1
|
Ribeiro G, Schellekens H, Cuesta-Marti C, Maneschy I, Ismael S, Cuevas-Sierra A, Martínez JA, Silvestre MP, Marques C, Moreira-Rosário A, Faria A, Moreno LA, Calhau C. A menu for microbes: unraveling appetite regulation and weight dynamics through the microbiota-brain connection across the lifespan. Am J Physiol Gastrointest Liver Physiol 2025; 328:G206-G228. [PMID: 39811913 DOI: 10.1152/ajpgi.00227.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/14/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
Appetite, as the internal drive for food intake, is often dysregulated in a broad spectrum of conditions associated with over- and under-nutrition across the lifespan. Appetite regulation is a complex, integrative process comprising psychological and behavioral events, peripheral and metabolic inputs, and central neurotransmitter and metabolic interactions. The microbiota-gut-brain axis has emerged as a critical mediator of multiple physiological processes, including energy metabolism, brain function, and behavior. Therefore, the role of the microbiota-gut-brain axis in appetite and obesity is receiving increased attention. Omics approaches such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics in appetite and weight regulation offer new opportunities for featuring obesity phenotypes. Furthermore, gut-microbiota-targeted approaches such as pre-, pro-, post-, and synbiotic, personalized nutrition, and fecal microbiota transplantation are novel avenues for precision treatments. The aim of this narrative review is 1) to provide an overview of the role of the microbiota-gut-brain axis in appetite regulation across the lifespan and 2) to discuss the potential of omics and gut microbiota-targeted approaches to deepen understanding of appetite regulation and obesity.
Collapse
Affiliation(s)
- Gabriela Ribeiro
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Harriët Schellekens
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Cristina Cuesta-Marti
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Ivie Maneschy
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Shámila Ismael
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Amanda Cuevas-Sierra
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - J Alfredo Martínez
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Campus of International Excellence (CEI) UAM+CSIC, Spanish National Research Council, Madrid, Spain
| | - Marta P Silvestre
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Cláudia Marques
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - André Moreira-Rosário
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana Faria
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CINTESIS - Comprehensive Health Research Centre, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Luis A Moreno
- Growth, Exercise, Nutrition and Development Research Group, Instituto Agroalimentario de Aragón, University of Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón, University of Zaragoza, Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Conceição Calhau
- Metabolism and Nutrition Department, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
- CHRC - Center for Health Technology and Services Research, Faculdade de Ciências Médicas, NOVA Medical School, Universidade NOVA de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Małodobra-Mazur M, Ołdakowska M, Dobosz T. Exploring PPAR Gamma and PPAR Alpha's Regulation Role in Metabolism via Epigenetics Mechanism. Biomolecules 2024; 14:1445. [PMID: 39595621 PMCID: PMC11591816 DOI: 10.3390/biom14111445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a family of nuclear receptors. To date, three types of PPARs, namely PPARα, PPARδ, and PPARγ, have been identified, demonstrating co-expression across numerous tissues. PPARγ is primarily distributed in adipose tissue, the colon, the immune system, and the retina, while PPARα is predominantly expressed in metabolic tissues such as brown adipose tissue, the liver, and the kidneys. Both PPARγ and PPARα play crucial roles in various cellular processes. Recent data suggest that the PPAR family, among other mechanisms, might also be regulated by epigenetic mechanisms. Our recent studies, alongside numerous others, have highlighted the pivotal roles of DNA methylation and histone modifications in the regulation of PPARγ and PPARα, implicating them in the deterioration of metabolic disorders via epigenetic mechanisms. This still not fully understood mechanism of regulation in the nuclear receptors family has been summarized and described in the present paper. The present review summarizes the available data on PPARγ and PPARα regulation via epigenetic mechanisms, elucidating the link between the development of metabolic disorders and the dysregulation of PPARγ and PPARα resulting from these mechanisms.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Science, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 51-367 Wroclaw, Poland; (M.O.); (T.D.)
| | | | | |
Collapse
|
3
|
Güçlü-Geyik F, Erginel T, Güleç Ç, Köseoğlu-Büyükkaya P, Erginel-Ünaltuna N. Methylation of the ESR1 promoters in visceral adipose tissue and its relationship with obesity. Mol Biol Rep 2024; 51:1144. [PMID: 39531130 DOI: 10.1007/s11033-024-10091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Obesity is associated with decreased ESR1 expression level in visceral adipose tissue. However, it is unclear exactly what mechanisms are responsible for this decline. The aim of this study was to investigate the impact of aberrant methylation of the ESR1 alternative promoters on decreased ESR1 expression and its connection to obesity. METHODS Visceral adipose tissues and peripheral blood cells were obtained from 21 patients (non-obese and obese) undergoing inguinal hernia or gallbladder removal. Alternative promoter regions, C, E2 and F of the ESR1 gene, were analyzed by Methylation-Specific PCR (MSP) and mRNA levels were measured by quantitative real-time PCR (qPCR) in both visceral adipose tissue and peripheral blood cells. All statistical analyses were performed by SPSS (23.0). RESULTS The methylation percentage in the three promoter regions of ESR1 was not different in obese individuals compared to non-obese individuals. We observed that promoter C had the highest methylation frequency in obese patients, although it was not statistically significant. Additionally, we observed that the hypermethylation of ESR1's promoter C was significantly associated with lower mRNA expression level in obesity (p = 0.020). CONCLUSION This study suggests that methylation of ESR1 promoter C may be a factor in the development of obesity or a consequence of obesity. Further studies with advanced methods and larger study groups are needed to clarify this issue.
Collapse
Affiliation(s)
- Filiz Güçlü-Geyik
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Vakif Gureba Cad, 34080, Sehremini, Istanbul, Turkey.
| | - Turgay Erginel
- Department of General Surgery, Istanbul Training and Research Hospital, Istanbul, Turkey
| | - Çağrı Güleç
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Pınar Köseoğlu-Büyükkaya
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nihan Erginel-Ünaltuna
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
4
|
Danowska M, Stefanowicz M, Strączkowski M. The expression of NFAT family genes in subcutaneous adipose tissue before and after weight loss in obese individuals. Nutr Metab Cardiovasc Dis 2024; 34:2455-2463. [PMID: 39069466 DOI: 10.1016/j.numecd.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND AND AIMS Adipose tissue (AT) serves as a vital energy storage site and plays a pivotal role in metabolic regulation, exhibiting a high response to insulin. Impairment in this response may closely associate with obesity, and NFAT (nuclear factor of activated T cells) family genes may be involved in the process. However, human data linking NFAT and AT remains elusive. The aim of this study was to assess the expression of NFAT family genes and markers of adipogenesis in subcutaneous adipose tissue (SAT) among normal-weight and overweight/obese individuals before and after weight loss, in relation to insulin sensitivity. METHODS AND RESULTS The study included 45 participants, 15 normal-weight (control group) and 30 overweight or obese, who underwent a 12-week dietary intervention (DI) program. Before and after the program hyperinsulinemic-euglycemic clamp and SAT biopsy were conducted. Before DI, a positive correlations was observed in the expression of NFATc1, NFATc4, and NFAT5 with insulin sensitivity. The expression of NFAT family genes and markers of adipogenesis in SAT was lower in individuals with overweight or obesity compared to normal-weight. Additionally, a positive correlation was noted between NFAT family genes and adipogenesis markers both before and after weight loss. Following the DI program, there was an increase in the expression of NFATc3, NFATc4, and NFAT5 in SAT. CONCLUSION Decreased SAT expression of NFAT genes in obesity is partly reversed in response to weight loss. NFAT genes in SAT are associated with insulin sensitivity and adipogenesis. Registration number for clinical trial: NCT01393210.
Collapse
Affiliation(s)
- Magdalena Danowska
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Magdalena Stefanowicz
- Department of Metabolic Diseases, Medical University of Bialystok, Bialystok, Poland
| | - Marek Strączkowski
- Department of Prophylaxis of Metabolic Diseases, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| |
Collapse
|
5
|
Tao J, Guo P, Lai H, Peng H, Guo Z, Yuan Y, Yu X, Shen X, Liu J, Xier Z, Li G, Yang Y. TXLNG improves insulin resistance in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity. Mol Cell Endocrinol 2023; 568-569:111928. [PMID: 37028586 DOI: 10.1016/j.mce.2023.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/24/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Lipotoxicity contributes to insulin resistance and dysfunction of pancreatic β-cells. Insulin promotes 3T3-L1 preadipocyte differentiation and facilitates glucose entry into muscle, adipose, and other tissues. In this study, differential gene expression was analyzed using four datasets, and taxilin gamma (TXLNG) was the only shared downregulated gene in all four datasets. TXLNG expression was significantly reduced in obese subjects according to online datasets and in high-fat diet (HFD)-induced insulin-resistant (IR) mice according to experimental investigations. TXLNG overexpression significantly improved IR induced by HFD in mouse models by reducing body weight and epididymal adipose weight, decreasing mRNA expression of pro-inflammatory factors interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α), and reducing adipocyte size. High-glucose/high-insulin-stimulated adipocytes exhibited decreased TXLNG and increased signal transducer and activator of transcription 3 (STAT3) and activating transcription factor 4 (ATF4). IR significantly decreased glucose uptake, cell surface glucose transporter type 4 (GLUT4) levels, and Akt phosphorylation, while increasing the mRNA expression levels of IL-6 and TNF-α in adipocytes. However, these changes were significantly reversed by TXLNG overexpression, while they were exacerbated by TXLNG knockdown. TXLNG overexpression had no effect on ATF4 protein levels, while ATF4 overexpression increased ATF4 protein levels. Furthermore, ATF4 overexpression notably abolished the improvements in IR adipocyte dysfunction caused by TXLNG overexpression. In conclusion, TXLNG improves IR in obese subjects in vitro and in vivo by inhibiting ATF4 transcriptional activity.
Collapse
Affiliation(s)
- Jing Tao
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Peipei Guo
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Hongmei Lai
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Hui Peng
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Zitong Guo
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Yujuan Yuan
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Xiaolin Yu
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Xin Shen
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Jun Liu
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Zulipiyemu Xier
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Guoqing Li
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China
| | - Yining Yang
- Department of Cardiovascular Medicine, Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, Xinjiang, No. 91 Tianchi Road, 830000, China.
| |
Collapse
|
6
|
Britsemmer JH, Krause C, Taege N, Geißler C, Lopez-Alcantara N, Schmidtke L, Naujack AM, Wagner J, Wolter S, Mann O, Kirchner H. Fatty Acid Induced Hypermethylation in the Slc2a4 Gene in Visceral Adipose Tissue Is Associated to Insulin-Resistance and Obesity. Int J Mol Sci 2023; 24:ijms24076417. [PMID: 37047391 PMCID: PMC10094548 DOI: 10.3390/ijms24076417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
De novo lipogenesis (DNL) in visceral adipose tissue (VAT) is associated with systemic insulin sensitivity. DNL in VAT is regulated through ChREBP activity and glucose uptake through Glut4 (encoded by Slc2a4). Slc2a4 expression, ChREBP activity, and DNL are decreased in obesity, the underlying cause however remains unidentified. We hypothesize that increased DNA methylation in an enhancer region of Slc2a4 decreases Slc2a4 expression in obesity and insulin resistance. We found that SLC2A4 expression in VAT of morbidly obese subjects with high HbA1c (>6.5%, n = 35) is decreased, whereas DNA methylation is concomitantly increased compared to morbidly obese subjects with low HbA1c (≤6.5%, n = 65). In diet-induced obese (DIO) mice, DNA methylation of Slc2a4 persistently increases with the onset of obesity and insulin resistance, while gene expression progressively decreases. The regulatory impact of DNA methylation in the investigated enhancer region on SLC2A4 gene expression was validated with a reporter gene assay. Additionally, treatment of 3T3 pre-adipocytes with palmitate/oleate during differentiation decreased DNA methylation and increased Slc2a4 expression. These findings highlight a potential regulation of Slc2a4 by DNA methylation in VAT, which is induced by fatty acids and may play a role in the progression of obesity and insulin resistance in humans.
Collapse
|
7
|
Humardani FM, Mulyanata LT, Dwi Putra SE. Adipose cell-free DNA in diabetes. Clin Chim Acta 2023; 539:191-197. [PMID: 36549639 DOI: 10.1016/j.cca.2022.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Cancer-associated necrosis is a well-known source of cell-free DNA (cfDNA). However, the origins of cfDNA are not strictly limited to cancer. Additionally, dietary exposure induces apoptosis-induced proliferation in adipocytes, leading to the release of cfDNA. The genetic information derived from cfDNA as a result of apoptosis-induced proliferation contains specific methylation patterns in adipose tissue that can be used as a marker to detect the risk of developing Type 2 diabetes Mellitus (T2DM) in the future. cfDNA is superior to peripheral blood leukocytes (PBL) and whole blood samples for reflecting tissue pathology due to the frequent use of PBL and whole blood samples that do not match tissue pathology. The difficulty of demonstrating that cfDNA is derived from adipose tissue. We propose several promising techniques by analyzing cfDNA derived from adipose tissue to detect T2DM risk. First, adipose-specific genes such as ADIPOQ and Leptin were utilized. Second, MCTA-Seq, EpiSCORE, deconvolution, multiplexing, and automated machine learning (AutoML) were used to determine the proportion of total methylation in related genes.
Collapse
Affiliation(s)
| | | | - Sulistyo Emantoko Dwi Putra
- Department of Biology, Faculty of Biotechnology, University of Surabaya, Surabaya, Indonesia; Raya Kalingrungkut Road, Kali Rungkut, State of Rungkut, Surabaya City, East Java 60293, Indonesia.
| |
Collapse
|
8
|
Martín MG, Dotti CG. Plasma membrane and brain dysfunction of the old: Do we age from our membranes? Front Cell Dev Biol 2022; 10:1031007. [PMID: 36274849 PMCID: PMC9582647 DOI: 10.3389/fcell.2022.1031007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
One of the characteristics of aging is a gradual hypo-responsiveness of cells to extrinsic stimuli, mainly evident in the pathways that are under hormone control, both in the brain and in peripheral tissues. Age-related resistance, i.e., reduced response of receptors to their ligands, has been shown to Insulin and also to leptin, thyroid hormones and glucocorticoids. In addition, lower activity has been reported in aging for ß-adrenergic receptors, adenosine A2B receptor, and several other G-protein-coupled receptors. One of the mechanisms proposed to explain the loss of sensitivity to hormones and neurotransmitters with age is the loss of receptors, which has been observed in several tissues. Another mechanism that is finding more and more experimental support is related to the changes that occur with age in the lipid composition of the neuronal plasma membrane, which are responsible for changes in the receptors’ coupling efficiency to ligands, signal attenuation and pathway desensitization. In fact, recent works have shown that altered membrane composition—as occurs during neuronal aging—underlies reduced response to glutamate, to the neurotrophin BDNF, and to insulin, all these leading to cognition decay and epigenetic alterations in the old. In this review we present evidence that altered functions of membrane receptors due to altered plasma membrane properties may be a triggering factor in physiological decline, decreased brain function, and increased vulnerability to neuropathology in aging.
Collapse
Affiliation(s)
- Mauricio G. Martín
- Cellular and Molecular Neurobiology Department, Instituto Ferreyra (INIMEC)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba (UNC), Córdoba, Argentina
- *Correspondence: Mauricio G. Martín, ; Carlos G. Dotti,
| | - Carlos G. Dotti
- Molecular Neuropathology Unit, Physiological and Pathological Processes Program, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), Madrid, Spain
- *Correspondence: Mauricio G. Martín, ; Carlos G. Dotti,
| |
Collapse
|
9
|
Li M, Chi X, Wang Y, Setrerrahmane S, Xie W, Xu H. Trends in insulin resistance: insights into mechanisms and therapeutic strategy. Signal Transduct Target Ther 2022; 7:216. [PMID: 35794109 PMCID: PMC9259665 DOI: 10.1038/s41392-022-01073-0] [Citation(s) in RCA: 315] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/06/2023] Open
Abstract
The centenary of insulin discovery represents an important opportunity to transform diabetes from a fatal diagnosis into a medically manageable chronic condition. Insulin is a key peptide hormone and mediates the systemic glucose metabolism in different tissues. Insulin resistance (IR) is a disordered biological response for insulin stimulation through the disruption of different molecular pathways in target tissues. Acquired conditions and genetic factors have been implicated in IR. Recent genetic and biochemical studies suggest that the dysregulated metabolic mediators released by adipose tissue including adipokines, cytokines, chemokines, excess lipids and toxic lipid metabolites promote IR in other tissues. IR is associated with several groups of abnormal syndromes that include obesity, diabetes, metabolic dysfunction-associated fatty liver disease (MAFLD), cardiovascular disease, polycystic ovary syndrome (PCOS), and other abnormalities. Although no medication is specifically approved to treat IR, we summarized the lifestyle changes and pharmacological medications that have been used as efficient intervention to improve insulin sensitivity. Ultimately, the systematic discussion of complex mechanism will help to identify potential new targets and treat the closely associated metabolic syndrome of IR.
Collapse
Affiliation(s)
- Mengwei Li
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaowei Chi
- Development Center for Medical Science & Technology National Health Commission of the People's Republic of China, 100044, Beijing, China
| | - Ying Wang
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Wenwei Xie
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing, 210009, China.
- State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
10
|
Ping Z, Guo Z, Lu M, Chen Y, Liu L. Association of CIDEB gene promoter methylation with overweight or obesity in adults. Aging (Albany NY) 2022; 14:3607-3616. [PMID: 35475772 PMCID: PMC9085220 DOI: 10.18632/aging.204032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/25/2022] [Indexed: 12/02/2022]
Abstract
Objective: To explore the association of the methylation level of cell death-inducing DFF45-like effector B (CIDEB) gene promoter with overweight or obesity in the abdominal subcutaneous adipose tissue (SAT) and omental adipose tissue (OAT) of adults. Methods: A total of 61 patients undergoing abdominal surgery in the hospital were selected with an average age of 51.87 years. According to the diagnostic criteria of Chinese adult obesity, the subjects were divided into normal-weight group (n = 28) and overweight/obesity group (n = 33). CIDEB promoter methylation level in abdominal SAT and OAT was detected by the MethylTarget technology, then its relationship with overweight or obesity was analyzed. Results: (1) There were no statistical differences between the normal-weight group and overweight/obesity group in Methylation levels of 16 CpG sites in the CIDEB gene promoter sequence. (2) The methylation level of OAT was higher than that of SAT, and there were significant differences in 16 CpG sites. (3) There were 3 statistically significant haplotypes between the normal-weight group and overweight/obesity group (2 in SAT and 1 in OAT). Conclusions: The methylation level of CIDEB gene promoter in abdominal SAT and OAT may be related to overweight or obesity in adults, and the specific regulatory mechanism needs to be further studied.
Collapse
Affiliation(s)
- Zhiguang Ping
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Zhaoyan Guo
- College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming Lu
- Nursing Department of Jiaozuo People's Hospital, Jiaozuo, Henan, China
| | - Yanzi Chen
- Henan Huapu Pharmaceutical Technology Co., Ltd., Zhengzhou, Henan, China
| | - Li Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
11
|
Remelli F, Maietti E, Abete P, Bellelli G, Bo M, Cherubini A, Corica F, Di Bari M, Maggio M, Rizzo MR, Rossi AP, Landi F, Volpato S. Prevalence of obesity and diabetes in older people with sarcopenia defined according to EWGSOP2 and FNHI criteria. Aging Clin Exp Res 2022; 34:113-120. [PMID: 34398439 PMCID: PMC8795057 DOI: 10.1007/s40520-021-01949-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 02/05/2023]
Abstract
Background Although the prevalence of sarcopenic obesity is increasing, nowadays a universally accepted definition still does not exist. Because, this clinical entity is defined as the combination of obesity and sarcopenia, the diagnosis appears to be strictly linked to criteria used for sarcopenia and the available prevalence data are not uniform. To investigate the prevalence of sarcopenic obesity in older persons according to EWGSOP2 and FNIH criteria. Second, to evaluate the prevalence of diabetes in patients with sarcopenia diagnosed by the two definitions.
Methods Observational multicenter study performed in 2014 on older patients admitted to 12 Italian hospitals (GLISTEN Study). Data were collected through standardized questionnaires, which assessed: socio-demographic data, cognitive status, functional abilities, pharmacological therapy, comorbidities, and blood tests. Moreover, muscle mass and strength and physical performance were evaluated.
Results Six hundred and ten were included in the analyses. Among sarcopenic patients, the prevalence of sarcopenic obesity was 30.8% with FNIH and 0% with EWGSOP2 criteria. According to EWGSOP2 criteria, 23.7% of sarcopenic and 30.8% of non-sarcopenic patients were affected by diabetes (p = 0.101); otherwise, using FNIH criteria, 36.3% of sarcopenic and 26.9% of non-sarcopenic patients were diabetic (p = 0.030). After adjustment for potential confounders, diabetic patients had a 73% higher probability of being sarcopenic according to FNIH criteria (OR 1.73; 95% CI 1.13–2.64).
Conclusions The EWGSOP2 and FNIH sarcopenia criteria are differently related to the prevalence of obesity and diabetes. The EWGSOP2 criteria seem to be not suitable to identify people with sarcopenic obesity.
Collapse
Affiliation(s)
- Francesca Remelli
- Department of Medical Science, University of Ferrara, Via Aldo Moro, 9, 44124, Ferrara, Italy
| | - Elisa Maietti
- Department of Medical Science, University of Ferrara, Via Aldo Moro, 9, 44124, Ferrara, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Pasquale Abete
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Giuseppe Bellelli
- School of Medicine and Surgery, University of Milano-Bicocca, Milan, and Acute Geriatric Unit, San Gerardo Hospital, Monza, Italy
| | - Mario Bo
- Section of Geriatrics, Department of Medical Sciences, University of Turin, Città della Salute e della Scienza-Molinette, Torino, Italy
| | - Antonio Cherubini
- Geriatria, Accettazione Geriatrica e Centro di Ricerca per l'Invecchiamento, , IRCCS-INRCA, Ancona, Italy
| | - Francesco Corica
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Mauro Di Bari
- Department of Experimental and Clinical Medicine, Research Unit of Medicine of Aging, University of Florence, Florence, Italy
- Geriatric Intensive Care Unit, Department of Geriatrics and Medicine, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | - Marcello Maggio
- Department Medicine and Surgery, Geriatric Rehabilitation Department, University of Parma, Parma, Italy
| | - Maria Rosaria Rizzo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Andrea P Rossi
- Department of Medicine, Geriatrics Division, University of Verona, Verona, Italy
| | - Francesco Landi
- Department of Geriatrics, Neurosciences and Orthopaedics, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefano Volpato
- Department of Medical Science, University of Ferrara, Via Aldo Moro, 9, 44124, Ferrara, Italy.
- Center for Clinical Epidemiology, School of Medicine, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
12
|
Małodobra-Mazur M, Lewoń D, Cierzniak A, Okulus M, Gliszczyńska A. Phospholipid Derivatives of Cinnamic Acid Restore Insulin Sensitivity in Insulin Resistance in 3T3-L1 Adipocytes. Nutrients 2021; 13:3619. [PMID: 34684619 PMCID: PMC8537072 DOI: 10.3390/nu13103619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Insulin resistance (IR) is a condition in which the physiological amount of insulin is insufficient to evoke a proper response of the cell, that is, glucose utilization. Metformin is the first choice for therapy, thanks to its glycemic efficacy and general tolerability. In addition, various natural compounds from plant extracts, spices, and essential oils have been shown to provide health benefits regarding insulin sensitivity. In the present study, we analyzed the effect of phospholipid derivatives of selected natural aromatic acids on insulin action and their potential use to overcome insulin resistance. METHODS The 3T3-L1 fibroblasts were differentiated into mature adipocytes; next, insulin resistance was induced by palmitic acid (16:0). Cells were further cultured with phenophospholipids at appropriate concentrations. To assess insulin sensitivity, we measured the insulin-stimulated glucose uptake, using a glucose uptake test. RESULTS We showed that cinnamic acid (CA) and 3-methoxycinnamic acid (3-OMe-CA) restored the proper insulin response. However, 1,2-dicinnamoyl-sn-glycero-3-phosphocholine (1,2-diCA-PC) and 1-cinnamoyl-2-palmitoyl-sn-glycero-3-phosphocholine (1-CA-2-PA-PC) improved insulin sensitivity in insulin-resistant adipocytes even stronger, exhibiting more beneficial effects. CONCLUSIONS The binding of aromatic acids to phosphatidylcholine increases their beneficial effect on insulin sensitivity in adipocytes and expands their potential practical application as nutraceutical health-promoting agents.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (D.L.); (A.C.)
| | - Dominika Lewoń
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (D.L.); (A.C.)
| | - Aneta Cierzniak
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wrocław, Poland; (D.L.); (A.C.)
| | - Marta Okulus
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Anna Gliszczyńska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| |
Collapse
|
13
|
Małodobra-Mazur M, Cierzniak A, Myszczyszyn A, Kaliszewski K, Dobosz T. Histone modifications influence the insulin-signaling genes and are related to insulin resistance in human adipocytes. Int J Biochem Cell Biol 2021; 137:106031. [PMID: 34175459 DOI: 10.1016/j.biocel.2021.106031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022]
Abstract
Insulin resistance (IR) is a state when the physiological amount of insulin is not sufficient to evoke proper action, that is, glucose uptake. Numerous conditions lead to IR, including epigenetic components. Epigenetic modifications, associated with obesity and IR are one of the main mechanisms leading to IR pathogenesis. The adipose tissue samples (subcutaneous (SAT) and visceral (VAT)) were collected during abdominal surgery from 40 patients of a wide range of BMI, age, and insulin resistance ratios (F = 9, M = 31). IR was induced in 3T3-L1 adipocytes and human adipocytes collected from SAT and VAT of healthy subjects. Global and site-specific histone modifications (H3K4me3 and H3K9/14ac) were determined. We found lower histone modifications in adipose tissue of IR patients. Furthermore, numerous genes regulating insulin action (PPARG, SLC2A4, ADIPOQ) were differently marked by histone methylation and acetylation. Moreover, we noticed that epigenetic changes appear as soon as 72 h following IR induction. The epigenetic changes appeared to be mediated through the SIRT family. Based on obtained results, the histone marks related to insulin resistance mostly concerned PPARG and SLC2A4 genes. Furthermore, our results proved a vital role of the SIRT family in insulin action and IR pathogenesis.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Department of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369, Wroclaw, Poland.
| | - Aneta Cierzniak
- Department of Forensic Medicine, Department of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369, Wroclaw, Poland
| | - Aneta Myszczyszyn
- 1st Department of Gynaecology and Obstetrics, Wroclaw Medical University, ul. T. Chałubińskiego 3, 50-368, Wroclaw, Poland
| | - Krzysztof Kaliszewski
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Borowska 213, 50-556, Wroclaw, Poland
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Department of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369, Wroclaw, Poland
| |
Collapse
|
14
|
Małodobra-Mazur M, Cierzniak A, Kaliszewski K, Dobosz T. PPARG Hypermethylation as the First Epigenetic Modification in Newly Onset Insulin Resistance in Human Adipocytes. Genes (Basel) 2021; 12:889. [PMID: 34207541 PMCID: PMC8228025 DOI: 10.3390/genes12060889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022] Open
Abstract
Insulin acts by binding with a specific receptor called an insulin receptor (INSR), ending up with glucose transporter activation and glucose uptake. Insulin resistance (IR) is a state when the physiological amount of insulin is not sufficient to evoke proper action, i.e., glucose uptake. Epigenetic modifications associated with obesity and IR are some of the main mechanisms leading to IR pathogenesis. The mesenchymal stem cells of adipose tissue (subcutaneous (SAT) and visceral (VAT)) were collected during abdominal surgery. IR was induced ex vivo by palmitic acid. DNA methylation was determined at a global and site-specific level. We found higher global DNA methylation in IR adipocytes after 72 h following IR induction. Furthermore, numerous genes regulating insulin action (PPARG, SLC2A4, ADIPOQ) were hypermethylated in IR adipocytes; the earliest changes in site-specific DNA methylation have been detected for PPARG. Epigenetic changes appear to be mediated through DNMT1. DNA methylation is an important component of IR pathogenesis; the PPARG and its epigenetic modification appear to be the very first epigenetic modification in newly onset IR and are probably of the greatest importance.
Collapse
Affiliation(s)
- Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (A.C.); (T.D.)
- Department of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland
| | - Aneta Cierzniak
- Department of Forensic Medicine, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (A.C.); (T.D.)
- Department of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland
| | - Krzysztof Kaliszewski
- Department of General, Minimally Invasive and Endocrine Surgery, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Tadeusz Dobosz
- Department of Forensic Medicine, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland; (A.C.); (T.D.)
- Department of Molecular Techniques, Wroclaw Medical University, Sklodowskiej-Curie 52, 50-369 Wroclaw, Poland
| |
Collapse
|