1
|
Kalyva ME, Vist GE, Diemar MG, López-Soop G, Bozada TJ, Luechtefeld T, Roggen EL, Dirven H, Vinken M, Husøy T. Accessible methods and tools to estimate chemical exposure in humans to support risk assessment: A systematic scoping review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124109. [PMID: 38718961 DOI: 10.1016/j.envpol.2024.124109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Exposure assessment is a crucial component of environmental health research, providing essential information on the potential risks associated with various chemicals. A systematic scoping review was conducted to acquire an overview of accessible human exposure assessment methods and computational tools to support and ultimately improve risk assessment. The systematic scoping review was performed in Sysrev, a web platform that introduces machine learning techniques into the review process aiming for increased accuracy and efficiency. Included publications were restricted to a publication date after the year 2000, where exposure methods were properly described. Exposure assessments methods were found to be used for a broad range of environmental chemicals including pesticides, metals, persistent chemicals, volatile organic compounds, and other chemical classes. Our results show that after the year 2000, for all the types of exposure routes, probabilistic analysis, and computational methods to calculate human exposure have increased. Sixty-three mathematical models and toolboxes were identified that have been developed in Europe, North America, and globally. However, only twelve occur frequently and their usefulness were associated with exposure route, chemical classes and input parameters used to estimate exposure. The outcome of the combined associations can function as a basis and/or guide for decision making for the selection of most appropriate method and tool to be used for environmental chemical human exposure assessments in Ontology-driven and artificial intelligence-based repeated dose toxicity testing of chemicals for next generation risk assessment (ONTOX) project and elsewhere. Finally, the choice of input parameters used in each mathematical model and toolbox shown by our analysis can contribute to the harmonization process of the exposure models and tools increasing the prospect for comparison between studies and consistency in the regulatory process in the future.
Collapse
Affiliation(s)
- Maria E Kalyva
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway.
| | - Gunn E Vist
- Norwegian Institute of Public Health, Division for Health Services, Oslo, Norway
| | | | - Graciela López-Soop
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - T J Bozada
- Toxtrack LLC, Baltimore, MD, United States
| | - Thomas Luechtefeld
- Toxtrack LLC, Baltimore, MD, United States; Insilica LLC, Bethesda, MD, United States
| | - Erwin L Roggen
- 3Rs Management and Consulting ApS, Kongens Lyngby, Denmark
| | - Hubert Dirven
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | - Trine Husøy
- Norwegian Institute of Public Health, Division of Climate and Environmental Health, Oslo, Norway
| |
Collapse
|
2
|
Zaleski RT, Dudzina T, Keller D, Money C, Qian H, Rodriguez C, Schnöder F. An assessment of the ECETOC TRA Consumer tool performance as a screening level tool. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:980-993. [PMID: 36681733 PMCID: PMC10733139 DOI: 10.1038/s41370-022-00510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC) Targeted Risk Assessment (TRA) Consumer tool was developed to fill in a methodology gap for a high throughput, screening level tool to support industry compliance with the European Union's Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) regulation. OBJECTIVE To evaluate if the TRA Consumer tool has met its design of being a screening level tool (i.e., one which does not under-predict potential exposures). METHODS The TRA Consumer tool algorithms and defaults were reviewed and performance benchmarked vs. other consumer models and/or empirical data. Findings from existing reviews of the TRA consumer tool were also considered and addressed. RESULTS TRA predictions based on its default inputs exceeded measured exposures when available, typically by orders of magnitude, and were generally greater than or similar to those of other consumer exposure tools. For dermal exposure from articles, there was no evidence that a diffusivity approach would provide more appropriate exposure estimates than those of the TRA. When default values are refined using more specific data, the refined values must be considered holistically to reflect the situation being modeled as some parameters may be correlated. SIGNIFICANCE This is the first evaluation of the ECETOC TRA consumer tool in its entirety, considering algorithms, input defaults, and associated predictions for consumer products and articles. The evaluation confirmed its design as a screening level tool. IMPACT STATEMENT The ECETOC TRA Consumer tool has been widely applied to generate exposure estimates to support chemical registrations under the EU REACH regulation. This evaluation supports the appropriateness of the TRA as a screening level exposure assessment tool. It also warrants additional measurements of consumer exposure, especially for article use scenarios, to aid the development of consumer exposure tools and chemical risk assessment.
Collapse
Affiliation(s)
| | | | | | | | - Hua Qian
- ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA
| | | | - Frank Schnöder
- DuPont de Nemours Deutschland GmbH, Neu-Isenburg, Germany
| |
Collapse
|
3
|
Schendel T, Rogasch EC. Insights Gained from an Approximate Analytical Solution of the Evaporation Model Used by ConsExpo Web. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18062829. [PMID: 33802140 PMCID: PMC8000556 DOI: 10.3390/ijerph18062829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/16/2022]
Abstract
Evaporation of chemicals is an important source of inhalative exposure. We analyzed here the ConsExpo evaporation model, which is characterized by a set of nonlinear differential equations only solvable by numerical means. It shows qualitatively different behavior for different parameters, but the exact conditions remain unclear. This article presents an approximate analytical solution of the ConsExpo evaporation model, derived by using a specific linearization of the nonlinear equations valid for small concentrations. From this solution, three different boundary cases or regimes are found: quick release, near equilibrium, and ventilation driven regime. Depending on the evaporation regime, different parameters influence peak substance air concentration: Quick release regime: total substance amount and room volume; near equilibrium regime: vapor pressure, substance concentration in the product, and molecular weight of the product matrix; ventilation driven regime: vapor pressure, substance concentration in the product, room volume, surface area, mass transfer coefficient, ventilation rate, and molecular weight of the product matrix. A graphical method is developed to display the position of a given scenario in relation to the three regimes. Thus, the approximate analytical solution allows for a given situation to prioritize research for reducing uncertainty of the most sensitive parameters and helps to identify promising risk management measures.
Collapse
|
4
|
Eichler CMA, Hubal EAC, Xu Y, Cao J, Bi C, Weschler CJ, Salthammer T, Morrison GC, Koivisto AJ, Zhang Y, Mandin C, Wei W, Blondeau P, Poppendieck D, Liu X, Delmaar CJE, Fantke P, Jolliet O, Shin HM, Diamond ML, Shiraiwa M, Zuend A, Hopke PK, von Goetz N, Kulmala M, Little JC. Assessing Human Exposure to SVOCs in Materials, Products, and Articles: A Modular Mechanistic Framework. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:25-43. [PMID: 33319994 PMCID: PMC7877794 DOI: 10.1021/acs.est.0c02329] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
A critical review of the current state of knowledge of chemical emissions from indoor sources, partitioning among indoor compartments, and the ensuing indoor exposure leads to a proposal for a modular mechanistic framework for predicting human exposure to semivolatile organic compounds (SVOCs). Mechanistically consistent source emission categories include solid, soft, frequent contact, applied, sprayed, and high temperature sources. Environmental compartments are the gas phase, airborne particles, settled dust, indoor surfaces, and clothing. Identified research needs are the development of dynamic emission models for several of the source emission categories and of estimation strategies for critical model parameters. The modular structure of the framework facilitates subsequent inclusion of new knowledge, other chemical classes of indoor pollutants, and additional mechanistic processes relevant to human exposure indoors. The framework may serve as the foundation for developing an open-source community model to better support collaborative research and improve access for application by stakeholders. Combining exposure estimates derived using this framework with toxicity data for different end points and toxicokinetic mechanisms will accelerate chemical risk prioritization, advance effective chemical management decisions, and protect public health.
Collapse
Affiliation(s)
- Clara M A Eichler
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Elaine A Cohen Hubal
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Ying Xu
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Jianping Cao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
| | - Chenyang Bi
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Charles J Weschler
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, New Jersey 08854, United States
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Lyngby 2800, Denmark
| | - Tunga Salthammer
- Fraunhofer WKI, Department of Material Analysis and Indoor Chemistry, Braunschweig 38108, Germany
| | - Glenn C Morrison
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Antti Joonas Koivisto
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00014, Finland
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing 100084, China
| | - Corinne Mandin
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), French Indoor Air Quality Observatory (OQAI), Champs sur Marne 77447, France
| | - Wenjuan Wei
- University of Paris-Est, Scientific and Technical Center for Building (CSTB), French Indoor Air Quality Observatory (OQAI), Champs sur Marne 77447, France
| | - Patrice Blondeau
- Laboratoire des Sciences de l'Ingénieur pour l'Environnement - LaSIE, Université de La Rochelle, La Rochelle 77447, France
| | - Dustin Poppendieck
- Engineering Lab, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Xiaoyu Liu
- Office of Research and Development, U.S. EPA, Research Triangle Park, North Carolina 27711, United States
| | - Christiaan J E Delmaar
- National Institute for Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven 3720, The Netherlands
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Technology, Management and Economics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Olivier Jolliet
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada
| | - Manabu Shiraiwa
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec H3A0B9, Canada
| | - Philip K Hopke
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, New York 13699-5708, United States
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | | | - Markku Kulmala
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki 00014, Finland
| | - John C Little
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|