1
|
Xie X, Huang M, Ma S, Xin Q, Wang Y, Hu L, Zhao H, Li P, Liu M, Yuan R, Miao Y, Zhu Y, Cong W. The role of long non-coding RNAs in cardiovascular diseases: A comprehensive review. Noncoding RNA Res 2025; 11:158-187. [PMID: 39896344 PMCID: PMC11783329 DOI: 10.1016/j.ncrna.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/04/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of morbidity and mortality worldwide, posing significant challenges to healthcare systems. Despite advances in medical interventions, the molecular mechanisms underlying CVDs are not yet fully understood. For decades, protein-coding genes have been the focus of CVD research. However, recent advances in genomics have highlighted the importance of long non-coding RNAs (lncRNAs) in cardiovascular health and disease. Changes in lncRNA expression specific to tissues may result from various internal or external factors, leading to tissue damage, organ dysfunction, and disease. In this review, we provide a comprehensive discussion of the regulatory mechanisms underlying lncRNAs and their roles in the pathogenesis and progression of CVDs, such as coronary heart disease, atherosclerosis, heart failure, arrhythmias, cardiomyopathies, and diabetic cardiomyopathy, to explore their potential as therapeutic targets and diagnostic biomarkers.
Collapse
Affiliation(s)
- Xuena Xie
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meiwen Huang
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Shudong Ma
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, China
| | - Qiqi Xin
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yuying Wang
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Lantian Hu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengqi Li
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Mei Liu
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
- Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Rong Yuan
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Miao
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yizhun Zhu
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
| | - Weihong Cong
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau SAR, 999078, China
- Laboratory of Cardiovascular Diseases, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
2
|
Chen C, Wang J, Zhang S, Zhu X, Hu J, Liu C, Liu L. Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis. Redox Biol 2024; 76:103321. [PMID: 39186883 PMCID: PMC11388786 DOI: 10.1016/j.redox.2024.103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/17/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024] Open
Abstract
Cell death constitutes a critical component of the pathophysiology of cardiovascular diseases. A growing array of non-apoptotic forms of regulated cell death (RCD)-such as necroptosis, ferroptosis, pyroptosis, and cuproptosis-has been identified and is intimately linked to various cardiovascular conditions. These forms of RCD are governed by genetically programmed mechanisms within the cell, with epigenetic modifications being a common and crucial regulatory method. Such modifications include DNA methylation, RNA methylation, histone methylation, histone acetylation, and non-coding RNAs. This review recaps the roles of DNA methylation, RNA methylation, histone modifications, and non-coding RNAs in cardiovascular diseases, as well as the mechanisms by which epigenetic modifications regulate key proteins involved in cell death. Furthermore, we systematically catalog the existing epigenetic pharmacological agents targeting novel forms of RCD and their mechanisms of action in cardiovascular diseases. This article aims to underscore the pivotal role of epigenetic modifications in precisely regulating specific pathways of novel RCD in cardiovascular diseases, thus offering potential new therapeutic avenues that may prove more effective and safer than traditional treatments.
Collapse
Affiliation(s)
- Cong Chen
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Jie Wang
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China.
| | - Shan Zhang
- Department of Endocrinology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Jun Hu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Chao Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| | - Lanchun Liu
- Department of Cardiology, Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing, 100053, China
| |
Collapse
|
3
|
Kawaguchi S, Moukette B, Hayasaka T, Haskell AK, Mah J, Sepúlveda MN, Tang Y, Kim IM. Noncoding RNAs as Key Regulators for Cardiac Development and Cardiovascular Diseases. J Cardiovasc Dev Dis 2023; 10:jcdd10040166. [PMID: 37103045 PMCID: PMC10143661 DOI: 10.3390/jcdd10040166] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Noncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs. In this review, we briefly describe the classification of ncRNAs into microRNAs, long ncRNAs, and circular RNAs. We then discuss their critical roles in cardiac development and CVDs by citing the most up-to-date research articles. More specifically, we summarize the roles of ncRNAs in the formation of the heart tube and cardiac morphogenesis, cardiac mesoderm specification, and embryonic cardiomyocytes and cardiac progenitor cells. We also highlight ncRNAs that have recently emerged as key regulators in CVDs by focusing on six of them. We believe that this review concisely addresses perhaps not all but certainly the major aspects of current progress in ncRNA research in cardiac development and CVDs. Thus, this review would be beneficial for readers to obtain a recent picture of key ncRNAs and their mechanisms of action in cardiac development and CVDs.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bruno Moukette
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Taiki Hayasaka
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angela K Haskell
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jessica Mah
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Marisa N Sepúlveda
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Il-Man Kim
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
4
|
Ge X, Meng Q, Liu X, Liu J, Ma X, Shi S, Li M, Lin F, Liang X, Gong X, Liu Z, Han W, Zhou X. Alterations of long noncoding RNAs and mRNAs in extracellular vesicles derived from the murine heart post-ischemia-reperfusion injury. J Cell Mol Med 2022; 26:6006-6018. [PMID: 36444487 PMCID: PMC9753460 DOI: 10.1111/jcmm.17617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular vesicles (EVs) play important roles in cardiovascular diseases by delivering their RNA cargos. However, the features and possible role of the lncRNAs and mRNAs in cardiac EVs during ischemia-reperfusion (IR) remain unclear. Therefore, we performed RNA sequencing analysis to profile the features of lncRNAs and mRNAs and predicted their potential functions. Here, we demonstrated that the severity of IR injury was significantly correlated with cardiac EV production. RNA sequencing identified 73 significantly differentially expressed (DE) lncRNAs (39 upregulated and 34 downregulated) and 720 DE-mRNAs (317 upregulated and 403 downregulated). Gene Ontology (GO) and pathway analysis were performed to predict the potential functions of the DE-lncRNAs and mRNAs. The lncRNA-miRNA-mRNA ceRNA network showed the possible functions of DE-lncRNAs with DE-mRNAs which are enriched in the pathways of T cell receptor signalling pathway and cell adhesion molecules. Moreover, the expressions of ENSMUST00000146010 and ENSMUST00000180630 were negatively correlated with the severity of IR injury. A significant positive correlation was revealed between TCONS_00010866 expression and the severity of the cardiac injury. These findings revealed the lncRNA and mRNA profiles in the heart derived EVs and provided potential targets and pathways involved in cardiac IR injury.
Collapse
Affiliation(s)
- Xinyu Ge
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Qingshu Meng
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xuan Liu
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Jing Liu
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaoxue Ma
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Shanshan Shi
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Mimi Li
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Fang Lin
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaoting Liang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji UniversityShanghaiChina
| | - Xin Gong
- Department of Heart FailureShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Zhongmin Liu
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Department of Cardiothoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Institute of Stem Cell Research and Clinical TranslationShanghaiChina
| | - Wei Han
- Department of Heart FailureShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| | - Xiaohui Zhou
- Research Center for Translational MedicineShanghai East Hospital, Tongji University School of MedicineShanghaiChina,Shanghai Heart Failure Research CenterShanghai East Hospital, Tongji University School of MedicineShanghaiChina
| |
Collapse
|