1
|
Hsiao YC, Yang Y, Liu CW, Peng J, Feng J, Zhao H, Teitelbaum T, Lu K. Multiomics to Characterize the Molecular Events Underlying Impaired Glucose Tolerance in FXR-Knockout Mice. J Proteome Res 2024; 23:3332-3341. [PMID: 38967328 DOI: 10.1021/acs.jproteome.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The prevalence of different metabolic syndromes has grown globally, and the farnesoid X receptor (FXR), a metabolic homeostat for glucose, lipid, and bile acid metabolisms, may serve an important role in the progression of metabolic disorders. Glucose intolerance by FXR deficiency was previously reported and observed in our study, but the underlying biology remained unclear. To investigate the ambiguity, we collected the nontargeted profiles of the fecal metaproteome, serum metabolome, and liver proteome in Fxr-null (Fxr-/-) and wild-type (WT) mice with LC-HRMS. FXR deficiency showed a global impact on the different molecular levels we monitored, suggesting its serious disruption in the gut microbiota, hepatic metabolism, and circulating biomolecules. The network and enrichment analyses of the dysregulated metabolites and proteins suggested the perturbation of carbohydrate and lipid metabolism by FXR deficiency. Fxr-/- mice presented lower levels of hepatic proteins involved in glycogenesis. The impairment of glycogenesis by an FXR deficiency may leave glucose to accumulate in the circulation, which may deteriorate glucose tolerance. Lipid metabolism was dysregulated by FXR deficiency in a structural-dependent manner. Fatty acid β-oxidations were alleviated, but cholesterol metabolism was promoted by an FXR deficiency. Together, we explored the molecular events associated with glucose intolerance by impaired FXR with integrated novel multiomic data.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jingya Peng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Jiahao Feng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haoduo Zhao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Hsiao YC, Johnson G, Yang Y, Liu CW, Feng J, Zhao H, Moy SS, Harper KM, Lu K. Evaluation of neurological behavior alterations and metabolic changes in mice under chronic glyphosate exposure. Arch Toxicol 2024; 98:277-288. [PMID: 37922104 PMCID: PMC11694903 DOI: 10.1007/s00204-023-03622-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/05/2023] [Indexed: 11/05/2023]
Abstract
Glyphosate is a widely used active ingredient in agricultural herbicides, inhibiting the biosynthesis of aromatic amino acids in plants by targeting their shikimate pathway. Our gut microbiota also facilitates the shikimate pathway, making it a vulnerable target when encountering glyphosate. Dysbiosis in the gut microbiota may impair the gut-brain axis, bringing neurological outcomes. To evaluate the neurotoxicity and biochemical changes attributed to glyphosate, we exposed mice with the reference dose (RfD) set by the U.S. EPA (1.75 mg/Kg-BW/day) and its hundred-time-equivalence (175 mg/Kg-BW/day) chronically via drinking water, then compared a series of neurobehaviors and their fecal/serum metabolomic profile against the non-exposed vehicles (n = 10/dosing group). There was little alteration in the neurobehavior, including motor activities, social approach, and conditioned fear, under glyphosate exposure. Metabolomic differences attributed to glyphosate were observed in the feces, corresponding to 68 and 29 identified metabolites with dysregulation in the higher and lower dose groups, respectively, compared to the vehicle-control. There were less alterations observed in the serum metabolome. Under 175 mg/Kg-BW/day of glyphosate exposure, the aromatic amino acids (phenylalanine, tryptophan, and tyrosine) were reduced in the feces but not in the serum of mice. We further focused on how tryptophan metabolism was dysregulated based on the pathway analysis, and identified the indole-derivatives were more altered compared to the serotonin and kynurenine derivatives. Together, we obtained a three-dimensional data set that records neurobehavioral, fecal metabolic, and serum biomolecular dynamics caused by glyphosate exposure at two different doses. Our data showed that even under the high dose of glyphosate irrelevant to human exposure, there were little evidence that supported the impairment of the gut-brain axis.
Collapse
Affiliation(s)
- Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Gregory Johnson
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Jiahao Feng
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Haoduo Zhao
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Sheryl S Moy
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kathryn M Harper
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, 27599, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Yang Y, Hsiao YC, Liu CW, Lu K. The Role of the Nuclear Receptor FXR in Arsenic-Induced Glucose Intolerance in Mice. TOXICS 2023; 11:833. [PMID: 37888683 PMCID: PMC10611046 DOI: 10.3390/toxics11100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Inorganic arsenic in drinking water is prioritized as a top environmental contaminant by the World Health Organization, with over 230 million people potentially being exposed. Arsenic toxicity has been well documented and is associated with a plethora of human diseases, including diabetes, as established in numerous animal and epidemiological studies. Our previous study revealed that arsenic exposure leads to the inhibition of nuclear receptors, including LXR/RXR. To this end, FXR is a nuclear receptor central to glucose and lipid metabolism. However, limited studies are available for understanding arsenic exposure-FXR interactions. Herein, we report that FXR knockout mice developed more profound glucose intolerance than wild-type mice upon arsenic exposure, supporting the regulatory role of FXR in arsenic-induced glucose intolerance. We further exposed mice to arsenic and tested if GW4064, a FXR agonist, could improve glucose intolerance and dysregulation of hepatic proteins and serum metabolites. Our data showed arsenic-induced glucose intolerance was remarkably diminished by GW4064, accompanied by a significant ratio of alleviation of dysregulation in hepatic proteins (83%) and annotated serum metabolites (58%). In particular, hepatic proteins "rescued" from arsenic toxicity by GW4064 featured members of glucose and lipid utilization. For instance, the expression of PCK1, a candidate gene for diabetes and obesity that facilitates gluconeogenesis, was repressed under arsenic exposure in the liver, but revived with the GW4064 supplement. Together, our comprehensive dataset indicates FXR plays a key role and may serve as a potential therapeutic for arsenic-induced metabolic disorders.
Collapse
Affiliation(s)
| | | | | | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Gupta A, Burgess JK, Slebos DJ, Pouwels SD. The development, validation, and in vivo testing of a high-precision bronchial epithelial lining fluid sampling device. Front Med (Lausanne) 2023; 10:1172622. [PMID: 37564050 PMCID: PMC10410264 DOI: 10.3389/fmed.2023.1172622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Introduction Analysis of respiratory biomarkers or pharmaceutical drug concentrations in bronchial epithelial lining fluid (bELF) using a high-precision sampling method is crucial for effective clinical respiratory diagnostics and research. Here, we utilized a cellulose matrix as an absorptive probe for bELF sampling, subsequently testing the design of a device and sampling technique in vivo. Methods The absorptive matrix [Whatman® qualitative filter paper (Grade CF-12)] was first tested through tissue-contact experiments on porcine airway tissue. The absorption and elution capacity of the matrix, as well as the laboratory processing and analysis method, was validated with a range of Interleukin-8 (CXCL8) and C-Reactive protein (CRP) stock solutions. Subsequently, the device's design was optimized for universal in-house production and both, safe and efficient sampling. The airway sampling method was then tested in a group of 10 patients with Chronic Obstructive Pulmonary Disease (COPD). For each patient, a bELF sample was obtained using the newly developed bELF probe, as well as a reference 20 mL saline bronchial wash sample. Supernatants were assessed, using an immunoassay, for levels of the pro-inflammatory markers CXCL8, Myeloperoxidase (MPO), and CRP. The bELF samples were compared to bronchial wash. Results The Whatman® qualitative filter paper (Grade CF-12) bELF probes adhered to porcine airway tissue, softening slightly upon wetting. The material maintained architectural integrity following the removal of the probes, leaving no residual fibers on the porcine airway mucosa. The bELF probe design was optimized for bronchoscopic delivery and in-house production. On average, a fully saturated bELF probe carried 32 μL of protein-rich fluid. The mean return of CXCL8 and CRP from samples collected from a serial dilution series (1, 5, 10, 20 ng/mL) was 69% (range 48%-87%). The bELF probe detected, on average, 7 (MPO), 14 (CRP), and 59 (CXCL8) times higher equivalent inflammatory protein concentrations in the collected bELF probe samples compared to the bronchial wash. Conclusion The bELF probe is an effective absorptive technology for high-precision bELF sampling without dilution. With a simple in-house production procedure and bronchoscopic sampling technique, this method can be introduced in any bronchoscopic center for a consistent sampling of bELF.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, University of Groningen, Groningen, Netherlands
| | - Dirk-Jan Slebos
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| | - Simon D. Pouwels
- Department of Pulmonology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Li K, Naviaux JC, Lingampelly SS, Wang L, Monk JM, Taylor CM, Ostle C, Batten S, Naviaux RK. Historical biomonitoring of pollution trends in the North Pacific using archived samples from the Continuous Plankton Recorder Survey. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161222. [PMID: 36584956 DOI: 10.1016/j.scitotenv.2022.161222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
First started in 1931, the Continuous Plankton Recorder (CPR) Survey is the longest-running and most geographically extensive marine plankton sampling program in the world. This pilot study investigates the feasibility of biomonitoring the spatiotemporal trends of marine pollution using archived CPR samples from the North Pacific. We selected specimens collected from three different locations (British Columbia Shelf, Northern Gulf of Alaska, and Aleutian Shelf) in the North Pacific between 2002 and 2020. Comprehensive profiling of the plankton chemical exposome was conducted using liquid and gas chromatography coupled with tandem mass spectrometry (LC-MS/MS and GC-MS/MS). Our results show that phthalates, plasticizers, persistent organic pollutants (POPs), pesticides, pharmaceuticals, and personal care products were present in the plankton exposome, and that many of these pollutants have decreased in amount over the last two decades, which was most pronounced for tri-n-butyl phosphate. In addition, the plankton exposome differed significantly by regional human activities, with the most polluted samples coming from the nearshore area. Exposome-wide association analysis revealed that bioaccumulation of environmental pollutants was highly correlated with the biomass of different plankton taxa. Overall, this study demonstrates that exposomic analysis of archived samples from the CPR Survey is effective for long-term biomonitoring of the spatial and temporal trends of environmental pollutants in the marine environment.
Collapse
Affiliation(s)
- Kefeng Li
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America.
| | - Jane C Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Neurosciences, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Sai Sachin Lingampelly
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Lin Wang
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Jonathan M Monk
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America
| | - Claire M Taylor
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB, UK
| | - Clare Ostle
- The Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, Devon PL1 2PB, UK
| | - Sonia Batten
- North Pacific Marine Science Organization (PICES), Sidney, BC V8L 4B2, Canada
| | - Robert K Naviaux
- The Mitochondrial and Metabolic Disease Center, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Medicine, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Pediatrics, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America; Department of Pathology, University of California, San Diego School of Medicine, 214 Dickinson St., Bldg CTF, Rm C107, San Diego, CA 92103-8467, United States of America.
| |
Collapse
|
6
|
Wambaugh JF, Rager JE. Exposure forecasting - ExpoCast - for data-poor chemicals in commerce and the environment. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2022; 32:783-793. [PMID: 36347934 PMCID: PMC9742338 DOI: 10.1038/s41370-022-00492-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 05/10/2023]
Abstract
Estimates of exposure are critical to prioritize and assess chemicals based on risk posed to public health and the environment. The U.S. Environmental Protection Agency (EPA) is responsible for regulating thousands of chemicals in commerce and the environment for which exposure data are limited. Since 2009 the EPA's ExpoCast ("Exposure Forecasting") project has sought to develop the data, tools, and evaluation approaches required to generate rapid and scientifically defensible exposure predictions for the full universe of existing and proposed commercial chemicals. This review article aims to summarize issues in exposure science that have been addressed through initiatives affiliated with ExpoCast. ExpoCast research has generally focused on chemical exposure as a statistical systems problem intended to inform thousands of chemicals. The project exists as a companion to EPA's ToxCast ("Toxicity Forecasting") project which has used in vitro high-throughput screening technologies to characterize potential hazard posed by thousands of chemicals for which there are limited toxicity data. Rapid prediction of chemical exposures and in vitro-in vivo extrapolation (IVIVE) of ToxCast data allow for prioritization based upon risk of adverse outcomes due to environmental chemical exposure. ExpoCast has developed (1) integrated modeling approaches to reliably predict exposure and IVIVE dose, (2) highly efficient screening tools for chemical prioritization, (3) efficient and affordable tools for generating new exposure and dose data, and (4) easily accessible exposure databases. The development of new exposure models and databases along with the application of technologies like non-targeted analysis and machine learning have transformed exposure science for data-poor chemicals. By developing high-throughput tools for chemical exposure analytics and translating those tools into public health decisions ExpoCast research has served as a crucible for identifying and addressing exposure science knowledge gaps.
Collapse
Affiliation(s)
- John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. EPA, Research Triangle Park, NC, USA.
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Julia E Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|