1
|
Zhao W, Lin L, Kelly KM, Opsasnick LA, Needham BL, Liu Y, Sen S, Smith JA. Epigenome-wide association study of perceived discrimination in the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2025; 20:2445447. [PMID: 39825881 DOI: 10.1080/15592294.2024.2445447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/20/2025] Open
Abstract
Perceived discrimination, recognized as a chronic psychosocial stressor, has adverse consequences on health. DNA methylation (DNAm) may be a potential mechanism by which stressors get embedded into the human body at the molecular level and subsequently affect health outcomes. However, relatively little is known about the effects of perceived discrimination on DNAm. To identify the DNAm sites across the epigenome that are associated with discrimination, we conducted epigenome-wide association analyses (EWAS) of three discrimination measures (everyday discrimination, race-related major discrimination, and non-race-related major discrimination) in 1,151 participants, including 565 non-Hispanic White, 221 African American, and 365 Hispanic individuals, from the Multi-Ethnic Study of Atherosclerosis (MESA). We conducted both race/ethnicity-stratified analyses as well as trans-ancestry meta-analyses. At false discovery rate of 10%, 7 CpGs and 4 differentially methylated regions (DMRs) containing 11 CpGs were associated with perceived discrimination exposures in at least one racial/ethnic group or in meta-analysis. Identified CpGs and/or nearby genes have been implicated in cellular development pathways, transcription factor binding, cancer and multiple autoimmune and/or inflammatory diseases. Of the identified CpGs (7 individual CpGs and 11 within DMRs), two CpGs and one CpG within a DMR were associated with expression of cis genes NDUFS5, AK1RIN1, NCF4 and ADSSL1. Our study demonstrated the potential influence of discrimination on DNAm and subsequent gene expression.
Collapse
Affiliation(s)
- Wei Zhao
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Lisha Lin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Kristen M Kelly
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA
| | - Lauren A Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yongmei Liu
- Department of Medicine, Divisions of Cardiology and Neurology, Duke University Medical Center, Durham, NC, USA
| | - Srijan Sen
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Lin Y, Zhou H, Hu W, Gao B, Liang T, Qiu J, Li P, Que Y, Wong C, Qiu X, Deng Z, Shi H, Liu S, Chen J, Liao N, Chen Q, Li X, Liang A, Gao W, Huang D. Understanding the role of NOTCH2 mutation in centronuclear myopathy. Mol Ther 2025:S1525-0016(25)00360-0. [PMID: 40336196 DOI: 10.1016/j.ymthe.2025.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 01/27/2025] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
NOTCH2 is a widely expressed protein that plays a crucial role in the normal development and function of various tissues, including skeletal muscle. This study focused on a pedigree with centronuclear myopathy, primarily characterized by muscle weakness and centralized nuclei, and identified the autosomal recessive NOTCH2p.I1689F mutation through whole-exome sequencing. Using a homologous mutant mouse model, several defects were identified that elucidate the muscle phenotype. These defects include a reduction in Pax7-expressing, proliferating myoblasts and the functional consequences of this reduction. In vitro studies demonstrated that the Notch2 mutation impaired proliferation and causing premature differentiation of myogenic progenitor cells. Mechanistically, the Notch2 mutation resulted in decreased production of the Notch2 intracellular domain from γ-secretase S3 cleavage, which affected the function of Pax7+ cells through the Notch2-Hey1-MyoD axis. Overall, our findings reveal impaired muscle regeneration in mice with the Notch2 mutation, contributing to the understanding of centronuclear myopathy by identifying a previously unreported gene and mutation site of NOTCH2.
Collapse
Affiliation(s)
- Youxi Lin
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Hang Zhou
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Wenjun Hu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Bo Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Tongzhou Liang
- Musculoskeletal Research Laboratory, Department of Orthopedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR 999077, China
| | - Jincheng Qiu
- Panyu Hospital of Chinese Medicine, Department of Minimally Invasive Spine Surgery, Guangzhou 511400, Guangdong, China
| | - Pengfei Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yichen Que
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Chipiu Wong
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Xianjian Qiu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Zhihuai Deng
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Huihong Shi
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Song Liu
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Jianan Chen
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Nianchun Liao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Qihui Chen
- Department of Pediatrics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China
| | - Xiaojuan Li
- Center for Cellular and Molecular Diagnostics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510300, Guangdong, China
| | - Anjing Liang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China.
| | - Wenjie Gao
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China.
| | - Dongsheng Huang
- Department of Orthopedic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510300, Guangdong, China.
| |
Collapse
|
3
|
Rimoldi M, Velardo D, Zanotti S, Ripolone M, Del Bo R, Ciscato P, Napoli L, Corti S, Comi GP, Ronchi D. A novel DNM2 variant associated with centronuclear myopathy: a case report. Front Genet 2025; 16:1559773. [PMID: 40259930 PMCID: PMC12010121 DOI: 10.3389/fgene.2025.1559773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/17/2025] [Indexed: 04/23/2025] Open
Abstract
DNM2 encodes the dynamin-2 protein, a GTPase involved in clathrin-mediated endocytosis and other membrane trafficking pathways. The dynamin-2 protein is composed of several functional domains, including a GTPase domain, a middle domain, a pleckstrin homology (PH) domain, a GTPase effector domain (GED), and a proline-rich domain. Monoallelic variants in DNM2 are associated with Charcot-Marie-Tooth disease and a rare form of congenital centronuclear myopathy (CNM). Several DNM2 variants have been reported in patients with CNM, typically presenting with mild and slowly progressive symptoms. We report the case of a 47-year-old man with DNM2-related myopathy, who presented with progressive muscle weakness starting at the age of 40 years. Clinical exome sequencing revealed the presence of a heterozygous DNM2 variant c.1726G>A, p.(Glu576Lys). This variant, previously unreported, is located in the PH domain of the protein. Muscle biopsy findings showed several fibers with central nuclei, sometimes multiple. In addition, occasional centronucleated fibers showed a radial distribution of sarcoplasmic strands. This study expands the clinical and genetic repertoire of DNM2-related myopathy.
Collapse
Affiliation(s)
- Martina Rimoldi
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Daniele Velardo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Simona Zanotti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Michela Ripolone
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Roberto Del Bo
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Patrizia Ciscato
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Laura Napoli
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
| | - Stefania Corti
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Disease Unit, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| |
Collapse
|
4
|
Onnée M, Malfatti E. The widening genetic and myopathologic spectrum of congenital myopathies (CMYOs): a narrative review. Neuromuscul Disord 2025; 49:105338. [PMID: 40112751 DOI: 10.1016/j.nmd.2025.105338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025]
Abstract
Congenital myopathies (CMYOs) represent a genetically and clinically heterogeneous group of disorders characterized by early-onset muscle weakness and distinct myopathologic features. The advent of next-generation sequencing (NGS) has accelerated the identification of causative genes, leading to the discovery of novel CMYOs and thereby challenging the traditional classification. In this comprehensive review, we focus on the clinical, myopathologic, molecular and pathophysiological features of 33 newly identified CMYOs.
Collapse
Affiliation(s)
- Marion Onnée
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France
| | - Edoardo Malfatti
- Institut Mondor de Recherche Biomédicale, Université Paris Est Créteil, Institut National de la Santé et de la Recherche Médicale U955, 94010 Créteil, France; Assistance Publique-Hôpitaux de Paris, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Hôpital Henri Mondor, 94010 Créteil, France; European Reference Center for Neuromuscular Disorders, EURO-NMD, France.
| |
Collapse
|
5
|
Huang CJ, Choo KB. Circular RNAs and host genes act synergistically in regulating cellular processes and functions in skeletal myogenesis. Gene 2025; 940:149189. [PMID: 39724991 DOI: 10.1016/j.gene.2024.149189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated from backsplicing of pre-mRNAs of host genes. A major circRNA regulatory mechanism involves microRNA (miRNA) sequestering, relieving miRNA-blocked mRNAs for translation and functions. To investigate possible circRNA-host gene relationship, skeletal myogenesis is chosen as a study model for its developmental importance and for readily available muscle tissues from farm animals for studies at different myogenic stages. This review aims to provide an integrated interpretations on methodologies, regulatory mechanisms and possible host gene-circRNA synergistic functional relationships in skeletal myogenesis, focusing on myoblast differentiation and proliferation, core drivers of muscle formation in myogenesis, while other myogenic processes that play supportive roles in the structure, maintenance and function of muscle tissues are also briefly discussed. On literature review,thirty-two circRNAs derived from thirty-one host genes involved in various myogenic stages are identified; twenty-two (68.6 %) of these circRNAs regulate myogenesis by sequestering miRNAs to engage PI3K/AKT and other signaling pathways while four (12.5 %) are translated into proteins for functions. In circRNA-host gene relationship,ten (32.3 %) host genes are shown to regulate myogenesis,nine (29.0 %) are specific to skeletal muscle functions,and twelve (38.8 %) are linked to skeletal muscle disorders.Our analysis of skeletal myogenesis suggests that circRNAs and host genes act synergistically to regulate cellular functions. Such circRNA-host gene functional synergism may also be found in other major cellular processes. CircRNAs may have evolved later than miRNAs to counteract the suppressive effects of miRNAs and to augment host gene functions to further fine-tune gene regulation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Baba Y, Maeda M, Muramatsu K, Tominaga K, Ueda K, Komaki S, Saito Y, Hamada M, Satake W, Nishino I, Toda T. [SELENON-related myopathy with scoliosis and respiratory failure since early childhood diagnosed through reassessment during pediatric-to-adult healthcare transition: a case report]. Rinsho Shinkeigaku 2025; 65:139-145. [PMID: 39864868 DOI: 10.5692/clinicalneurol.cn-002046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The patient was a 33-year-old woman with no family history of a similar disorder. At one year of age, she exhibited scoliosis and respiratory failure, necessitating a tracheostomy performed at 5 years of age (1990s). During that time, the patient was provisionally diagnosed with "non-Fukuyama congenital muscular dystrophy" via muscle biopsy. Difficulties in independent walking and standing emerged by 14 years of age, progressing to significant mobility challenges by 21 years of age. The patient was referred to our department at 33 years of age for the transition to adult care. The examination revealed predominant trunk muscle weakness, persistent scoliosis, restricted neck and trunk mobility, significant restrictive ventilatory impairment, and mild intellectual developmental delay. Reanalysis of the muscle biopsy pathology was conducted, and genetic testing identified a known homozygous mutation, c.1574T>G (p.M525R), in the SELENON (SEPN1) gene, leading to a diagnosis of SELENON-related myopathy. The pediatric-to-adult healthcare transition can provide a valuable opportunity for the reassessment of diagnoses and disabilities.
Collapse
Affiliation(s)
- Yusuke Baba
- Department of Neurology, The University of Tokyo Hospital
| | - Meiko Maeda
- Department of Neurology, The University of Tokyo Hospital
| | | | - Kenta Tominaga
- Department of Neurology, The University of Tokyo Hospital
| | - Kunihiro Ueda
- Department of Neurology, The University of Tokyo Hospital
| | - Shogo Komaki
- Department of Neurology, The University of Tokyo Hospital
| | - Yoshihiko Saito
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP)
| | - Masashi Hamada
- Department of Neurology, The University of Tokyo Hospital
| | - Wataru Satake
- Department of Neurology, The University of Tokyo Hospital
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP)
| | - Tatsushi Toda
- Department of Neurology, The University of Tokyo Hospital
| |
Collapse
|
7
|
López-Cabrera A, Piñero-Pérez R, Álvarez-Córdoba M, Cilleros-Holgado P, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de la Mata M, de Pablos RM, González-Granero S, García-Verdugo JM, Sánchez-Alcázar JA. Iron Accumulation and Lipid Peroxidation in Cellular Models of Nemaline Myopathies. Int J Mol Sci 2025; 26:1434. [PMID: 40003902 PMCID: PMC11855326 DOI: 10.3390/ijms26041434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/27/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
One of the most prevalent types of congenital myopathy is nemaline myopathy (NM), which is recognized by histopathological examination of muscle fibers for the presence of "nemaline bodies" (rods). Mutations in the actin alpha 1 (ACTA1) and nebulin (NEB) genes result in the most prevalent types of NM. Muscle weakness and hypotonia are the main clinical characteristics of this disease. Unfortunately, the pathogenetic mechanisms are still unknown, and there is no cure. In previous work, we showed that actin filament polymerization defects in patient-derived fibroblasts were associated with mitochondrial dysfunction. In this manuscript, we examined the pathophysiological consequences of mitochondrial dysfunction in patient-derived fibroblasts. We analyzed iron and lipofuscin accumulation and lipid peroxidation both at the cellular and mitochondrial level. We found that fibroblasts derived from patients harboring ACTA1 and NEB mutations showed intracellular iron and lipofuscin accumulation, increased lipid peroxidation, and altered expression levels of proteins involved in iron metabolism. Furthermore, we showed that actin polymerization inhibition in control cells recapitulates the main pathological alterations of mutant nemaline cells. Our results indicate that mitochondrial dysfunction is associated with iron metabolism dysregulation, leading to iron/lipofuscin accumulation and increased lipid peroxidation.
Collapse
Affiliation(s)
- Alejandra López-Cabrera
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mario de la Mata
- Departamento de Fisiología, Facultad de Ciencias de la Salud, Universidad de Granada, 51001 Ceuta, Spain;
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Susana González-Granero
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José Manuel García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia and CIBERNED-ISCIII, 46980 Valencia, Spain; (S.G.-G.); (J.M.G.-V.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (A.L.-C.); (R.P.-P.); (M.Á.-C.); (P.C.-H.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
8
|
Donaka R, Zheng H, Ackert-Bicknell CL, Karasik D. Early life lipid overload in Native American Myopathy is phenocopied by stac3 knockout in zebrafish. Gene 2025; 936:149123. [PMID: 39592070 DOI: 10.1016/j.gene.2024.149123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/05/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024]
Abstract
Understanding the early stages of human congenital myopathies is critical for proposing strategies for improving musculoskeletal muscle performance, such as restoring the functional integrity of the cytoskeleton. SH3 and cysteine-rich domain 3 (STAC3) are proteins involved in nutrient regulation and are an essential component of the excitation-contraction (EC) coupling machinery for Ca2+ releasing. A mutation in STAC3 causes debilitating Native American Myopathy (NAM) in humans, while loss of this gene in mice and zebrafish (ZF) results in premature death. Clinically, NAM patients demonstrated increased lipids in skeletal muscle, but it is unclear if neutral lipids are associated with altered muscle function in NAM. Using a CRISPR/Cas9 induced stac3-/- knockout (KO) zebrafish model, we determined that loss of stac3 leads to delayed larval hatching which corresponds with muscle weakness and decreased whole-body Ca2+ level during early skeletal development. Specifically, we observed defects in the cytoskeleton in F-actin and slow muscle fibers at 5 and 7 days post-fertilizations (dpf). Myogenesis regulators such as myoD and myf5, mstnb were significantly altered in stac3-/- larvae. These muscle alterations were associated with elevated neutral lipid levels starting at 5 dpf and persisting beyond 7 dpf. Larva lacking stac3 had reduced viability with no larva knockouts surviving past 11 dpf. This data suggests that our stac3-/- zebrafish serve as an alternative model to study the diminished muscle function seen in NAM patients. The data gathered from this new model over time supports a mechanistic view of lipotoxicity as a critical part of the pathology of NAM and the associated loss of function in muscle.
Collapse
Affiliation(s)
- Rajashekar Donaka
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - Houfeng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Cloud Town, Xihu District, 310024 Hangzhou, Zhejiang, China
| | - Cheryl L Ackert-Bicknell
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado, Aurora, CO, USA
| | - David Karasik
- The Musculoskeletal Genetics Laboratory, The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, 1311502, Israel; Hebrew SeniorLife, Hinda and Arthur Marcus Institute for Aging Research, Boston, MA 02131, USA.
| |
Collapse
|
9
|
Mehmood H, Kasher PR, Barrett-Jolley R, Walmsley GL. Aligning with the 3Rs: alternative models for research into muscle development and inherited myopathies. BMC Vet Res 2024; 20:477. [PMID: 39425123 PMCID: PMC11488271 DOI: 10.1186/s12917-024-04309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Inherited and acquired muscle diseases are an important cause of morbidity and mortality in human medical and veterinary patients. Researchers use models to study skeletal muscle development and pathology, improve our understanding of disease pathogenesis and explore new treatment options. Experiments on laboratory animals, including murine and canine models, have led to huge advances in congenital myopathy and muscular dystrophy research that have translated into clinical treatment trials in human patients with these debilitating and often fatal conditions. Whilst animal experimentation has enabled many significant and impactful discoveries that otherwise may not have been possible, we have an ethical and moral, and in many countries also a legal, obligation to consider alternatives. This review discusses the models available as alternatives to mammals for muscle development, biology and disease research with a focus on inherited myopathies. Cell culture models can be used to replace animals for some applications: traditional monolayer cultures (for example, using the immortalised C2C12 cell line) are accessible, tractable and inexpensive but developmentally limited to immature myotube stages; more recently, developments in tissue engineering have led to three-dimensional cultures with improved differentiation capabilities. Advances in computer modelling and an improved understanding of pathogenetic mechanisms are likely to herald new models and opportunities for replacement. Where this is not possible, a 3Rs approach advocates partial replacement with the use of less sentient animals (including invertebrates (such as worms Caenorhabditis elegans and fruit flies Drosophila melanogaster) and embryonic stages of small vertebrates such as the zebrafish Danio rerio) alongside refinement of experimental design and improved research practices to reduce the numbers of animals used and the severity of their experience. An understanding of the advantages and disadvantages of potential models is essential for researchers to determine which can best facilitate answering a specific scientific question. Applying 3Rs principles to research not only improves animal welfare but generates high-quality, reproducible and reliable data with translational relevance to human and animal patients.
Collapse
Affiliation(s)
- Hashir Mehmood
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
| | - Paul R Kasher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Allianceand the, University of Manchester , Manchester, M6 8HD, UK
| | - Richard Barrett-Jolley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Gemma L Walmsley
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, Faculty of Health and Lifesciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
- Department of Small Animal Clinical Sciences, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, South Wirral, Neston, CH64 7TE, UK.
| |
Collapse
|
10
|
Ogasawara M, Nishino I. Update on RYR1-related myopathies. Curr Opin Neurol 2024; 37:504-508. [PMID: 38994695 DOI: 10.1097/wco.0000000000001296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
PURPOSE OF REVIEW RYR1-related myopathy (RYR1-RM) is a group of myopathies caused by mutations in the RYR1 gene, which encodes the ryanodine receptor 1 (RYR1). This review discusses recent advances in the clinical features, pathology, pathogenesis, and therapeutics of RYR1-RM. RECENT FINDINGS Although treatments such as salbutamol, pyridostigmine, and N-acetylcysteine have been explored as potential therapies for RYR1-RM, none have been conclusively proven to be effective. However, recent clinical trials of Rycal ARM210 in patients with RYR1-RM have shown promising results, including reduced fatigue and improved proximal muscle strength.Recent advances in three-dimensional structural analysis of RYR1 channels, facilitated by cryo-electron microscopy (cryo-EM), have elucidated the distinct molecular mechanisms underlying RYR1 functionality. Additionally, high-throughput screening methods, including FRET-based and endoplasmic reticulum Ca 2+ -based assays, have been successful in identifying potential candidates for the treatment of RYR1-RM. SUMMARY Recent advances in clinical and pathological understanding have provided new insights into RYR1-RM. Novel pathomechanisms elucidated by cryo-EM and rapid screening methods have led to the identification of several promising drug candidates. We are hopeful about the potential of Rycal, other new drugs, and gene therapy, offering a promising outlook for the future.
Collapse
Affiliation(s)
- Masashi Ogasawara
- Department of Pediatrics, Showa General Hospital, Hanakoganei
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawahigashi-cho, Kodaira, Tokyo, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Ogawahigashi-cho, Kodaira, Tokyo, Japan
| |
Collapse
|
11
|
Zhang H, Chang M, Chen D, Yang J, Zhang Y, Sun J, Yao X, Sun H, Gu X, Li M, Shen Y, Dai B. Congenital myopathies: pathophysiological mechanisms and promising therapies. J Transl Med 2024; 22:815. [PMID: 39223631 PMCID: PMC11370226 DOI: 10.1186/s12967-024-05626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Congenital myopathies (CMs) are a kind of non-progressive or slow-progressive muscle diseases caused by genetic mutations, which are currently defined and categorized mainly according to their clinicopathological features. CMs exhibit pleiotropy and genetic heterogeneity. Currently, supportive treatment and pharmacological remission are the mainstay of treatment, with no cure available. Some adeno-associated viruses show promising prospects in the treatment of MTM1 and BIN1-associated myopathies; however, such gene-level therapeutic interventions target only specific mutation types and are not generalizable. Thus, it is particularly crucial to identify the specific causative genes. Here, we outline the pathogenic mechanisms based on the classification of causative genes: excitation-contraction coupling and triadic assembly (RYR1, MTM1, DNM2, BIN1), actin-myosin interaction and production of myofibril forces (NEB, ACTA1, TNNT1, TPM2, TPM3), as well as other biological processes. Furthermore, we provide a comprehensive overview of recent therapeutic advancements and potential treatment modalities of CMs. Despite ongoing research endeavors, targeted strategies and collaboration are imperative to address diagnostic uncertainties and explore potential treatments.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Mengyuan Chang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Daiyue Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiawen Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yijie Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Jiacheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Meiyuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Medical College, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Bin Dai
- Department of Orthopedics, Binhai County People's Hospital, Binhai, Jiangsu Province, 224500, P. R. China.
| |
Collapse
|
12
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
13
|
Buchignani B, Marinella G, Pasquariello R, Sgherri G, Frosini S, Santorelli FM, Orsini A, Battini R, Astrea G. KLHL40-Related Myopathy: A Systematic Review and Insight into a Follow-up Biomarker via a New Case Report. Genes (Basel) 2024; 15:208. [PMID: 38397198 PMCID: PMC10887776 DOI: 10.3390/genes15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Mutations in the KLHL40 gene are a common cause of severe or even lethal nemaline myopathy. Some cases with mild forms have been described, although the cases are still anecdotal. The aim of this paper was to systematically review the cases described in the literature and to describe a 12-year clinical and imaging follow-up in an Italian patient with KLHL40- related myopathy in order to suggest possible follow-up measurements. METHODS Having searched through three electronic databases (PubMed, Scopus, and EBSCO), 18 articles describing 65 patients with homozygous or compound heterozygous KLHL40 mutations were selected. A patient with a KLHL40 homozygous mutation (c.1582G>A/p.E528K) was added and clinical and genetic data were collected. RESULTS The most common mutation identified in our systematic review was the (c.1516A>C) followed by the (c.1582G>A). In our review, 60% percent of the patients died within the first 4 years of life. Clinical features were similar across the sample. Unfortunately, however, there is no record of the natural history data in the surviving patients. The 12-year follow-up of our patient revealed a slow improvement in her clinical course, identifying muscle MRI as the only possible marker of disease progression. CONCLUSIONS Due to its clinical and genotype homogeneity, KLHL40-related myopathy may be a condition that would greatly benefit from the development of new gene therapies; muscle MRI could be a good biomarker to monitor disease progression.
Collapse
Affiliation(s)
- Bianca Buchignani
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Gemma Marinella
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Rosa Pasquariello
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Giada Sgherri
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Silvia Frosini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | | | - Alessandro Orsini
- Pediatric Neurology, Azienda Ospedaliera Universitaria Pisana, 56100 Pisa, Italy;
| | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Guja Astrea
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| |
Collapse
|
14
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
15
|
Piñero-Pérez R, López-Cabrera A, Álvarez-Córdoba M, Cilleros-Holgado P, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de Pablos RM, Sánchez-Alcázar JA. Actin Polymerization Defects Induce Mitochondrial Dysfunction in Cellular Models of Nemaline Myopathies. Antioxidants (Basel) 2023; 12:2023. [PMID: 38136143 PMCID: PMC10740811 DOI: 10.3390/antiox12122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Nemaline myopathy (NM) is one of the most common forms of congenital myopathy and it is identified by the presence of "nemaline bodies" (rods) in muscle fibers by histopathological examination. The most common forms of NM are caused by mutations in the Actin Alpha 1 (ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Unfortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived from patients with mutations in ACTA1 and NEB genes. Patients' fibroblasts were stained with rhodamine-phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy. We found that patients' fibroblasts showed incorrect actin filament polymerization compared to control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dysfunction. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA) and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to study the pathophysiological mechanisms involved in NM and to find new potential therapies. Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological alterations in NM cellular models.
Collapse
Affiliation(s)
- Rocío Piñero-Pérez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra López-Cabrera
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Marta Talaverón-Rey
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra Suárez-Carrillo
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Manuel Munuera-Cabeza
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto of Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
16
|
Robaszkiewicz K, Wróbel J, Moraczewska J. Troponin and a Myopathy-Linked Mutation in TPM3 Inhibit Cofilin-2-Induced Thin Filament Depolymerization. Int J Mol Sci 2023; 24:16457. [PMID: 38003645 PMCID: PMC10671271 DOI: 10.3390/ijms242216457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Uniform actin filament length is required for synchronized contraction of skeletal muscle. In myopathies linked to mutations in tropomyosin (Tpm) genes, irregular thin filaments are a common feature, which may result from defects in length maintenance mechanisms. The current work investigated the effects of the myopathy-causing p.R91C variant in Tpm3.12, a tropomyosin isoform expressed in slow-twitch muscle fibers, on the regulation of actin severing and depolymerization by cofilin-2. The affinity of cofilin-2 for F-actin was not significantly changed by either Tpm3.12 or Tpm3.12-R91C, though it increased two-fold in the presence of troponin (without Ca2+). Saturation of the filament with cofilin-2 removed both Tpm variants from the filament, although Tpm3.12-R91C was more resistant. In the presence of troponin (±Ca2+), Tpm remained on the filament, even at high cofilin-2 concentrations. Both Tpm3.12 variants inhibited filament severing and depolymerization by cofilin-2. However, the inhibition was more efficient in the presence of Tpm3.12-R91C, indicating that the pathogenic variant impaired cofilin-2-dependent actin filament turnover. Troponin (±Ca2+) further inhibited but did not completely stop cofilin-2-dependent actin severing and depolymerization.
Collapse
Affiliation(s)
| | | | - Joanna Moraczewska
- Department of Biochemistry and Cell Biology, Faculty of Biological Sciences, Kazimierz Wielki University in Bydgoszcz, 85-671 Bydgoszcz, Poland; (K.R.); (J.W.)
| |
Collapse
|
17
|
Severa G, Pennisi A, Barnerias C, Fiorillo C, Scala M, Taglietti V, Cojocaru AI, Jouni D, Tosca L, Tachdjian G, Desguerre I, Authier FJ, Carlier RY, Metay C, Verebi C, Malfatti E. An early onset benign myopathy with glycogen storage caused by a de novo 1.4 Mb-deletion of chromosome 14. Neuromuscul Disord 2023; 33:817-821. [PMID: 37743183 DOI: 10.1016/j.nmd.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/08/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023]
Abstract
Early onset myopathies are a clinically and histologically heterogeneous monogenic diseases linked to approximately 90 genes. Molecular diagnosis is challenging, especially in patients with a mild phenotype. We describe a 26-year-old man with neonatal hypotonia, motor delay and seizures during infancy, and non-progressive, mild muscular weakness in adulthood. Serum Creatine kinase level was normal. Whole-body muscle MRI showed thin muscles, and brain MRI was unremarkable. A deltoid muscle biopsy showed glycogen storage. WGS revealed a de novo 1.4 Mb-deletion of chromosome 14, confirmed by Array-CGH. This microdeletion causes the loss of ten genes including RALGAPA1, encoding for RalA, a regulator of glucose transporter 4 (GLUT4) expression at the membrane of myofibers. GLUT4 was overexpressed in patient's muscle. Here we highlight the importance to search for chromosomal alterations in the diagnostic workup of early onset myopathies.
Collapse
Affiliation(s)
- Gianmarco Severa
- Université Paris Est, U955, IMRB, INSERM, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Henri Mondor Hospital, France; Department of Medical, Surgical and Neurological Sciences, Neurology‑Neurophysiology Unit, University of Siena, Policlinico Le Scotte, Viale Bracci 1, 5310 Siena, Italy
| | | | - Christine Barnerias
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - Chiara Fiorillo
- Neurologia Pediatrica e Malattie Muscolari, Istituto G.Gaslini, Genoa, Italy
| | - Marcello Scala
- Neurologia Pediatrica e Malattie Muscolari, Istituto G.Gaslini, Genoa, Italy; Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università Degli Studi di Genova, Genoa, Italy
| | | | | | - Dima Jouni
- AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140 Clamart, France
| | - Lucie Tosca
- AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140 Clamart, France
| | - Gérard Tachdjian
- AP-HP. Université Paris Saclay, Hôpital Antoine Béclère, Service d'Histologie, Embryologie et Cytogénétique, 92140 Clamart, France
| | - Isabelle Desguerre
- Reference Center for Neuromuscular Disorders, Filnemus, EuroNMD, Assistance Publique-Hôpitaux de Paris (APHP) Necker Enfants Malades Hospital, Paris, France
| | - François-Jérome Authier
- Université Paris Est, U955, IMRB, INSERM, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Henri Mondor Hospital, France
| | - Robert-Yves Carlier
- AP-HP, GHU Paris Saclay, Hôpital Raymond Poincaré, DMU Smart Imaging, UMR1179 INSERM Garches France
| | - Corinne Metay
- Unité Fonctionnelle de Cardiogénétique et Myogénétique moléculaire et cellulaire. Centre de Génétique Moléculaire et Chromosomique et INSERM UMRS 974, Institut de Myologie. Groupe Hospitalier La Pitié-Salpêtrière-Charles Foix, Paris, INSERM UMRS1166, Sorbonne Université, Paris, France
| | - Camille Verebi
- Service de Médecine Génomique, Maladies de Système et d'Organe - Fédération de Génétique et de Médecine Génomique, DMU BioPhyGen, APHP Centre-Université Paris Cité - Hôpital Cochin, Paris, France
| | - Edoardo Malfatti
- Université Paris Est, U955, IMRB, INSERM, APHP, Centre de Référence de Pathologie Neuromusculaire Nord-Est-Ile-de-France, Filnemus, Henri Mondor Hospital, France.
| |
Collapse
|
18
|
Lee CS, Jung SY, Yee RSZ, Agha NH, Hong J, Chang T, Babcock LW, Fleischman JD, Clayton B, Hanna AD, Ward CS, Lanza D, Hurley AE, Zhang P, Wehrens XHT, Lagor WR, Rodney GG, Hamilton SL. Speg interactions that regulate the stability of excitation-contraction coupling protein complexes in triads and dyads. Commun Biol 2023; 6:942. [PMID: 37709832 PMCID: PMC10502019 DOI: 10.1038/s42003-023-05330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023] Open
Abstract
Here we show that striated muscle preferentially expressed protein kinase α (Spegα) maintains cardiac function in hearts with Spegβ deficiency. Speg is required for stability of excitation-contraction coupling (ECC) complexes and interacts with esterase D (Esd), Cardiomyopathy-Associated Protein 5 (Cmya5), and Fibronectin Type III and SPRY Domain Containing 2 (Fsd2) in cardiac and skeletal muscle. Mice with a sequence encoding a V5/HA tag inserted into the first exon of the Speg gene (HA-Speg mice) display a >90% decrease in Spegβ but Spegα is expressed at ~50% of normal levels. Mice deficient in both Spegα and Speg β (Speg KO mice) develop a severe dilated cardiomyopathy and muscle weakness and atrophy, but HA-Speg mice display mild muscle weakness with no cardiac involvement. Spegα in HA-Speg mice suppresses Ca2+ leak, proteolytic cleavage of Jph2, and disruption of transverse tubules. Despite it's low levels, HA-Spegβ immunoprecipitation identified Esd, Cmya5 and Fsd2 as Spegβ binding partners that localize to triads and dyads to stabilize ECC complexes. This study suggests that Spegα and Spegβ display functional redundancy, identifies Esd, Cmya5 and Fsd2 as components of both cardiac dyads and skeletal muscle triads and lays the groundwork for the identification of new therapeutic targets for centronuclear myopathy.
Collapse
Affiliation(s)
- Chang Seok Lee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Sung Yun Jung
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Rachel Sue Zhen Yee
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Nadia H Agha
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jin Hong
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ting Chang
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Lyle W Babcock
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Jorie D Fleischman
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Benjamin Clayton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Amy D Hanna
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Christopher S Ward
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Denise Lanza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Ayrea E Hurley
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Pumin Zhang
- The First Affiliated Hospital, Zhejiang University Medical School, Hangzhou, China
| | - Xander H T Wehrens
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - William R Lagor
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - George G Rodney
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA
| | - Susan L Hamilton
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, 77096, USA.
| |
Collapse
|
19
|
Østergård Jensen S, Christen M, Rondahl V, Holland CT, Jagannathan V, Leeb T, Giger U. EHBP1L1 Frameshift Deletion in English Springer Spaniel Dogs with Dyserythropoietic Anemia and Myopathy Syndrome (DAMS) or Neonatal Losses. Genes (Basel) 2022; 13:genes13091533. [PMID: 36140701 PMCID: PMC9498568 DOI: 10.3390/genes13091533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Hereditary myopathies are well documented in dogs, whereas hereditary dyserythropoietic anemias are rarely seen. The aim of this study was to further characterize the clinical and clinicopathological features of and to identify the causative genetic variant for a dyserythropoietic anemia and myopathy syndrome (DAMS) in English springer spaniel dogs (ESSPs). Twenty-six ESSPs, including five dogs with DAMS and two puppies that died perinatally, were studied. Progressive weakness, muscle atrophy—particularly of the temporal and pelvic muscles—trismus, dysphagia, and regurgitation due to megaesophagus were observed at all ages. Affected dogs had a non-regenerative, microcytic hypochromic anemia with metarubricytosis, target cells, and acanthocytes. Marked erythroid hyperplasia and dyserythropoiesis with non-orderly maturation of erythrocytes and inappropriate microcytic metarubricytosis were present. Muscle biopsies showed centralized nuclei, central pallor, lipocyte infiltrates, and fibrosis, which was consistent with centronuclear myopathy. The genome sequencing of two affected dogs was compared to 782 genomes of different canine breeds. A homozygous frameshift single-base deletion in EHBP1L1 was identified; this gene was not previously associated with DAMS. Pedigree analysis confirmed that the affected ESSPs were related. Variant genotyping showed appropriate complete segregation in the family, which was consistent with an autosomal recessive mode of inheritance. This study expands the known genotype–phenotype correlation of EHBP1L1 and the list of potential causative genes in dyserythropoietic anemias and myopathies in humans. EHBP1L1 deficiency was previously reported as perinatally lethal in humans and knockout mice. Our findings enable the genetic testing of ESSP dogs for early diagnosis and disease prevention through targeted breeding strategies.
Collapse
Affiliation(s)
- Sarah Østergård Jensen
- Clinical Pathology Laboratory, The Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden
- AniCura Small Animal Referral Hospital Bagarmossen, Ljusnevägen 17, Bagarmossen, 128 48 Stockholm, Sweden
| | - Matthias Christen
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | | | - Christopher T. Holland
- Merewether Veterinary Hospital, Suite 2, 25 Llewellyn St, Merewether, NSW 2291, Australia
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bremgartenstrasse 109a, 3001 Bern, Switzerland
| | - Urs Giger
- Vetsuisse Faculty, University of Zürich, Winterthurerstrasse 260, 8057 Zürich, Switzerland
- Correspondence: ; Tel.: +1-610-565-1427
| |
Collapse
|