1
|
Elsabaawy M. Liver at crossroads: unraveling the links between obesity, chronic liver diseases, and the mysterious obesity paradox. Clin Exp Med 2024; 24:240. [PMID: 39402270 PMCID: PMC11473604 DOI: 10.1007/s10238-024-01493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
Obesity is a global health issue that is intricately linked to the development and progression of chronic liver disease (CLD). This bidirectional connection, coupled with the obesity paradox (OP), presents a management dilemma. The established influence of obesity on the development and progression of chronic liver disease (CLD) is surpassed by the liver's impact on the onset and advancement of obesity. Patients with CLD always experience increased energy expenditure, reduced appetite, and low protein synthesis, all of which might lead to weight loss. However, metabolic disturbances, hormonal imbalances, inflammatory signaling, immobility, drugs, and alterations in nutrient metabolism can contribute to the development and exacerbation of obesity. Despite the propagation of the OP concept, none of the guidelines has changed, recommending being overweight. Research bias and confounders might be the lifebuoy explanation. Additionally, overlooking the lethal morbidities of obesity for survival benefits full of suffering seems to be an illogical idea. Therefore, rather than endorsing an overweight status, emphasis should be placed on improving cardiorespiratory fitness and preventing sarcopenia to achieve better outcomes in patients with CLD. Accordingly, the complex interplay between obesity, CLD, and the concept of OP requires a sophisticated individualized management approach. Maximizing cardiorespiratory fitness and mitigating sarcopenia should be considered essential strategies for attaining the most favourable outcomes in patients with chronic liver disease (CLD).
Collapse
Affiliation(s)
- Maha Elsabaawy
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebeen El-Kom, Egypt.
| |
Collapse
|
2
|
Hansen Edwards C, Håkon Bjørngaard J, Minet Kinge J, Åberge Vie G, Halsteinli V, Ødegård R, Kulseng B, Waaler Bjørnelv G. The healthcare costs of increased body mass index-evidence from The Trøndelag Health Study. HEALTH ECONOMICS REVIEW 2024; 14:36. [PMID: 38822866 PMCID: PMC11143647 DOI: 10.1186/s13561-024-00512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/13/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Earlier studies have estimated the impact of increased body mass index (BMI) on healthcare costs. Various methods have been used to avoid potential biases and inconsistencies. Each of these methods measure different local effects and have different strengths and weaknesses. METHODS In the current study we estimate the impact of increased BMI on healthcare costs using nine common methods from the literature: multivariable regression analyses (ordinary least squares, generalized linear models, and two-part models), and instrumental variable models (using previously measured BMI, offspring BMI, and three different weighted genetic risk scores as instruments for BMI). We stratified by sex, investigated the implications of confounder adjustment, and modelled both linear and non-linear associations. RESULTS There was a positive effect of increased BMI in both males and females in each approach. The cost of elevated BMI was higher in models that, to a greater extent, account for endogenous relations. CONCLUSION The study provides solid evidence that there is an association between BMI and healthcare costs, and demonstrates the importance of triangulation.
Collapse
Affiliation(s)
- Christina Hansen Edwards
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Johan Håkon Bjørngaard
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway
| | - Jonas Minet Kinge
- Norwegian Institute of Public Health, Oslo, Norway
- Department of Health Management and Health Economics, Institute of Health and Society, University of Oslo, Oslo, Norway
| | - Gunnhild Åberge Vie
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Vidar Halsteinli
- Regional Center for Healthcare Improvement, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Rønnaug Ødegård
- Regional Center for Obesity Research and Innovation, Department of Surgery, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bård Kulseng
- Regional Center for Obesity Research and Innovation, Department of Surgery, St. Olavs Hospital, Trondheim, Norway
- Department of Clinical Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Gudrun Waaler Bjørnelv
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Health Management and Health Economics, Institute of Health and Society, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Burgess S, Sun YQ, Zhou A, Buck C, Mason AM, Mai XM. Body mass index and all-cause mortality in HUNT and UK biobank studies: revised non-linear Mendelian randomisation analyses. BMJ Open 2024; 14:e081399. [PMID: 38749693 PMCID: PMC11097829 DOI: 10.1136/bmjopen-2023-081399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVES To estimate the shape of the causal relationship between body mass index (BMI) and mortality risk in a Mendelian randomisation framework. DESIGN Mendelian randomisation analyses of two prospective population-based cohorts. SETTING Individuals of European ancestries living in Norway or the UK. PARTICIPANTS 56 150 participants from the Trøndelag Health Study (HUNT) in Norway and 366 385 participants from UK Biobank recruited by postal invitation. OUTCOMES All-cause mortality and cause-specific mortality (cardiovascular, cancer, non-cardiovascular non-cancer). RESULTS A previously published non-linear Mendelian randomisation analysis of these data using the residual stratification method suggested a J-shaped association between genetically predicted BMI and mortality outcomes with the lowest mortality risk at a BMI of around 25 kg/m2. However, the 'constant genetic effect' assumption required by this method is violated. The reanalysis of these data using the more reliable doubly-ranked stratification method provided some indication of a J-shaped relationship, but with much less certainty as there was less precision in estimates at the lower end of the BMI distribution. Evidence for a harmful effect of reducing BMI at low BMI levels was only present in some analyses, and where present, only below 20 kg/m2. A harmful effect of increasing BMI for all-cause mortality was evident above 25 kg/m2, for cardiovascular mortality above 24 kg/m2, for cancer mortality above 30 kg/m2 and for non-cardiovascular non-cancer mortality above 26 kg/m2. In UK Biobank, the association between genetically predicted BMI and mortality at high BMI levels was stronger in women than in men. CONCLUSION This research challenges findings from previous conventional observational epidemiology and Mendelian randomisation investigations that the lowest level of mortality risk is at a BMI level of around 25 kg/m2. Our results provide some evidence that reductions in BMI will increase mortality risk for a small proportion of the population, and clear evidence that increases in BMI will increase mortality risk for those with BMI above 25 kg/m2.
Collapse
Affiliation(s)
- Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Yi-Qian Sun
- Department of Clinical and Molecular Medicine (IKOM), Norges teknisk-naturvitenskapelige universitet, Trondheim, Norway
- Department of Pathology, Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Center for Oral Health Services and Research Mid-Norway (TkMidt), Trondheim, Norway
| | - Ang Zhou
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | | | - Amy M Mason
- Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
| | - Xiao-Mei Mai
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
4
|
Rodríguez-Lara A, Plaza-Díaz J, López-Uriarte P, Vázquez-Aguilar A, Reyes-Castillo Z, Álvarez-Mercado AI. Fiber Consumption Mediates Differences in Several Gut Microbes in a Subpopulation of Young Mexican Adults. Nutrients 2022; 14:1214. [PMID: 35334871 PMCID: PMC8954685 DOI: 10.3390/nu14061214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022] Open
Abstract
Diet is a determinant for bodyweight and gut microbiota composition. Changes in dietary patterns are useful for the prevention and management of overweight and obesity. We aim to evaluate diet behavior and its potential association with selected gut bacteria and body weight among Mexican young adults. Mexican college students aged between 18 and 25 (normal-weight, overweight, and obese) were recruited. Anthropometric variables were recorded. A validated food frequency questionnaire was applied to all the participants. The percentages of macronutrients, fiber, and energy were calculated, and fecal samples were analyzed by real-time-qPCR to quantify selected gut bacteria. All the participants showed an unbalanced dietary pattern. However, the consumption of fruits, non-fat cereals, and oils and fats without protein were higher in the normal-weight individuals. In the overweight/obese participants, fiber intake did not correlate with the microbial variables, while Kcal from protein and Clostridium leptum correlated positively with Lactobacillus. Similarly, Clostridium coccoides-Eubacterium rectale correlated with Akkermansia muciniphila. In the normal-weight participants, Clostridium leptum and Lactobacillus correlated positively with Clostridium coccoides-Eubacterium rectale and Bifidobacterium, respectively, and Bacteroidetes negatively with Akkermansia muciniphila. In conclusion, a higher fiber intake had a positive impact on body weight and bacterial gut composition in this Mexican population of college students.
Collapse
Affiliation(s)
- Avilene Rodríguez-Lara
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain; (A.R.-L.); (A.V.-A.)
| | - Julio Plaza-Díaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Patricia López-Uriarte
- Departamento de Ciencias Exactas y Metodologías del Centro Universitario del Sur, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico;
| | - Alejandra Vázquez-Aguilar
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain; (A.R.-L.); (A.V.-A.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Zyanya Reyes-Castillo
- Instituto de Investigaciones en Comportamiento Alimentario y Nutrición, Universidad de Guadalajara, Ciudad Guzmán 49000, Mexico;
| | - Ana I. Álvarez-Mercado
- Institute of Nutrition and Food Technology, Biomedical Research Center, University of Granada, 18016 Armilla, Spain; (A.R.-L.); (A.V.-A.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| |
Collapse
|