1
|
Elling CL, Gomez HZ, Lee NK, Hirsch SD, Santos-Cortez RLP. The A2ml1-Knockout mouse as an animal model for non-syndromic otitis media. Int J Pediatr Otorhinolaryngol 2024; 181:111980. [PMID: 38759260 PMCID: PMC11175999 DOI: 10.1016/j.ijporl.2024.111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND Inflammation and infection of the middle ear, known as otitis media (OM), is a leading cause of hearing loss and the most frequently diagnosed disease in children worldwide. Traditionally, mouse models for OM rely on inducing acute infection through inoculation of the middle ear, e.g. with the human otopathogen non-typeable Haemophilus influenzae (NTHi), and with very few genetic models with spontaneous or chronic OM. A2ML1 variants, including loss-of-function variants, were associated with susceptibility to OM in humans, but no animal model has been reported for A2ml1-related OM. Here, we report our middle ear findings in a mouse line with a CRISPR-induced knockout (KO) of A2ml1. METHODS Mice were X-rayed prior to harvest to determine if there are craniofacial or skeletal abnormalities. Tissue from mouse middle ears, as well as other upper respiratory mucosal tissues, were harvested. The harvested middle ear bullae were examined under microscope and submitted for histologic preparation to study phenotypic indications of OM. RNA samples isolated from middle ear tissue were assayed for expression of genes correlated with A2ML1 expression in humans. RESULTS Data from a total of 119 mice (35 wildtype, 40 heterozygous, 44 homozygous) are presented here, with each analyses being performed on subsets of these mice. There were no significant craniofacial differences by genotype (n = 22). Findings in mice with the A2ml1-KO indicated an increased incidence of OM (n=29; odds ratio = 11; CI: 1.1, 573.6; Fisher exact two-sided p = 0.02) with tympanic membrane perforations or thickening, as well as cases of middle ear effusion, inflammatory cells, or fluid from histologic sections. Dsp was upregulated in the middle ear tissues of homozygous mice (Wilcoxon test p = 0.001). CONCLUSION Thus far, our results in this A2ml1-KO mouse line indicate spontaneous occurrence of OM and dysregulation of Dsp in the middle ear as a potential disease mechanism for A2ml1-related OM.
Collapse
Affiliation(s)
- Christina L Elling
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Helen Z Gomez
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Nam K Lee
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Scott D Hirsch
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Zhang G, Wang X, Zhang Q. Cdh11: Roles in different diseases and potential value in disease diagnosis and treatment. Biochem Biophys Rep 2023; 36:101576. [PMID: 38034129 PMCID: PMC10682823 DOI: 10.1016/j.bbrep.2023.101576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Cadherin is a homophilic, Ca2+-dependent cell adhesion glycoprotein that mediates cell-cell adhesion. Among them, Cadherin-11 (CDH11), as a classical cadherin, participates in and influences many crucial aspects of human growth and development. Furthermore, The involvement of CDH11 has been identified in an increasing number of diseases, primarily including various tumorous diseases, fibrotic diseases, autoimmune diseases, neurodevelopmental disorders, and more. In various tumorous diseases, CDH11 acts not only as a tumor suppressor but can also promote migration and invasion of certain tumors through various mechanisms. Likewise, in non-tumorous diseases, CDH11 remains a pivotal factor in disease progression. In this context, we summarize the specific functionalities and mechanisms of CDH11 in various diseases, aiming to gain a more comprehensive understanding of the potential value of CDH11 in disease diagnosis and treatment. This endeavor seeks to provide more effective diagnostic and therapeutic strategies for clinical management across diverse diseases.
Collapse
Affiliation(s)
- Gaoxiang Zhang
- Weifang Medical University, Weifang, Shandong, 261000, China
| | - Xi Wang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| | - Qingguo Zhang
- Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250013, China
| |
Collapse
|
3
|
Fons JM, Milmoe NJ, Dack MRG, Joshi L, Thompson H, Tucker AS. The interconnected relationships between middle ear bulla size, cavitation defects, and chronic otitis media revealed in a syndromic mouse model. Front Genet 2022; 13:933416. [PMID: 36299576 PMCID: PMC9590451 DOI: 10.3389/fgene.2022.933416] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
High incidence of chronic otitis media is associated with human craniofacial syndromes, suggesting that defects in the formation of the middle ear and associated structures can have a knock-on effect on the susceptibility to middle ear inflammation. Patients with branchio-oto-renal (BOR) syndrome have several defects in the ear leading to both sensorineural and conductive hearing loss, including otitis media. 40% of BOR syndrome cases are due to Eya1 haploinsufficiency, with mouse models affecting Eya1, mimicking many of the defects found in patients. Here, we characterize the onset, consequences, and underlying causes of chronic otitis media in Eya1 heterozygous mice. Cavitation defects were evident in these mice from postnatal day (P)11 onwards, with mesenchyme around the promontory and attic regions of the middle ear space. This mesenchyme was still prominent in adult Eya1 heterozygous mice, while the wild-type littermates had fully aerated ears from P14 onwards. MicroCT analysis highlighted a significantly smaller bulla, confirming the link between bulla size defects and the ability of the mesenchyme to retract successfully. Otitis media was observed from P14, often presenting unilaterally, resulting in hyperplasia of the middle ear mucosa, expansion of secretory cells, defects in the motile cilia, and changes in basal epithelial cell markers. A high incidence of otitis media was identified in older mice but only associated with ears with retained mesenchyme. To understand the impact of the environment, the mouse line was rederived onto a super-clean environment. Cavitation defects were still evident at early stages, but these generally resolved over time, and importantly, no signs of otitis media were observed at 6 weeks. In conclusion, we show that a small bulla size is closely linked to defects in cavitation and the presence of retained mesenchyme. A delay in retraction of the mesenchyme predates the onset of otitis media, making the ears susceptible to its development. Early exposure to OM appears to exacerbate the cavitation defect, with mesenchyme evident in the middle ear throughout the animal’s life. This highlights that permanent damage to the middle ear can arise as a consequence of the early onset of OM.
Collapse
|
4
|
van Dieken A, Staecker H, Schmitt H, Harre J, Pich A, Roßberg W, Lenarz T, Durisin M, Warnecke A. Bioinformatic Analysis of the Perilymph Proteome to Generate a Human Protein Atlas. Front Cell Dev Biol 2022; 10:847157. [PMID: 35573665 PMCID: PMC9096870 DOI: 10.3389/fcell.2022.847157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/04/2022] [Indexed: 11/16/2022] Open
Abstract
The high complexity of the cellular architecture of the human inner ear and the inaccessibility for tissue biopsy hampers cellular and molecular analysis of inner ear disease. Sampling and analysis of perilymph may present an opportunity for improved diagnostics and understanding of human inner ear pathology. Analysis of the perilymph proteome from patients undergoing cochlear implantation was carried out revealing a multitude of proteins and patterns of protein composition that may enable characterisation of patients into subgroups. Based on existing data and databases, single proteins that are not present in the blood circulation were related to cells within the cochlea to allow prediction of which cells contribute to the individual perilymph proteome of the patients. Based on the results, we propose a human atlas of the cochlea. Finally, druggable targets within the perilymph proteome were identified. Understanding and modulating the human perilymph proteome will enable novel avenues to improve diagnosis and treatment of inner ear diseases.
Collapse
Affiliation(s)
- Alina van Dieken
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Hinrich Staecker
- Department of Otolaryngology, Head and Neck, Surgery, University of Kansas School of Medicine, Kansas City, KS, United States
| | - Heike Schmitt
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Jennifer Harre
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Willi Roßberg
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Thomas Lenarz
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Martin Durisin
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otolaryngology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
5
|
Geng R, Wang Q, Chen E, Zheng QY. Current Understanding of Host Genetics of Otitis Media. Front Genet 2020; 10:1395. [PMID: 32117425 PMCID: PMC7025460 DOI: 10.3389/fgene.2019.01395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
The pathogenesis of otitis media (OM), an inflammatory disease of the middle ear (ME), involves interplay between many different factors, including the pathogenicity of infectious pathogens, host immunological status, environmental factors, and genetic predisposition, which is known to be a key determinant of OM susceptibility. Animal models and human genetics studies have identified many genes and gene variants associated with OM susceptibility: genes that encode components of multiple signaling pathways involved in host immunity and inflammatory responses of the ME mucosa; genes involved in cellular function, such as mucociliary transport, mucin production, and mucous cell metaplasia; and genes that are essential for Eustachian tube (ET) development, ME cavitation, and homeostasis. Since our last review, several new mouse models with mutations in genes such as CCL3, IL-17A, and Nisch have been reported. Moreover, genetic variants and polymorphisms in several genes, including FNDC1, FUT2, A2ML1, TGIF1, CD44, and IL1-RA variable number tandem repeat (VNTR) allele 2, have been identified as being significantly associated with OM. In this review, we focus on the current understanding of the role of host genetics in OM, including recent discoveries and future research prospects. Further studies on the genes identified thus far and the discovery of new genes using advanced technologies such as gene editing, next generation sequencing, and genome-wide association studies, will advance our understanding of the molecular mechanism underlying the pathogenesis of OM and provide new avenues for early screening and developing effective preventative and therapeutic strategies to treat OM.
Collapse
Affiliation(s)
- Ruishuang Geng
- College of Special Education, Binzhou Medical University, Yantai, China
| | - Qingzhu Wang
- College of Special Education, Binzhou Medical University, Yantai, China.,Department of Otolaryngology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Eileen Chen
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| | - Qing Yin Zheng
- Department of Otolaryngology, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Wang C, Pan YH, Wang Y, Blatt G, Yuan XB. Segregated expressions of autism risk genes Cdh11 and Cdh9 in autism-relevant regions of developing cerebellum. Mol Brain 2019; 12:40. [PMID: 31046797 PMCID: PMC6498582 DOI: 10.1186/s13041-019-0461-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023] Open
Abstract
Results of recent genome-wide association studies (GWAS) and whole genome sequencing (WGS) highlighted type II cadherins as risk genes for autism spectrum disorders (ASD). To determine whether these cadherins may be linked to the morphogenesis of ASD-relevant brain regions, in situ hybridization (ISH) experiments were carried out to examine the mRNA expression profiles of two ASD-associated cadherins, Cdh9 and Cdh11, in the developing cerebellum. During the first postnatal week, both Cdh9 and Cdh11 were expressed at high levels in segregated sub-populations of Purkinje cells in the cerebellum, and the expression of both genes was declined as development proceeded. Developmental expression of Cdh11 was largely confined to dorsal lobules (lobules VI/VII) of the vermis as well as the lateral hemisphere area equivalent to the Crus I and Crus II areas in human brains, areas known to mediate high order cognitive functions in adults. Moreover, in lobules VI/VII of the vermis, Cdh9 and Cdh11 were expressed in a complementary pattern with the Cdh11-expressing areas flanked by Cdh9-expressing areas. Interestingly, the high level of Cdh11 expression in the central domain of lobules VI/VII was correlated with a low level of expression of the Purkinje cell marker calbindin, coinciding with a delayed maturation of Purkinje cells in the same area. These findings suggest that these two ASD-associated cadherins may exert distinct but coordinated functions to regulate the wiring of ASD-relevant circuits in the cerebellum.
Collapse
Affiliation(s)
- Chunlei Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yue Wang
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Gene Blatt
- Hussman Institute for Autism, Baltimore, MD, 21201, USA
| | - Xiao-Bing Yuan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Brain Functional Genomics, School of Life Science and the Collaborative Innovation Center for Brain Science, East China Normal University, Shanghai, 200062, People's Republic of China. .,Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
7
|
Del-Pozo J, MacIntyre N, Azar A, Glover J, Milne E, Cheeseman M. Chronic otitis media is initiated by a bulla cavitation defect in the FBXO11 mouse model. Dis Model Mech 2019; 12:12/3/dmm038315. [PMID: 30898767 PMCID: PMC6451434 DOI: 10.1242/dmm.038315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Auditory bulla cavitation defects are a cause of otitis media, but the normal cellular pattern of bulla mesenchyme regression and its failure are not well understood. In mice, neural-crest-derived mesenchyme occupies the bulla from embryonic day 17.5 (E17.5) to postnatal day 11 (P11) and then regresses to form the adult air-filled bulla cavity. We report that bulla mesenchyme is bordered by a single layer of non-ciliated epithelium characterized by interdigitating cells with desmosome cell junctions and a basal lamina, and by Bpifa1 gene expression and laminin staining of the basal lamina. At P11-P12, the mesenchyme shrinks: mesenchyme-associated epithelium shortens, and mesenchymal cells and extracellular matrix collagen fibrils condense, culminating in the formation of cochlea promontory mucosa bordered by compact non-ciliated epithelial cells. FBXO11 is a candidate disease gene in human chronic otitis media with effusion and we report that a bulla cavitation defect initiates the pathogenesis of otitis media in the established mouse model Jeff (Fbxo11Jf/+). Persistent mesenchyme in Fbxo11Jf/+ bullae has limited mesenchymal cell condensation, fibrosis and hyperplasia of the mesenchyme-associated epithelium. Subsequent modification forms fibrous adhesions that link the mucosa and the tympanic membrane, and this is accompanied by dystrophic mineralization and accumulation of serous effusion in the bulla cavity. Mouse models of bulla cavitation defects are important because their study in humans is limited to post-mortem samples. This work indicates new diagnostic criteria for this otitis media aetiology in humans, and the prospects of studying the molecular mechanisms of murine bulla cavitation in organ culture. Summary: FBXO11 is a candidate disease gene for otitis media in humans and the authors report that a bulla cavitation defect initiates otitis media in the Fbxo11Jf/+ mouse model.
Collapse
Affiliation(s)
- Jorge Del-Pozo
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Neil MacIntyre
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Ali Azar
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - James Glover
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Elspeth Milne
- Veterinary Pathology, The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Michael Cheeseman
- Developmental Biology Division, Roslin Institute and The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh EH25 9RG, UK .,Centre for Comparative Pathology & Division of Pathology, University of Edinburgh, Institute of Genetics & Molecular Medicine, Crewe Road, Edinburgh EH4 2XR, UK
| |
Collapse
|
8
|
Ritter KE, Martin DM. Neural crest contributions to the ear: Implications for congenital hearing disorders. Hear Res 2018; 376:22-32. [PMID: 30455064 DOI: 10.1016/j.heares.2018.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Congenital hearing disorders affect millions of children worldwide and can significantly impact acquisition of speech and language. Efforts to identify the developmental genetic etiologies of conductive and sensorineural hearing losses have revealed critical roles for cranial neural crest cells (NCCs) in ear development. Cranial NCCs contribute to all portions of the ear, and defects in neural crest development can lead to neurocristopathies associated with profound hearing loss. The molecular mechanisms governing the development of neural crest derivatives within the ear are partially understood, but many questions remain. In this review, we describe recent advancements in determining neural crest contributions to the ear, how they inform our understanding of neurocristopathies, and highlight new avenues for further research using bioinformatic approaches.
Collapse
Affiliation(s)
- K Elaine Ritter
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donna M Martin
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|