1
|
Hsieh NH, Kwok ESC. Biomonitoring-Based Risk Assessment of Pyrethroid Exposure in the U.S. Population: Application of High-Throughput and Physiologically Based Kinetic Models. TOXICS 2025; 13:216. [PMID: 40137543 PMCID: PMC11945574 DOI: 10.3390/toxics13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
Pyrethroid insecticides have been extensively utilized in agriculture and residential areas in the United States. This study evaluated the exposure risk by age using available biomonitoring data. We analyzed pyrethroid metabolite concentrations in urine using the National Health and Nutrition Examination Survey (NHANES) data. Reverse dosimetry was conducted with a high-throughput model and a physiologically based kinetic (PBK) model integrated with a Bayesian inference framework. We further derived Benchmark Dose (BMD) values and systemic points of departure in rats using Bayesian BMD and PBK models. Margins of exposure (MOE) were calculated to assess neurotoxic risk based on estimated daily oral intake and dose metrics in plasma and brain. Results from both models indicated that young children have higher pyrethroid exposure compared to other age groups. All estimated risk values were within acceptable levels of acute neurotoxic effect. Additionally, MOEs calculated from oral doses were lower than those derived from internal doses, highlighting that traditional external exposure assessments tend to overestimate risk compared to advanced internal dose-based techniques. In conclusion, combining high-throughput and PBK approaches enhances the understanding of human health risks associated with pyrethroid exposures, demonstrating their potential for future applications in exposure tracking and health risk assessment.
Collapse
Affiliation(s)
- Nan-Hung Hsieh
- Human Exposure & Health Effects Modeling Section, Human Health Assessment Branch, Department of Pesticide Regulation, California Environmental Protection Agency, Sacramento, CA 95814, USA;
| | | |
Collapse
|
2
|
Rager JE, Koval LE, Hickman E, Ring C, Teitelbaum T, Cohen T, Fragola G, Zylka MJ, Engel LS, Lu K, Engel SM. The environmental neuroactive chemicals list of prioritized substances for human biomonitoring and neurotoxicity testing: A database and high-throughput toxicokinetics approach. ENVIRONMENTAL RESEARCH 2025; 266:120537. [PMID: 39638029 PMCID: PMC11753932 DOI: 10.1016/j.envres.2024.120537] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
There is a diversity of chemicals to which humans are potentially exposed. Few of these chemicals have linked human biomonitoring data, and most have very limited neurotoxicity testing. Of particular concern are environmental exposures impacting children, who constitute a population of heightened susceptibility due to rapid neural growth and plasticity, yet lack biomonitoring data compared to other age/population subgroups. This study set out to develop a prioritized list of neuroactive substances, titled the Environmental NeuRoactIve CHemicals (ENRICH) list, to be used as a defined screening library in the evaluation of human biological samples, with emphasis on early childhood-relevant environmental exposures. In silico database mining approaches were used to prioritize chemicals based upon likelihood of neuroactivity, human exposure, and feasible detection in biological samples. Evidence of neuroactivity was compiled across in vitro high-throughput screening, animal testing, and/or human epidemiological findings. Chemicals were considered for their likelihood of human exposure and detection presence in biological samples (including metabolites), with additional evidence indicating presence within child-relevant products. The resulting list of 1827 chemicals were ranked using a Chemical Prioritization Index. Manual inclusion/exclusion criteria were employed for the top-ranking chemical candidates to ensure that chemicals were within the study's scope (i.e., environmentally relevant) and, for the purposes of biomonitoring, had properties amenable to mass spectrometry methods. These elements were combined to produce the ENRICH list of 250 top-ranking chemicals, spanning pesticides and those used in home maintenance, personal care, cleaning products, vehicles, arts and crafts, and consumer electronics, among other sources. Chemicals were additionally evaluated for high-throughput toxicokinetics to predict how much of a chemical and/or its metabolite(s) may reach urine, as an example biological matrix for practical use in biomonitoring efforts. This novel study couples databases and in silico-based predictions to prioritize chemicals in the environment with potential neurological impacts for future study.
Collapse
Affiliation(s)
- Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Center for Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA.
| | - Lauren E Koval
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA
| | - Elise Hickman
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Center for Center for Environmental Medicine, Asthma and Lung Biology, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA
| | - Caroline Ring
- Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, 109 T.W. Alexander Drive, Mail Drop D143-02, PO Box 12055, Research Triangle Park, NC, 27711, USA
| | - Taylor Teitelbaum
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA
| | - Todd Cohen
- Department of Neurology, School of Medicine, The University of North Carolina at Chapel Hill, 115 Mason Farm Road, CB #7250, Chapel Hill, NC, USA; Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, CB #7545, Chapel Hill, NC, USA; UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7250, Chapel Hill, NC, USA
| | - Giulia Fragola
- Department of Neurology, School of Medicine, The University of North Carolina at Chapel Hill, 115 Mason Farm Road, CB #7250, Chapel Hill, NC, USA
| | - Mark J Zylka
- Department of Cell Biology and Physiology, School of Medicine, The University of North Carolina at Chapel Hill, 111 Mason Farm Road, CB #7545, Chapel Hill, NC, USA; UNC Neuroscience Center, School of Medicine, The University of North Carolina at Chapel Hill, 116 Manning Drive, CB #7250, Chapel Hill, NC, USA
| | - Lawrence S Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, CB #7435, Chapel Hill, NC, 27599, USA
| | - Kun Lu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, 135 Dauer Drive, CB #7431, Chapel Hill, NC, 27599, USA; Curriculum in Toxicology and Environmental Medicine, School of Medicine the University of North Carolina at Chapel Hill, Chapel Hill, 116 Manning Drive, CB #7325, Chapel Hill, NC, 27599, USA
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, 135 Dauer Drive, CB #7435, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Marciano LPA, Kleinstreuer N, Chang X, Costa LF, Silvério ACP, Martins I. A novel approach to triazole fungicides risk characterization: Bridging human biomonitoring and computational toxicology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176003. [PMID: 39236816 DOI: 10.1016/j.scitotenv.2024.176003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Brazil stands as the world's leading coffee producer, where the extensive use of pesticides is economically critical yet poses health and environmental risks due to their non-selective mechanisms of action. Specifically, triazole fungicides are widely used in agriculture to manage fungal diseases and are known to disrupt mammalian CYP450 and liver microsomal enzymes. This research establishes a framework for risk characterization of human exposure to triazole fungicides by internal-dose biomonitoring, biochemical marker measurements, and integration of high-throughput screening (HTS) data via computational toxicology workflows from the Integrated Chemical Environment (ICE). Volunteers from the southern region of Minas Gerais, Brazil, were divided into two groups: farmworkers and spouses occupationally and environmentally exposed to pesticides from rural areas (n = 140) and individuals from the urban area to serve as a comparison group (n = 50). Three triazole fungicides, cyproconazole, epoxiconazole, and triadimenol, were detected in the urine samples of both men and women in the rural group. Androstenedione and testosterone hormones were significantly reduced in the farmworker group (Mann-Whitney test, p < 0.0001). The data show a significant inverse association of testosterone with cholesterol, LDL, VLDL, triglycerides, and glucose and a direct association with HDL (Spearman's correlation, p < 0.05). In the ICE workflow, active in vitro HTS assays were identified for the three measured triazoles and three other active ingredients from the pesticide formulations. The curated HTS data confirm bioactivities predominantly related to steroid hormone metabolism, cellular stress processes, and CYP450 enzymes impacted by fungicide exposure at occupationally and environmentally relevant concentrations based on the in vitro to in vivo extrapolation models. These results characterize the potentially significant human health risk, particularly from the high frequency and intensity of exposure to epoxiconazole. This study showcases the critical role of biomonitoring and utility of computational tools in evaluating pesticide exposure and minimizing the risk.
Collapse
Affiliation(s)
- Luiz P A Marciano
- Laboratory of Toxicant and Drug Analyses, Department of clinical and toxicological analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Minas Gerais, Brazil
| | - Nicole Kleinstreuer
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Luiz F Costa
- Laboratory of Toxicant and Drug Analyses, Department of clinical and toxicological analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Minas Gerais, Brazil
| | | | - Isarita Martins
- Laboratory of Toxicant and Drug Analyses, Department of clinical and toxicological analysis, Federal University of Alfenas - Unifal-MG, Alfenas, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Hickman E, Frey J, Wylie A, Hartwell HJ, Herkert NJ, Short SJ, Mills-Koonce WR, Fry RC, Stapleton HM, Propper C, Rager JE. Chemical and non-chemical stressors in a postpartum cohort through wristband and self report data: Links between increased chemical burden, economic, and racial stress. ENVIRONMENT INTERNATIONAL 2024; 191:108976. [PMID: 39216331 PMCID: PMC11460120 DOI: 10.1016/j.envint.2024.108976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Multiple external stressors are known to have adverse impacts on health and development. Certain groups are more vulnerable and/or more likely to be exposed toenvironmental, psychological, and social stressors simultaneously. Yet, few studies have examined combined exposure to environmental toxicants and psychosocial stress. Here, we integrated environmental chemical exposure data collected using silicone wristbands and self-report social stressor data within the Brain and Early Experience (BEE) perinatal cohort to understand co-exposure to environmental chemicals and social stress. Silicone wristbands were worn for one week by mothers throughout central North Carolina who were 6 months postpartum (n = 97). Exposure to 110 environmental chemicals across eight chemical classes was quantified on silicone wristbands using gas chromatography mass spectrometry. Social stress was evaluated using eight established self-report questionnaires (e.g., Brief Symptom Inventory, Perceived Stress Scale), quantifying experiences such as race-related stress, economic strain, and relationship conflict. Hair cortisol levels were measured as an additional metric of stress. The chemical exposure landscape and associations among chemical exposure, demographic characteristics, and social stress were characterized through individual variable analyses, cluster and data reduction, and compiled scoring approaches to comprehensively evaluate chemical and social stress burdens. We found that chemicals contain co-occurring patterns largely based on chemical class, with phthalates representing the chemical class with highest exposure and polychlorinated biphenyls the lowest. Chemicals showed differential exposure across racial groups, with diethyl phthalate, triphenyl phosphate, and tris(3,5-dimethyl phenyl) phosphate at higher levels in Black participants compared with White participants. Integrating social stressor profiling with chemical exposure data identified one particularly vulnerable subset of participants in which high chemical exposure burden coincided with high experiences of racism and economic stress. These findings demonstrate co-occurring chemical and social stress, warranting further investigation to better understand how these combined stressors may contribute to disparities in maternal and child health.
Collapse
Affiliation(s)
- Elise Hickman
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, 4004 Mary Ellen Jones Building, CB # 7325, 116 Manning Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Jenna Frey
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Amanda Wylie
- Department of Psychology and Neuroscience, UNC Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC 27599, United States; Frank Porter Graham Child Development Institute, UNC Chapel Hill, 910 Raleigh Rd, Chapel Hill, NC 27514, United States.
| | - Hadley J Hartwell
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Nicholas J Herkert
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, United States.
| | - Sarah J Short
- Department of Educational Psychology, University of Wisconsin-Madison, 1025 W. Johnson St., Madison, WI 53706, United States; Center for Healthy Minds, University of Wisconsin-Madison, 625 W. Washington Ave., Madison, WI 53703, United States.
| | - W Roger Mills-Koonce
- School of Education, UNC Chapel Hill, Peabody Hall, CB #3500, Chapel Hill, NC 27599, United States.
| | - Rebecca C Fry
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, 4004 Mary Ellen Jones Building, CB # 7325, 116 Manning Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| | - Heather M Stapleton
- Nicholas School of the Environment, Duke University, 9 Circuit Dr, Durham, NC 27710, United States.
| | - Cathi Propper
- Frank Porter Graham Child Development Institute, UNC Chapel Hill, 910 Raleigh Rd, Chapel Hill, NC 27514, United States; School of Nursing, UNC Chapel Hill, 120 Medical Drive, CB #7460, Chapel Hill, NC 27599, United States.
| | - Julia E Rager
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, UNC Chapel Hill, 170 Rosenau Hall, CB #7400, 135 Dauer Drive, Chapel Hill, NC 27599, United States; Curriculum in Toxicology & Environmental Medicine, UNC Chapel Hill, 4004 Mary Ellen Jones Building, CB # 7325, 116 Manning Drive, Chapel Hill, NC 27599, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, UNC Chapel Hill, 135 Dauer Drive, 166 Rosenau Hall, CB #7431, Chapel Hill, NC 27599, United States.
| |
Collapse
|
5
|
Rager JE, Rider CV. Wrangling Whole Mixtures Risk Assessment: Recent Advances in Determining Sufficient Similarity. CURRENT OPINION IN TOXICOLOGY 2023; 35:100417. [PMID: 37790747 PMCID: PMC10545370 DOI: 10.1016/j.cotox.2023.100417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Human health risk assessments for complex mixtures can address real-world exposures and protect public health. While risk assessors typically prefer whole mixture approaches over component-based approaches, data from the precise exposure of interest are often unavailable and surrogate data from a sufficiently similar mixture(s) are required. This review describes recent advances in determining sufficient similarity of whole, complex mixtures spanning the comparison of chemical features, bioactivity profiles, and statistical evaluation to determine "thresholds of similarity". Case studies, including water disinfection byproducts, botanical ingredients, and wildfire emissions, are used to highlight tools and methods. Limitations to application of sufficient similarity in risk-based decision making are reviewed and recommendations presented for developing best practice guidelines.
Collapse
Affiliation(s)
- Julia E. Rager
- The Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
- The Institute for Environmental Health Solutions, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill
| | - Cynthia V. Rider
- Division of Translational Toxicology, National Institute of Environmental Health Sciences
| |
Collapse
|
6
|
Carignan CC. Invited Perspective: Examining Chemicals in Food as a Priority for Toxicity Testing. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:31304. [PMID: 36913235 PMCID: PMC10010385 DOI: 10.1289/ehp12630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Courtney C. Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
7
|
Innovating human chemical hazard and risk assessment through an holistic approach. CURRENT OPINION IN TOXICOLOGY 2023. [DOI: 10.1016/j.cotox.2023.100386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|