1
|
Zhang F, Wang T, Wei L, Xie Z, Wang L, Luo H, Li F, Kang Q, Dong W, Zhang J, Zhu X, Wang C, Liang L, Peng W. B-Lymphoid Tyrosine Kinase Crosslinks Redox and Apoptosis Signaling Networks to Promote the Survival of Transplanted Bone Marrow Mesenchymal Stem Cells. RESEARCH (WASHINGTON, D.C.) 2025; 8:0660. [PMID: 40235595 PMCID: PMC11999575 DOI: 10.34133/research.0660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 02/25/2025] [Accepted: 03/12/2025] [Indexed: 04/17/2025]
Abstract
Stress-induced apoptosis presents an obstacle to bone marrow mesenchymal stem cell (BMSC) transplantation to repair steroid-induced osteonecrosis of the femoral head (SONFH). Thus, appropriate intervention strategies should be explored to mitigate this. In our previous study, we discovered a new subgroup of BMSCs-the oxidative stress-resistant BMSCs (OSR-BMSCs)-which can survive the oxidative stress microenvironment in the osteonecrotic area, through a mechanism that currently remains unclear. In this study, we found that B-lymphoid tyrosine kinase (BLK) may be the crucial factor regulating the oxidative stress resistance of OSR-BMSCs, as it is highly expressed in these cells. Knockdown of BLK eliminated oxidative stress resistance, aggravated oxidative stress-induced apoptosis, reduced the survival of OSR-BMSCs in the oxidative stress microenvironment of the osteonecrotic area, and greatly weakened the transplantation efficacy of OSR-BMSCs for SONFH. By contrast, BLK was weakly expressed in oxidative stress-sensitive BMSCs (OSS-BMSCs). Overexpression of BLK in susceptible OSS-BMSCs allowed them to acquire oxidative stress resistance, inhibited oxidative stress-induced apoptosis, promoted their survival in the osteonecrotic area, and improved the transplantation efficacy of OSS-BMSCs for SONFH. Mechanistically, BLK concurrently activates redox and apoptotic signaling networks through its tyrosine kinase activity, which confers oxidative stress resistance to BMSCs and inhibits their stress-induced apoptosis of BMSCs. Herein, we report that OSR-BMSCs have intrinsic oxidative stress resistance that is conferred and mediated by BLK. This finding provides a potential new intervention strategy for improving the survival of transplanted BMSCs and the therapeutic efficacy of BMSC transplantation for SONFH.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tao Wang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lei Wei
- Department of Orthopedics,
Warren Alpert Medical School of Brown University,Providence, RI 02912, USA
| | - Zhihong Xie
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Lijun Wang
- Department of Critical Care Medicine,
West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Luo
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fanchao Li
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Qinglin Kang
- Department of Orthopedics,
Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wentao Dong
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jian Zhang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Chuan Wang
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Liang Liang
- Department of Orthopedics, Guizhou Provincial People’s Hospital, Guiyang, Guizhou 550002, China
| | - Wuxun Peng
- Department of Emergency Surgery,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
- Laboratory of Emergency Medicine,
The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| |
Collapse
|
2
|
Xu H, Ma Y, Xu LL, Li Y, Liu Y, Li Y, Zhou XJ, Zhou W, Lee S, Zhang P, Yue W, Bi W. SPA GRM: effectively controlling for sample relatedness in large-scale genome-wide association studies of longitudinal traits. Nat Commun 2025; 16:1413. [PMID: 39915470 PMCID: PMC11803118 DOI: 10.1038/s41467-025-56669-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 01/27/2025] [Indexed: 02/09/2025] Open
Abstract
Sample relatedness is a major confounder in genome-wide association studies (GWAS), potentially leading to inflated type I error rates if not appropriately controlled. A common strategy is to incorporate a random effect related to genetic relatedness matrix (GRM) into regression models. However, this approach is challenging for large-scale GWAS of complex traits, such as longitudinal traits. Here we propose a scalable and accurate analysis framework, SPAGRM, which controls for sample relatedness via a precise approximation of the joint distribution of genotypes. SPAGRM can utilize GRM-free models and thus is applicable to various trait types and statistical methods, including linear mixed models and generalized estimation equations for longitudinal traits. A hybrid strategy incorporating saddlepoint approximation greatly increases the accuracy to analyze low-frequency and rare genetic variants, especially in unbalanced phenotypic distributions. We also introduce SPAGRM(CCT) to aggregate the results following different models via Cauchy combination test. Extensive simulations and real data analyses demonstrated that SPAGRM maintains well-controlled type I error rates and SPAGRM(CCT) can serve as a broadly effective method. Applying SPAGRM to 79 longitudinal traits extracted from UK Biobank primary care data, we identified 7,463 genetic loci, making a pioneering attempt to conduct GWAS for these traits as longitudinal traits.
Collapse
Affiliation(s)
- He Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuzhuo Ma
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lin-Lin Xu
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
| | - Yin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China
| | - Yufei Liu
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Li
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xu-Jie Zhou
- Renal Division, Peking University First Hospital; Peking University Institute of Nephrology, Beijing, China
| | - Wei Zhou
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Seunggeun Lee
- Graduate School of Data Science, Seoul National University, Seoul, Republic of Korea
| | - Peipei Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Weihua Yue
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100191, China.
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Wenjian Bi
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China.
- Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China.
- Medicine Innovation Center for Fundamental Research on Major Immunology-related Diseases, Peking University, Beijing, China.
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
3
|
Rodríguez RD, Alarcón-Riquelme ME. Exploring the contribution of genetics on the clinical manifestations of systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2024; 38:101971. [PMID: 39013664 DOI: 10.1016/j.berh.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by diverse clinical manifestations affecting multiple organs and systems. The understanding of genetic factors underlying the various manifestations of SLE has evolved considerably in recent years. This review provides an overview of the genetic implications in some of the most prevalent manifestations of SLE, including renal involvement, neuropsychiatric, cutaneous, constitutional, musculoskeletal, and cardiovascular manifestations. We discuss the current state of knowledge regarding the genetic basis of these manifestations, highlighting key genetic variants and pathways implicated in their pathogenesis. Additionally, we explore the clinical implications of genetic findings, including their potential role in risk stratification, prognosis, and personalized treatment approaches for patients with SLE. Through a comprehensive examination of the genetic landscape of SLE manifestations, this review aims to provide insights into the underlying mechanisms driving disease heterogeneity and inform future research directions in this field.
Collapse
Affiliation(s)
- Ruth D Rodríguez
- Center for Genomics and Oncological Research (GENyO). Pfizer/ University of Granada/ Andalusian Government, Spain
| | - Marta E Alarcón-Riquelme
- Center for Genomics and Oncological Research (GENyO). Pfizer/ University of Granada/ Andalusian Government, Spain; Institute for Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Yin BW, Li B, Mehmood A, Yuan C, Song S, Guo RY, Zhang L, Ma T, Guo L. BLK polymorphisms and expression level in neuromyelitis optica spectrum disorder. CNS Neurosci Ther 2021; 27:1549-1560. [PMID: 34637583 PMCID: PMC8611770 DOI: 10.1111/cns.13738] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Aim This study aimed to determine the correlation between B‐lymphoid tyrosine kinase (BLK) polymorphism, mRNA gene expression of BLK, and NMOSD in a Chinese Han population. Background B‐lymphoid tyrosine kinase gene expressed mainly in B cells plays a key role in various autoimmune disorders. However, no studies have investigated the association of BLK polymorphisms with neuromyelitis optica spectrum disorder (NMOSD). Methods Han Chinese population of 310 subjects were recruited to analyze three single nucleotide polymorphisms (rs13277113, rs4840568, and rs2248932) under allele, genotype, and haplotype frequencies, followed by clinical characteristics stratified analysis. Real‐time PCR was used to analyze mRNA expression levels of BLK in the peripheral blood mononuclear cells of 64 subjects. Results Patients with NMOSD showed lower frequencies of the minor allele G of rs2248932 than healthy controls (odds ratio (OR) =0.57, 95% confidence intervals (CI) 0.39–0.83, p = 0.003). The association between minor allele G of rs2248932 and reduced NMOSD susceptibility was found by applying genetic models of inheritance (codominant, dominant, and recessive) and haplotypes analysis. Subsequently, by stratification analysis for AQP4‐positivity, the minor allele G frequencies of rs2248932 in AQP4‐positive subgroup were significantly lower than in the healthy controls (OR =0.46, 95% CI 0.30–0.72, p = 0.001). Notably, the genotype GG of rs2248932 was more frequent in AQP4‐negative subgroup (n = 14) than in AQP4‐positive subgroup (n = 93) (p = 0.003, OR =0.05, 95% CI =0.01–0.57). BLK mRNA expression levels in the NMOSD patients (n = 36) were lower than in healthy controls (n = 28) (p < 0.05). However, the acute non‐treatment (n = 7), who were untreated patients in the acute phase from the NMOSD group, showed BLK mRNA expression levels 1.8‐fold higher than healthy controls (n = 8) (p < 0.05). Conclusion This study evaluated that the minor allele G of rs2248932 in BLK is associated with reduced susceptibility to NMOSD and protected the risk of AQP4‐positive. BLK mRNA expression in NMOSD was lower as compared to healthy controls while significantly increased in acute‐untreated patients.
Collapse
Affiliation(s)
- Bo-Wen Yin
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China.,Department of Neurology, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Bin Li
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Arshad Mehmood
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Congcong Yuan
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Shuang Song
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Ruo-Yi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Lu Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Tianzhao Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, City Shijiazhuang, Province Hebei, China.,Key Laboratory of Neurology of Hebei Province, City Shijiazhuang, Province Hebei, China
| |
Collapse
|