fontanesi F, Barrientos A. Emerging mechanisms of human mitochondrial translation regulation. Trends Biochem Sci 2025:S0968-0004(25)00056-8. [PMID: 40221217 DOI: 10.1016/j.tibs.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 04/14/2025]
Abstract
Mitochondrial translation regulation enables precise control over the synthesis of hydrophobic proteins encoded by the organellar genome, orchestrating their membrane insertion, accumulation, and assembly into oxidative phosphorylation (OXPHOS) complexes. Recent research highlights regulation across all translation stages (initiation, elongation, termination, and recycling) through a complex interplay of mRNA structures, specialized translation factors, and unique regulatory mechanisms that adjust protein levels for stoichiometric assembly. Key discoveries include mRNA-programmed ribosomal pausing, frameshifting, and termination-dependent re-initiation, which fine-tune protein synthesis and promote translation of overlapping open reading frames (ORFs) in bicistronic transcripts. In this review, we examine these advances, which are significantly enhancing our understanding of mitochondrial gene expression.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Seungwoo Hong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA
| | - Flavia Fontanesi
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB # 7094A, Miami, FL 33136, USA; Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Avenue, RMSB #7094B, Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th Street, Miami, FL 33125, USA.
| |
Collapse
|
3
|
Li T, Aziz T, Li G, Zhang L, Yao J, Jia S. A zebrafish tufm mutant model for the COXPD4 syndrome of aberrant mitochondrial function. J Genet Genomics 2024; 51:922-933. [PMID: 38825039 DOI: 10.1016/j.jgg.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
Mitochondrial dysfunction is a critical factor leading to a wide range of clinically heterogeneous and often severe disorders due to its central role in generating cellular energy. Mutations in the TUFM gene are known to cause combined oxidative phosphorylation deficiency 4 (COXPD4), a rare mitochondrial disorder characterized by a comprehensive quantitative deficiency in mitochondrial respiratory chain (MRC) complexes. The development of a reliable animal model for COXPD4 is crucial for elucidating the roles and mechanisms of TUFM in disease pathogenesis and benefiting its medical management. In this study, we construct a zebrafish tufm-/- mutant that closely resembles the COXPD4 syndrome, exhibiting compromised mitochondrial protein translation, dysfunctional mitochondria with oxidative phosphorylation defects, and significant metabolic suppression of the tricarboxylic acid cycle. Leveraging this COXPD4 zebrafish model, we comprehensively validate the clinical relevance of TUFM mutations and identify probucol as a promising therapeutic approach for managing COXPD4. Our data offer valuable insights for understanding mitochondrial diseases and developing effective treatments.
Collapse
Affiliation(s)
- Ting Li
- School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Tursunjan Aziz
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangyuan Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jihua Yao
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Shunji Jia
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
4
|
Amin Nordin FD, Omar A, Kamarudin B, Simpson T, Abdul Jalil J, Pung YF. Whole exome sequencing in energy deficiency inborn errors of metabolism: A systematic review. Mol Genet Metab Rep 2024; 40:101094. [PMID: 40206842 PMCID: PMC11980698 DOI: 10.1016/j.ymgmr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 04/11/2025] Open
Abstract
Broad biochemical complexity and frequent overlapping clinical symptoms of inborn errors of metabolism (IEM), especially in energy-deficient patients, make accurate diagnosis difficult. In recent years, whole exome sequencing (WES), a comprehensive protein coding genetic test, has been used to diagnose patients at the molecular level. This study aims to evaluate the potential of WES in diagnosing energy-deficient IEM patients with limited biochemical findings and to identify common symptoms patterns in reported cases. Articles were identified using a combination of search terms in online databases (Science Direct, PubMed Central and Wiley). English-language case reports citing WES in the diagnosis of energy-deficient IEM patients were reviewed. This systematic review was conducted and reported using the 'Preferred Reporting Items for Systematic Reviews and Meta-Analyses' checklist. The quality and risk of bias were assessed using Joanna Briggs Institute critical appraisal tool. A total of 37 studies comprising of 54 case reports were included in this review. The median age of the patients was 0.4 years, with 55.6% being male and 44.4% being female. A total of 33 mutant genes were reported and they related to either metabolism or mitochondrial function. WES was able to identify mutations in 53 of 54 cases reported. The diagnosis of energy-deficient IEM patients is crucial, particularly given the challenging range of diverse clinical symptoms they present. The high accuracy of the WES technique appears to improve the diagnostic process. Further research defining more detailed guidelines is needed to engage with this rare set of genetic diseases.
Collapse
Affiliation(s)
- Fatimah Diana Amin Nordin
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Affandi Omar
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Balqis Kamarudin
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Timothy Simpson
- School of Life Sciences, Faculty of Medicine & Health Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Julaina Abdul Jalil
- Inborn Errors of Metabolism & Genetics Unit, Nutrition, Metabolism & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia
| | - Yuh Fen Pung
- Division of Biomedical Science, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Malaysia
| |
Collapse
|
5
|
Yue F, Hao M, Jiang D, Liu R, Zhang H. Prenatal phenotypes and pregnancy outcomes of fetuses with 16p11.2 microdeletion/microduplication. BMC Pregnancy Childbirth 2024; 24:494. [PMID: 39039444 PMCID: PMC11265082 DOI: 10.1186/s12884-024-06702-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Chromosomal 16p11.2 deletions and duplications are genomic disorders which are characterized by neurobehavioral abnormalities, obesity, congenital abnormalities. However, the prenatal phenotypes associated with 16p11.2 copy number variations (CNVs) have not been well characterized. This study aimed to provide an elaborate summary of intrauterine phenotypic features for these genomic disorders. METHODS Twenty prenatal amniotic fluid samples diagnosed with 16p11.2 microdeletions/microduplications were obtained from pregnant women who opted for invasive prenatal testing. Karyotypic analysis and chromosomal microarray analysis (CMA) were performed in parallel. The pregnancy outcomes and health conditions of all cases after birth were followed up. Meanwhile, we made a pooled analysis of the prenatal phenotypes in the published cases carrying 16p11.2 CNVs. RESULTS 20 fetuses (20/20,884, 0.10%) with 16p11.2 CNVs were identified: five had 16p11.2 BP2-BP3 deletions, 10 had 16p11.2 BP4-BP5 deletions and five had 16p11.2 BP4-BP5 duplications. Abnormal ultrasound findings were recorded in ten fetuses with 16p11.2 deletions, with various degrees of intrauterine phenotypic features observed. No ultrasound abnormalities were observed in any of the 16p11.2 duplications cases during the pregnancy period. Eleven cases with 16p11.2 deletions terminated their pregnancies. For 16p11.2 duplications, four cases gave birth to healthy neonates except for one case that was lost to follow-up. CONCLUSIONS Diverse prenatal phenotypes, ranging from normal to abnormal, were observed in cases with 16p11.2 CNVs. For 16p11.2 BP4-BP5 deletions, abnormalities of the vertebral column or ribs and thickened nuchal translucency were the most common structural and non-structural abnormalities, respectively. 16p11.2 BP2-BP3 deletions might be closely associated with fetal growth restriction and single umbilical artery. No characteristic ultrasound findings for 16p11.2 duplications have been observed to date. Given the variable expressivity and incomplete penetrance of 16p11.2 CNVs, long-term follow-up after birth should be conducted for these cases.
Collapse
Affiliation(s)
- Fagui Yue
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Mengzhe Hao
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Dandan Jiang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Ruizhi Liu
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China
| | - Hongguo Zhang
- Center for Reproductive Medicine and Center for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, 130021, China.
- Jilin Engineering Research Center for Reproductive Medicine and Genetics, Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Gokalp S, Inci A, Kilic A, Ozsaydi E, Altun AN, Demir F, Ergin FB, Ozbek MN, Okur I, Ezgu F, Tumer L. A very rare presentation of mitochondrial elongation factor Tu deficiency- TUFM mutation and literature review. J Pediatr Endocrinol Metab 2024; 37:571-574. [PMID: 38630895 DOI: 10.1515/jpem-2023-0569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVES The mitochondrial elongation factor Tu (EF-Tu), encoded by the TUFM gene, is a GTPase, which is part of the mitochondrial protein translation mechanism. If it is activated, it delivers the aminoacyl-tRNAs to the mitochondrial ribosome. Here, a patient was described with a homozygous missense variant in the TUFM [c.1016G>A (p.Arg339Gln)] gene. To date, only six patients have been reported with bi-allelic pathogenic variants in TUFM, leading to combined oxidative phosphorylation deficiency 4 (COXPD4) characterized by severe early-onset lactic acidosis, encephalopathy, and cardiomyopathy. CASE PRESENTATION The patient presented here had the phenotypic features of TUFM-related disease, lactic acidosis, hypotonia, liver dysfunction, optic atrophy, and mild encephalopathy. CONCLUSIONS We aimed to expand the clinical spectrum of pathogenic variants of TUFM.
Collapse
Affiliation(s)
- Sabire Gokalp
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Asli Inci
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ayse Kilic
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ekin Ozsaydi
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Ayse Nur Altun
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Fevzi Demir
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Filiz Basak Ergin
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Mehmet Nuri Ozbek
- Department of Pediatrics, Dicle University Faculty of Medicine, Diyarbakır, Türkiye
| | - Ilyas Okur
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Fatih Ezgu
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Leyla Tumer
- Department of Pediatric Metabolic Disorders, Gazi University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
7
|
Antolínez-Fernández Á, Esteban-Ramos P, Fernández-Moreno MÁ, Clemente P. Molecular pathways in mitochondrial disorders due to a defective mitochondrial protein synthesis. Front Cell Dev Biol 2024; 12:1410245. [PMID: 38855161 PMCID: PMC11157125 DOI: 10.3389/fcell.2024.1410245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Mitochondria play a central role in cellular metabolism producing the necessary ATP through oxidative phosphorylation. As a remnant of their prokaryotic past, mitochondria contain their own genome, which encodes 13 subunits of the oxidative phosphorylation system, as well as the tRNAs and rRNAs necessary for their translation in the organelle. Mitochondrial protein synthesis depends on the import of a vast array of nuclear-encoded proteins including the mitochondrial ribosome protein components, translation factors, aminoacyl-tRNA synthetases or assembly factors among others. Cryo-EM studies have improved our understanding of the composition of the mitochondrial ribosome and the factors required for mitochondrial protein synthesis and the advances in next-generation sequencing techniques have allowed for the identification of a growing number of genes involved in mitochondrial pathologies with a defective translation. These disorders are often multisystemic, affecting those tissues with a higher energy demand, and often present with neurodegenerative phenotypes. In this article, we review the known proteins required for mitochondrial translation, the disorders that derive from a defective mitochondrial protein synthesis and the animal models that have been established for their study.
Collapse
Affiliation(s)
- Álvaro Antolínez-Fernández
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Esteban-Ramos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Miguel Ángel Fernández-Moreno
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paula Clemente
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Universidad Autónoma de Madrid-Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Departamento de Bioquímica, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
9
|
González-del Angel A, Alcántara-Ortigoza MA, Ramos S, Algara-Ramírez C, Hernández-Hernández MA, Saenger-Rivas L. Unusual Trisomy X Phenotype Associated with a Concurrent Heterozygous 16p11.2 Deletion: Importance of an Integral Approach for Proper Diagnosis. Int J Mol Sci 2023; 24:14643. [PMID: 37834089 PMCID: PMC10572219 DOI: 10.3390/ijms241914643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 10/15/2023] Open
Abstract
Trisomy X is the most frequent sex chromosome anomaly in women, but it is often underdiagnosed postnatally because most patients do not show any clinical manifestation. It is estimated that only 10% of patients with trisomy X are diagnosed by clinical findings. Thus, it has been proposed that the clinical spectrum is not yet fully delimited, and additional uncommon or atypical clinical manifestations could be related to this entity. The present report describes a female carrying trisomy X but presenting atypical manifestations, including severe intellectual disability, short stature, thymus hypoplasia, and congenital hypothyroidism (CH). These clinical findings were initially attributed to trisomy X. However, chromosome microarray analysis (CMA) subsequently revealed that the patient also bears a heterozygous 304-kb deletion at 16p11.2. This pathogenic copy-number variant (CNV) encompasses 13 genes, including TUFM. Some authors recommend that when a phenotype differs from that described for an identified microdeletion, the presence of pathogenic variants in the non-deleted allele should be considered to assess for an autosomal recessive disorder; thus, we used a panel of 697 genes to rule out a pathogenic variant in the non-deleted TUFM allele. We discuss the possible phenotypic modifications that might be related to an additional CNV in individuals with sex chromosome aneuploidy (SCA), as seen in our patient. The presence of karyotype-demonstrated trisomy X and CMA-identified 16p11.2 deletion highlights the importance of always correlating a patient's clinical phenotype with the results of genetic studies. When the phenotype includes unusual manifestations and/or exhibits discrepancies with that described in the literature, as exemplified by our patient, a more extensive analysis should be undertaken to enable a correct diagnosis that will support proper management, genetic counseling, and medical follow-up.
Collapse
Affiliation(s)
- Ariadna González-del Angel
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City CP 04530, Mexico;
- Facultad Mexicana de Medicina, Universidad la Salle, Mexico City CP 14070, Mexico; (C.A.-R.); (M.A.H.-H.); (L.S.-R.)
| | - Miguel Angel Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City CP 04530, Mexico;
| | - Sandra Ramos
- Laboratorio de Citogenética, Subdirección de Investigación Médica, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City CP 04530, Mexico;
| | - Carolina Algara-Ramírez
- Facultad Mexicana de Medicina, Universidad la Salle, Mexico City CP 14070, Mexico; (C.A.-R.); (M.A.H.-H.); (L.S.-R.)
| | | | - Lorenza Saenger-Rivas
- Facultad Mexicana de Medicina, Universidad la Salle, Mexico City CP 14070, Mexico; (C.A.-R.); (M.A.H.-H.); (L.S.-R.)
| |
Collapse
|
10
|
Smith AJ, Advani J, Brock DC, Nellissery J, Gumerson J, Dong L, Aravind L, Kennedy B, Swaroop A. GATD3A, a mitochondrial deglycase with evolutionary origins from gammaproteobacteria, restricts the formation of advanced glycation end products. BMC Biol 2022; 20:68. [PMID: 35307029 PMCID: PMC8935817 DOI: 10.1186/s12915-022-01267-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Functional complexity of the eukaryotic mitochondrial proteome is augmented by independent gene acquisition from bacteria since its endosymbiotic origins. Mammalian homologs of many ancestral mitochondrial proteins have uncharacterized catalytic activities. Recent forward genetic approaches attributed functions to proteins in established metabolic pathways, thereby limiting the possibility of identifying novel biology relevant to human disease. We undertook a bottom-up biochemistry approach to discern evolutionarily conserved mitochondrial proteins with catalytic potential. RESULTS Here, we identify a Parkinson-associated DJ-1/PARK7-like protein-glutamine amidotransferase-like class 1 domain-containing 3A (GATD3A), with bacterial evolutionary affinities although not from alphaproteobacteria. We demonstrate that GATD3A localizes to the mitochondrial matrix and functions as a deglycase. Through its amidolysis domain, GATD3A removes non-enzymatic chemical modifications produced during the Maillard reaction between dicarbonyls and amines of nucleotides and amino acids. GATD3A interacts with factors involved in mitochondrial mRNA processing and translation, suggestive of a role in maintaining integrity of important biomolecules through its deglycase activity. The loss of GATD3A in mice is associated with accumulation of advanced glycation end products (AGEs) and altered mitochondrial dynamics. CONCLUSIONS An evolutionary perspective helped us prioritize a previously uncharacterized but predicted mitochondrial protein GATD3A, which mediates the removal of early glycation intermediates. GATD3A restricts the formation of AGEs in mitochondria and is a relevant target for diseases where AGE deposition is a pathological hallmark.
Collapse
Affiliation(s)
- Andrew J. Smith
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Jayshree Advani
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Daniel C. Brock
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Jacob Nellissery
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Jessica Gumerson
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| | - Lijin Dong
- Genome Engineering Core, National Eye Institute, National Institutes of Health, 6 Center Drive, Bethesda, MD 20892 USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Breandán Kennedy
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, D4, Dublin, Ireland
| | - Anand Swaroop
- Neurobiology, Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, MSC0610, 6 Center Drive, Bethesda, MD 20892 USA
| |
Collapse
|
11
|
Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am J Hum Genet 2022; 109:518-532. [PMID: 35108495 DOI: 10.1016/j.ajhg.2022.01.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.
Collapse
|
12
|
Huang S, Xia J, Zhang X, Zhou T, Wang J, Liu T, Xu S, Liang G. 2,2',4,4'-Tetrabromodiphenyl ether disrupts spermatogenesis in mice by interfering with the ER-Nrf1-Tfam-mitochondria pathway. Toxicol Ind Health 2022; 38:182-191. [PMID: 35238255 DOI: 10.1177/07482337221081206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
2,2',4,4' -tetrabromodiphenyl ether (BDE47), a well-known endocrine disruptor of the estrogen receptor (ER) is toxic to the mitochondria and spermatogenesis. This study aimed to explore the mechanism of BDE47 on spermatogenesis in mammals. Adult male Institute of Cancer Research (ICR) mice were gavaged daily with BDE47 (0, 1, or 10 mg/kg bw) for 8 weeks. Testicular weight, sperm production and motility, morphology of spermatogenic cells, nuclear respiratory factor 1 (Nrf1) level, and its expression in testes were determined. In vitro, cell viability, and key molecules in the ER-Nrf1-mitochondrial transcription factor A (Tfam)-mitochondria pathway in the immortalized mouse spermatogonia line (GC1) were determined at 48 h and 0-5 h after exposure; RNA interference (RNAi) was also performed to verify that the decreased Nrf1 was associated with mitochondrial dysfunction and the impaired viability of germ cells. The results indicated that BDE47 impaired testis weight and spermatogenesis, impaired mitochondria and germ cells, and decreased Nrf1 in the testes of mice. In vitro, after 48 h exposure, BDE47 reduced cell viability, Nrf1 protein, and mRNA of Nrf1, Tfam, ATP synthase subunit β (Atp5b), and cytochrome c oxidase subunit I (mt-CO1) in GC1 while also reducing mRNA of Nrf1 and Tfam promptly (from 1 to 5 h) after exposure. Furthermore, Nrf1 RNA interference decreased viability and mitochondrial function in GC1. These results indicated that BDE47 disrupts spermatogenesis in mice, probably by interfering with the ER-Nrf1-Tfam-mitochondria pathway, and Nrf1 is a target molecule of BDE47 estrogen receptor.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, 12579Southeast University, Nanjing, China
| | - Jiangyan Xia
- Zhong Da Hospital, 12579Southeast University, Nanjing, China
| | - Xinxin Zhang
- Department of Histology and Embryology, Medical School, 12579Southeast University, Nanjing, China
| | - Tao Zhou
- Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Nanjing, China
| | - Jing Wang
- Zhong Da Hospital, 12579Southeast University, Nanjing, China
| | - Tong Liu
- School of Public Health, 12579Southeast University, Nanjing, China
| | - Siyi Xu
- School of Public Health, 12579Southeast University, Nanjing, China
| | - Geyu Liang
- School of Public Health, 12579Southeast University, Nanjing, China
| |
Collapse
|
13
|
A functional genomics pipeline identifies pleiotropy and cross-tissue effects within obesity-associated GWAS loci. Nat Commun 2021; 12:5253. [PMID: 34489471 PMCID: PMC8421397 DOI: 10.1038/s41467-021-25614-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified many disease-associated variants, yet mechanisms underlying these associations remain unclear. To understand obesity-associated variants, we generate gene regulatory annotations in adipocytes and hypothalamic neurons across cellular differentiation stages. We then test variants in 97 obesity-associated loci using a massively parallel reporter assay and identify putatively causal variants that display cell type specific or cross-tissue enhancer-modulating properties. Integrating these variants with gene regulatory information suggests genes that underlie obesity GWAS associations. We also investigate a complex genomic interval on 16p11.2 where two independent loci exhibit megabase-range, cross-locus chromatin interactions. We demonstrate that variants within these two loci regulate a shared gene set. Together, our data support a model where GWAS loci contain variants that alter enhancer activity across tissues, potentially with temporally restricted effects, to impact the expression of multiple genes. This complex model has broad implications for ongoing efforts to understand GWAS.
Collapse
|
14
|
Zhong BR, Zhou GF, Song L, Wen QX, Deng XJ, Ma YL, Hu LT, Chen GJ. TUFM is involved in Alzheimer's disease-like pathologies that are associated with ROS. FASEB J 2021; 35:e21445. [PMID: 33774866 DOI: 10.1096/fj.202002461r] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022]
Abstract
Mitochondrial Tu translation elongation factor (TUFM or EF-Tu) is part of the mitochondrial translation machinery. It is reported that TUFM expression is reduced in the brain of Alzheimer's disease (AD), suggesting that TUFM might play a role in the pathophysiology. In this study, we found that TUFM protein level was decreased in the hippocampus and cortex especially in the aged APP/PS1 mice, an animal model of AD. In HEK cells that stably express full-length human amyloid-β precursor protein (HEK-APP), TUFM knockdown or overexpression increased or reduced the protein levels of β-amyloid protein (Aβ) and β-amyloid converting enzyme 1 (BACE1), respectively. TUFM-mediated reduction of BACE1 was attenuated by translation inhibitor cycloheximide (CHX) or α-[2-[4-(3,4-Dichlorophenyl)-2-thiazolyl]hydrazinylidene]-2-nitro-benzenepropanoic acid (4EGI1), and in cells overexpressing BACE1 constructs deleting the 5' untranslated region (5'UTR). TUFM silencing increased the half-life of BACE1 mRNA, suggesting that RNA stability was affected by TUFM. In support, transcription inhibitor Actinomycin D (ActD) and silencing of nuclear factor κB (NFκB) failed to abolish TUFM-mediated regulation of BACE1 protein and mRNA. We further found that the mitochondria-targeted antioxidant TEMPO diminished the effects of TUFM on BACE1, suggesting that reactive oxygen species (ROS) played an important role. Indeed, cellular ROS levels were affected by TUFM knockdown or overexpression, and TUFM-mediated regulation of apoptosis and Tau phosphorylation at selective sites was attenuated by TEMPO. Collectively, TUFM protein levels were decreased in APP/PS1 mice. TUFM is involved in AD pathology by regulating BACE1 translation, apoptosis, and Tau phosphorylation, in which ROS plays an important role.
Collapse
Affiliation(s)
- Bi-Rou Zhong
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Gui-Feng Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li Song
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Qi-Xin Wen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Xiao-Juan Deng
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Yuan-Lin Ma
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| | - Li-Tian Hu
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China.,Department of Neurology, Nanchong Central Hospital, the Second Clinical College of North Sichuan Medical College, Nanchong, China
| | - Guo-Jun Chen
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing, China
| |
Collapse
|
15
|
Wang F, Zhang D, Zhang D, Li P, Gao Y. Mitochondrial Protein Translation: Emerging Roles and Clinical Significance in Disease. Front Cell Dev Biol 2021; 9:675465. [PMID: 34277617 PMCID: PMC8280776 DOI: 10.3389/fcell.2021.675465] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/09/2021] [Indexed: 12/28/2022] Open
Abstract
Mitochondria are one of the most important organelles in cells. Mitochondria are semi-autonomous organelles with their own genetic system, and can independently replicate, transcribe, and translate mitochondrial DNA. Translation initiation, elongation, termination, and recycling of the ribosome are four stages in the process of mitochondrial protein translation. In this process, mitochondrial protein translation factors and translation activators, mitochondrial RNA, and other regulatory factors regulate mitochondrial protein translation. Mitochondrial protein translation abnormalities are associated with a variety of diseases, including cancer, cardiovascular diseases, and nervous system diseases. Mutation or deletion of various mitochondrial protein translation factors and translation activators leads to abnormal mitochondrial protein translation. Mitochondrial tRNAs and mitochondrial ribosomal proteins are essential players during translation and mutations in genes encoding them represent a large fraction of mitochondrial diseases. Moreover, there is crosstalk between mitochondrial protein translation and cytoplasmic translation, and the imbalance between mitochondrial protein translation and cytoplasmic translation can affect some physiological and pathological processes. This review summarizes the regulation of mitochondrial protein translation factors, mitochondrial ribosomal proteins, mitochondrial tRNAs, and mitochondrial aminoacyl-tRNA synthetases (mt-aaRSs) in the mitochondrial protein translation process and its relationship with diseases. The regulation of mitochondrial protein translation and cytoplasmic translation in multiple diseases is also summarized.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Deyu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.,Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China
| |
Collapse
|
16
|
Kessel I, German A, Peleg A, Gonzaga-Jauregui C, Paperna T, Ekhilevitch N, Kurolap A, Baris Feldman H, Sagi-Dain L. A novel truncating variant in the FGD1 gene associated with Aarskog-Scott syndrome in a family previously diagnosed with Tel Hashomer camptodactyly. Am J Med Genet A 2021; 185:3161-3166. [PMID: 34145742 DOI: 10.1002/ajmg.a.62401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 11/08/2022]
Abstract
Tel Hashomer camptodactyly syndrome is a long-known entity characterized by camptodactyly with muscular hypoplasia, skeletal dysplasia, and abnormal palmar creases. Currently, the genetic basis for this disorder is unknown, thus there is a possibility that this clinical presentation may be contained within another genetic diagnosis. Here, we present a multiplex family with a previous clinical diagnosis of Tel Hashomer camptodactyly syndrome. Whole exome sequencing and pedigree-based analysis revealed a novel hemizygous truncating variant c.269_270dup (p.Phe91Alafs*34) in the FGD1 gene (NM_004463.3) in all three symptomatic patients, congruous with a diagnosis of Aarskog-Scott syndrome. Our report adds to the limited data on Aarskog-Scott syndrome, and emphasizes the importance of unbiased comprehensive molecular testing toward establishing a diagnosis for genetic syndromes with unknown genetic basis.
Collapse
Affiliation(s)
- Irena Kessel
- Department of Neonatology, Carmel Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alina German
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Pediatric Endocrinology, Bnei Zion Medical Center, Haifa, Israel
| | - Amir Peleg
- Genetics Institute, Carmel Medical Center, Haifa, Israel
| | | | | | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Nina Ekhilevitch
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lena Sagi-Dain
- Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Genetics Institute, Carmel Medical Center, Haifa, Israel
| |
Collapse
|
17
|
Hershkovitz T, Kurolap A, Tal G, Paperna T, Mory A, Staples J, Brigatti KW, Gonzaga-Jauregui C, Dumin E, Saada A, Mandel H, Baris Feldman H. A recurring NFS1 pathogenic variant causes a mitochondrial disorder with variable intra-familial patient outcomes. Mol Genet Metab Rep 2020; 26:100699. [PMID: 33457206 PMCID: PMC7797929 DOI: 10.1016/j.ymgmr.2020.100699] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 02/09/2023] Open
Abstract
Iron‑sulfur clusters (FeSCs) are vital components of a variety of essential proteins, most prominently within mitochondrial respiratory chain complexes I-III; Fe-S assembly and distribution is performed via multi-step pathways. Variants affecting several proteins in these pathways have been described in genetic disorders, including severe mitochondrial disease. Here we describe a Christian Arab kindred with two infants that died due to mitochondrial disorder involving Fe-S containing respiratory chain complexes and a third sibling who survived the initial crisis. A homozygous missense variant in NFS1: c.215G>A; p.Arg72Gln was detected by whole exome sequencing. The NFS1 gene encodes a cysteine desulfurase, which, in complex with ISD11 and ACP, initiates the first step of Fe-S formation. Arginine at position 72 plays a role in NFS1-ISD11 complex formation; therefore, its substitution with glutamine is expected to affect complex stability and function. Interestingly, this is the only pathogenic variant ever reported in the NFS1 gene, previously described once in an Old Order Mennonite family presenting a similar phenotype with intra-familial variability in patient outcomes. Analysis of datasets from both populations did not show a common haplotype, suggesting this variant is a recurrent de novo variant. Our report of the second case of NFS1-related mitochondrial disease corroborates the pathogenicity of this recurring variant and implicates it as a hot-spot variant. While the genetic resolution allows for prenatal diagnosis for the family, it also raises critical clinical questions regarding follow-up and possible treatment options of severely affected and healthy homozygous individuals with mitochondrial co-factor therapy or cysteine supplementation.
Collapse
Affiliation(s)
- Tova Hershkovitz
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Galit Tal
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | - Elena Dumin
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Department of Clinical Biochemistry, Rambam Health Care Campus, Haifa, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Medical Center and The Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Hanna Mandel
- Metabolic Unit, Ruth Rappaport Children's Hospital, Rambam Health Care Campus, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
You C, Xu N, Qiu S, Li Y, Xu L, Li X, Yang L. A novel composition of two heterozygous GFM1 mutations in a Chinese child with epilepsy and mental retardation. Brain Behav 2020; 10:e01791. [PMID: 32776492 PMCID: PMC7559602 DOI: 10.1002/brb3.1791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION G elongation factor mitochondrial 1 (GFM1) encodes one of the mitochondrial translation elongation factors. GFM1 variants were reported to be associated with neurological diseases and liver diseases in a few cases. Here, we present a novel composition of two heterozygous mutations of GFM1 in a boy with epilepsy, mental retardation, and other unusual phenotypes. METHODS The patient was found to be blind and experienced recurrent convulsive seizures such as nodding and hugging at the age of 3 months. After antiepileptic treatment with topiramate, he had no obvious seizures but still had mental retardation. The patient vomited frequently at 16 months old, sometimes accompanied by epileptic seizures. Hematuria metabolic screening, mutation screening of mitochondrial gene, and mitochondrial nuclear gene were negative. Then, he was analyzed by whole-exome sequencing (WES). RESULTS Whole-exome sequencing revealed a novel composition of two heterozygous mutations in GFM1, the maternal c.679G > A (has not been reported) and the paternal c.1765-1_1765-2del (previously reported). At present, there is no specific and effective treatment for the disease, and the prognosis is very poor. CONCLUSION The discovery of new phenotypes and new genotypes will further enrich the diagnosis information of the disease and provide more experiences for clinicians to quickly diagnose the disease and judge the prognosis.
Collapse
Affiliation(s)
- Cuiping You
- Central Laboratory, Linyi People's Hospital, Linyi, China
| | - Na Xu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Shiyan Qiu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Yufen Li
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Liyun Xu
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Xia Li
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| | - Li Yang
- Department of Pediatrics, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Weng X, Zheng S, Shui H, Lin G, Zhou Y. TUFM-knockdown inhibits the migration and proliferation of gastrointestinal stromal tumor cells. Oncol Lett 2020; 20:250. [PMID: 32994813 PMCID: PMC7509754 DOI: 10.3892/ol.2020.12113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common pathologic type of mesenchymal tumor in the digestive tract. Patients with GIST face the risk of metastasis, postoperative recurrence and imatinib mesylate (IM) resistance. Mitochondrial Tu translation elongation factor (TUFM) is highly expressed in GISTs, and is associated with oncogenesis, progression and prognosis. There is evidence that TUFM is involved in tumor invasion and metastasis. However, the effect of TUFM on GIST-T1 cells and the IM-resistant GIST-IR cell line remains unclear. The present study aimed to evaluate the effects of TUFM on the proliferation, migration and apoptosis of GIST cells in vitro. TUFM short hairpin (sh)RNA expression plasmids were transfected into GIST-T1 and GIST-IR cells by electroporation. The expression levels of enhanced green fluorescent protein were observed by fluorescence microscopy to evaluate the electroporation efficiency. The expression levels of TUFM were detected by western blot analysis and reverse transcription-quantitative PCR. Cell proliferation was assessed by counting cells and using a Cell Counting Kit-8 assay. Cell migration was analyzed using wound healing and Transwell migration assays. Cell cycle distribution and late apoptosis were assessed by flow cytometry. TUFM shRNA expression plasmids were successfully transfected into the GIST cell line by electroporation. The transfection efficiency was >75%, and the TUFM gene silencing efficiency was 73.2±1.4%. TUFM-knockdown decreased the proliferation and migration capacity of GIST-T1 and GIST-IR cells. The proportion of cells in the pre-G1 stage was increased without change in the proportions of cells in the G1, S and G2/M stages after TUFM silencing in GIST-T1 and GIST-IR cells. TUFM may be related to GIST infiltration and metastatic recurrence, suggesting that TUFM may be an effective target for preventing the progression and metastasis of GISTs.
Collapse
Affiliation(s)
- Xiaoyuan Weng
- Department of Surgery, Department of Clinical Medicine, Quanzhou Medical College, Quanzhou, Fujian 362010, P.R. China
| | - Song Zheng
- Department of Medical Oncology, Affiliated Hangzhou First People's Hospital, Zhejiang Chinese Medical University Affiliated Hangzhou First Hospital, Hangzhou, Zhejiang 310006, P.R. China
| | - Hanli Shui
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Guosheng Lin
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Yongjian Zhou
- Department of Gastric Surgery, Union Hospital of Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| |
Collapse
|
20
|
A novel mutation in MYCN gene causing congenital absence of the flexor pollicis longus tendon as an unusual presentation of Feingold syndrome 1. Clin Dysmorphol 2020; 30:71-75. [PMID: 32925198 DOI: 10.1097/mcd.0000000000000342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Feingold syndrome 1 (FGLDS1) is an autosomal dominant malformation syndrome, characterized by skeletal anomalies, microcephaly, facial dysmorphism, gastrointestinal atresias and learning disabilities. Mutations in the MYCN gene are known to be the cause of this syndrome. Congenital absence of the flexor pollicis longus (CAFPL) tendon is a rare hand anomaly. Most cases are sporadic and no genetic variants have been described associated with this abnormality. We describe here a pedigree combining familial CAFPL tendon as a feature of FGLDS1. Molecular analyses of whole exome sequence data in five affected family members spanning three generations of this family revealed a novel mutation in the MYCN gene (c.1171C>T; p.Arg391Cys). Variants in MYCN have not been published in association with isolated or syndromic CAFPL tendon, nor has this been described as a skeletal feature of Feingold syndrome. This report expands on the clinical and molecular spectrum of MYCN-related disorders and highlights the importance of MYCN protein in normal human thumb and foramen development.
Collapse
|
21
|
Bayona-Bafaluy MP, Iglesias E, López-Gallardo E, Emperador S, Pacheu-Grau D, Labarta L, Montoya J, Ruiz-Pesini E. Genetic aspects of the oxidative phosphorylation dysfunction in dilated cardiomyopathy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108334. [PMID: 33339579 DOI: 10.1016/j.mrrev.2020.108334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/27/2022]
Abstract
Dilated cardiomyopathy is a frequent and extremely heterogeneous medical condition. Deficits in the oxidative phosphorylation system have been described in patients suffering from dilated cardiomyopathy. Hence, mutations in proteins related to this biochemical pathway could be etiological factors for some of these patients. Here, we review the clinical phenotypes of patients harboring pathological mutations in genes related to the oxidative phosphorylation system, either encoded in the mitochondrial or in the nuclear genome, presenting with dilated cardiomyopathy. In addition to the clinical heterogeneity of these patients, the large genetic heterogeneity has contributed to an improper allocation of pathogenicity for many candidate mutations. We suggest criteria to avoid incorrect assignment of pathogenicity to newly found mutations and discuss possible therapies targeting the oxidative phosphorylation function.
Collapse
Affiliation(s)
- M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Eldris Iglesias
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain.
| | - Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - David Pacheu-Grau
- Department of Cellular Biochemistry, University Medical Center, Georg-August University,Humboldtalle, 23., 37073, Göttingen, Germany.
| | - Lorenzo Labarta
- Unidad de Cuidados Intensivos, Hospital San Jorge, Av. Martínez de Velasco, 36., 22004, Huesca, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza. C/ Miguel Servet, 177. 50013, Zaragoza, Spain; Instituto de Investigación Sanitaria (IIS) de Aragón, Av. San Juan Bosco, 13., 50009, Zaragoza, Spain; Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain; Fundación ARAID, Av. de Ranillas, 1-D., 50018, Zaragoza, Spain.
| |
Collapse
|
22
|
Sagi-Dain L, Kurolap A, Ilivitzki A, Mory A, Paperna T, Kedar R, Gonzaga-Jauregui C, Peleg A, Baris Feldman H. A novel heterozygous loss-of-function DCC Netrin 1 receptor variant in prenatal agenesis of corpus callosum and review of the literature. Am J Med Genet A 2019; 182:205-212. [PMID: 31697046 DOI: 10.1002/ajmg.a.61404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 11/12/2022]
Abstract
Agenesis of the corpus callosum (ACC) is a common prenatally-detected brain anomaly. Recently, an association between mutations in the DCC Netrin 1 receptor (DCC) gene and ACC, with or without mirror movements, has been demonstrated. In this manuscript, we present a family with a novel heterozygous frameshift mutation in DCC, review the available literature, and discuss the challenges involved in the genetic counseling for recently discovered disorders with paucity of medical information. We performed whole exome sequencing in a healthy nonconsanguineous couple that underwent two pregnancy terminations due to prenatal diagnosis of ACC. A heterozygous variant c.2774dupA (p.Asn925Lysfs*17) in the DCC gene was demonstrated in fetal and paternal DNA samples, as well as in a healthy 4-year-old offspring. When directly questioned, both father and child reported having mirror movements not affecting quality of life. Segregation analysis demonstrated the variant in three paternal siblings, two of them having mirror movements. Brain imaging revealed normal corpus callosum. Summary of literature data describing heterozygous loss-of-function variants in DCC (n = 61) revealed 63.9% penetrance for mirror movements, 9.8% for ACC, and 5% for both. No significant neurodevelopmental abnormalities were reported among the seven published patients with DCC loss-of-function variants and ACC. Prenatal diagnosis of ACC should prompt a specific anamnesis regarding any neurological disorder, as well as intentional physical examination of both parents aimed to detect mirror movements. In suspicious cases, detection of DCC pathogenic variants might markedly improve the predicted prognosis, alleviate the parental anxiety, and possibly prevent pregnancy termination.
Collapse
Affiliation(s)
- Lena Sagi-Dain
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alina Kurolap
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Anat Ilivitzki
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Pediatric Radiology Unit, Radiology Department, Rambam Health Care Campus, Haifa, Israel
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | - Tamar Paperna
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel
| | | | - Reuven Kedar
- Obstetrics and Gynecology department, Carmel Medical Center, Haifa, Israel
| | | | - Amir Peleg
- Genetics Institute, Carmel Medical Center, Affiliated to the Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|