1
|
Bergsagel PL, Chesi M. Immunocompetent mouse models of multiple myeloma. Semin Hematol 2025; 62:50-57. [PMID: 39674742 PMCID: PMC11911088 DOI: 10.1053/j.seminhematol.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/16/2024]
Abstract
Immunocompetent murine models of multiple myeloma are critical for understanding the pathogenesis of multiple myeloma and for the development of novel immunotherapeutics. Different models are available in Balb/c and C57Bl strains, each with different advantages and disadvantages. The availability of many transplantable cell lines allows for the conduct of experiments with large cohorts of mice bearing identical tumors, while cell lines that grow in vitro can be used for genetic manipulations. The introduction of human CRBN into these models allows for the study of IMiDs and cereblon based PROTACs in mice. New genetically engineered models based on germinal center cell activation of Nsd2 or Ccnd1 together with constitutive NFkB are being developed to model some of the important genetic subtypes of human multiple myeloma.
Collapse
Affiliation(s)
- Peter Leif Bergsagel
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ 85259.
| | - Marta Chesi
- Department of Medicine, Division of Hematology/Oncology, Mayo Clinic Arizona, Scottsdale, AZ 85259
| |
Collapse
|
2
|
Yu H, Wu C, He J, Zhang Y, Cao Q, Lan H, Li H, Xu C, Chen C, Li R, Zheng B. Metabolic reprogramming induced by PSMA4 overexpression facilitates bortezomib resistance in multiple myeloma. Ann Hematol 2025; 104:1023-1037. [PMID: 39755751 PMCID: PMC11971155 DOI: 10.1007/s00277-024-06163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
Multiple myeloma(MM) remains incurable with high relapse and chemoresistance rates. Differentially expressed genes(DEGs) between newly diagnosed myeloma and secondary plasma cell leukemia(sPCL) were subjected to a weighted gene co-expression network analysis(WGCNA). Drug resistant myeloma cell lines were established. Seahorse XF analyzer was applied to detect the metabolism reprogramming associated with the hub gene. The metabolic relevance and the underlying mechanism of the hub gene in myeloma resistance were explored via in vitro experiments. A total of 1310 DEGs were used to construct five co-expression modules. Gene function enrichment analysis demonstrated that candidate hub genes were closely related to oxidative phosphorylation. We performed prognostic analysis and identified PSMA4 as the key hub gene related to the extramedullary invasion of myeloma. The in vitro experiments demonstrated bortezomib resistant myeloma cell lines exhibited high PSMA4 expression, improved oxidative phosphorylation activity with increased ROS level. PSMA4 knockdown re-sensitize resistant myeloma cells via suppressing oxidative phosphorylation activity. Further investigation revealed that PSMA4 induced a hypoxia state which activated the HIF-1α signaling pathway. PSMA4 induces metabolic reprogramming by improving oxidative phosphorylation activity which accounts for the hypoxia state in myeloma cell. The activated HIF-1α signaling pathway causes bortezomib resistance via promoting anti-apoptotic activity in myeloma.
Collapse
Affiliation(s)
- Han Yu
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Chengli Wu
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Jie He
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Yajun Zhang
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Qiqi Cao
- Department of Oncology, 971 Hospital of PLA Navy, Qingdao, 266071, China
| | - Hongyan Lan
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Hongshan Li
- Department of Oncology, Navy No.905 Hospital of PLA, Naval Medical University, Shanghai, 200052, China
| | - Chengyang Xu
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Chen Chen
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China
| | - Rong Li
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
| | - Bo Zheng
- Department of Hematology, Navy Medical Center of PLA, Naval Medical University, No. 338 West Huaihai Road, Changning District, Shanghai, 200052, China.
| |
Collapse
|
3
|
Zhan L, Yuan D, Ge X, Ding M, Wang J, Zhou X, Wang X. Serum indicators in functional high-risk multiple myeloma patients undertaking proteasome inhibitors therapy: a retrospective study. Hematology 2024; 29:2293579. [PMID: 38205814 DOI: 10.1080/16078454.2023.2293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 10/07/2023] [Indexed: 01/12/2024] Open
Abstract
OBJECTIVES Multiple myeloma (MM) is a class of malignant plasma cell diseases. An increasing application of autologous stem cell transplantation (ASCT) and anti-myeloma agents represented by proteasome inhibitors (PIs) has improved the response rates and survival of MM patients. Patients progressing within 12 months were recently categorized with functional high-risk (FHR), which could not be clarified by existing genetic risk factors, with poor outcomes. Our study aimed to investigate clinical indices related to FHR and seek prognostic roles in transplant-eligible MM patients. METHODS Demographic and individual baseline clinical characteristics were compared by using the Pearson's chi-square and Mann-Whitney U test. Progression-free survival (PFS) and overall survival (OS) were described by Kaplan-Meier estimates and compared using the log-rank test. Logistic regression analysis was used to assess the association of baseline characteristics at MM diagnosis with FHR status. RESULTS From 18th January 2010 to 1st December 2022, 216 patients were included and divided into two groups according to the FHR status. There was no difference in baseline data between the two groups. Renal impairment (RI, Scr > 2 mg/dL) was common in MM patients and made sense in FHR status. AST levels were validated as independent predictors for FHR status (p = 0.019). DISCUSSION Patients with RI or higher AST levels (AST > 40 U/L) tended to have worse outcomes. However, transplants had apparently improved prognoses. CONCLUSION Therefore, in the PIs era, transplantations are still effective therapies for transplant-eligible MM patients.
Collapse
Affiliation(s)
- Linquan Zhan
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
| | - Dai Yuan
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Xueling Ge
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Mei Ding
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Jianhong Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
| | - Xiangxiang Zhou
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, People's Republic of China
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, People's Republic of China
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Gutiérrez-González A, Del Hierro I, Cariaga-Martínez AE. Advancements in Multiple Myeloma Research: High-Throughput Sequencing Technologies, Omics, and the Role of Artificial Intelligence. BIOLOGY 2024; 13:923. [PMID: 39596878 PMCID: PMC11592186 DOI: 10.3390/biology13110923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 11/29/2024]
Abstract
Multiple myeloma is a complex and challenging type of blood cancer that affects plasma cells in the bone marrow. In recent years, the development of advanced research techniques, such as omics approaches-which involve studying large sets of biological data like genes and proteins-and high-throughput sequencing technologies, has allowed researchers to analyze vast amounts of genetic information rapidly and gain new insights into the disease. Additionally, the advent of artificial intelligence tools has accelerated data analysis, enabling more accurate predictions and improved treatment strategies. This review aims to highlight recent research advances in multiple myeloma made possible by these novel techniques and to provide guidance for researchers seeking effective approaches in this field.
Collapse
Affiliation(s)
| | | | - Ariel Ernesto Cariaga-Martínez
- DS-OMICS—Data Science and Omics, AI-Driven Biomedicine Group, Universidad Alfonso X el Sabio, 28619 Villanueva de la Cañada, Spain; (A.G.-G.); (I.D.H.)
| |
Collapse
|
5
|
Li F, Liu J, Fu Y. Acquired Bortezomib Resistance in Multiple Myeloma: From Mechanisms to Strategy. Curr Treat Options Oncol 2024; 25:1354-1365. [PMID: 39432172 DOI: 10.1007/s11864-024-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
OPINION STATEMENT Multiple myeloma (MM) is a heterogeneous plasma cell tumor with a survival period of several months to over ten years. Despite the development of various new drugs, MM is still incurable and recurs repeatedly. Bortezomib, a landmark event in the history of MM treatment, has dramatically improved the prognosis of patients with MM. Although proteasome inhibitors (PIs) represented by bortezomib, have greatly prolonged MM survival, unfortunately, almost all MM will develop bortezomib resistance, leading to relapse with a shorter survival. It has been reported that both the tumor microenvironment and myeloma cells drive bortezomib resistance. Multiple treatment methods have been attempted to overcome bortezomib resistance, but unfortunately, there has been no breakthrough. It is believed that the key resistance mechanism has not yet been discovered. A deeper understanding of the mechanism of bortezomib resistance and strategies to overcome it can help identify key resistance mechanisms and further improve the prognosis of MM.
Collapse
Affiliation(s)
- Fangfang Li
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
6
|
Vijayakumar S, Dhakshanamoorthy R, Baskaran A, Sabari Krishnan B, Maddaly R. Drug resistance in human cancers - Mechanisms and implications. Life Sci 2024; 352:122907. [PMID: 39004273 DOI: 10.1016/j.lfs.2024.122907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024]
Abstract
Cancers have complex etiology and pose a significant impact from the health care perspective apart from the socio-economic implications. The enormity of challenge posed by cancers can be understood from the fact that clinical trials for cancer therapy has yielded minimum potential promises compared to those obtained for other diseases. Surgery, chemotherapy and radiotherapy continue to be the mainstay therapeutic options for cancers. Among the challenges posed by these options, induced resistance to chemotherapeutic drugs is probably the most significant contributor for poor prognosis and ineffectiveness of the therapy. Drug resistance is a property exhibited by almost all cancer types including carcinomas, leukemias, myelomas, sarcomas and lymphomas. The mechanisms by which drug resistance is induced include the factors within the tumor microenvironment, mutations in the genes responsible for drug metabolism, changes in the surface drug receptors and increased drug efflux. We present here comprehensively the drug resistance in cancers along with their mechanisms. Also, apart from resistance to regularly used chemotherapeutic drugs, we present resistance induction to new generation therapeutic agents such as monoclonal antibodies. Finally, we have discussed the experimental approaches to understand the mechanisms underlying induction of drug resistance and potential ways to mitigate induced drug resistance.
Collapse
Affiliation(s)
- Sudikshaa Vijayakumar
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Raveena Dhakshanamoorthy
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Akshaya Baskaran
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - B Sabari Krishnan
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India
| | - Ravi Maddaly
- Department of Human Genetics, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu 600116, India.
| |
Collapse
|
7
|
Tyrna P, Procyk G, Szeleszczuk Ł, Młynarczuk-Biały I. Different Strategies to Overcome Resistance to Proteasome Inhibitors-A Summary 20 Years after Their Introduction. Int J Mol Sci 2024; 25:8949. [PMID: 39201634 PMCID: PMC11354503 DOI: 10.3390/ijms25168949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Proteasome inhibitors (PIs), bortezomib, carfilzomib, and ixazomib, are the first-line treatment for multiple myeloma (MM). They inhibit cytosolic protein degradation in cells, which leads to the accumulation of misfolded and malfunctioned proteins in the cytosol and endoplasmic reticulum, resulting in cell death. Despite being a breakthrough in MM therapy, malignant cells develop resistance to PIs via different mechanisms. Understanding these mechanisms drives research toward new anticancer agents to overcome PI resistance. In this review, we summarize the mechanism of action of PIs and how MM cells adapt to these drugs to develop resistance. Finally, we explore these mechanisms to present strategies to interfere with PI resistance. The strategies include new inhibitors of the ubiquitin-proteasome system, drug efflux inhibitors, autophagy disruption, targeting stress response mechanisms, affecting survival and cell cycle regulators, bone marrow microenvironment modulation, and immunotherapy. We list potential pharmacological targets examined in in vitro, in vivo, and clinical studies. Some of these strategies have already provided clinicians with new anti-MM medications, such as panobinostat and selinexor. We hope that further exploration of the subject will broaden the range of therapeutic options and improve patient outcomes.
Collapse
Affiliation(s)
- Paweł Tyrna
- Histology and Embryology Students’ Science Association, Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland;
| | - Grzegorz Procyk
- 1st Chair and Department of Cardiology, Medical University of Warsaw, Banacha 1A, 02-097 Warsaw, Poland;
| | - Łukasz Szeleszczuk
- Department of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 Str., 02-093 Warsaw, Poland;
| | - Izabela Młynarczuk-Biały
- Department of Histology and Embryology, Faculty of Medicine, Warsaw Medical University, Chalubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
8
|
Haertle L, Munawar U, Hernández HNC, Arroyo-Barea A, Heckel T, Cuenca I, Martin L, Höschle C, Müller N, Vogt C, Bischler T, Del Campo PL, Han S, Buenache N, Zhou X, Bassermann F, Waldschmidt J, Steinbrunn T, Rasche L, Stühmer T, Martinez-Lopez J, Martin Kortüm K, Barrio S. Clonal competition assays identify fitness signatures in cancer progression and resistance in multiple myeloma. Hemasphere 2024; 8:e110. [PMID: 38993727 PMCID: PMC11237348 DOI: 10.1002/hem3.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/15/2024] [Accepted: 05/09/2024] [Indexed: 07/13/2024] Open
Abstract
Multiple myeloma (MM) is a genetically heterogeneous disease and the management of relapses is one of the biggest clinical challenges. TP53 alterations are established high-risk markers and are included in the current disease staging criteria. KRAS is the most frequently mutated gene affecting around 20% of MM patients. Applying Clonal Competition Assays (CCA) by co-culturing color-labeled genetically modified cell models, we recently showed that mono- and biallelic alterations in TP53 transmit a fitness advantage to the cells. Here, we report a similar dynamic for two mutations in KRAS (G12A and A146T), providing a biological rationale for the high frequency of KRAS and TP53 alterations at MM relapse. Resistance mutations, on the other hand, did not endow MM cells with a general fitness advantage but rather presented a disadvantage compared to the wild-type. CUL4B KO and IKZF1 A152T transmit resistance against immunomodulatory agents, PSMB5 A20T to proteasome inhibition. However, MM cells harboring such lesions only outcompete the culture in the presence of the respective drug. To better prevent the selection of clones with the potential of inducing relapse, these results argue in favor of treatment-free breaks or a switch of the drug class given as maintenance therapy. In summary, the fitness benefit of TP53 and KRAS mutations was not treatment-related, unlike patient-derived drug resistance alterations that may only induce an advantage under treatment. CCAs are suitable models for the study of clonal evolution and competitive (dis)advantages conveyed by a specific genetic lesion of interest, and their dependence on external factors such as the treatment.
Collapse
Affiliation(s)
- Larissa Haertle
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
- Department of Medicine III, Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Umair Munawar
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Hipólito N C Hernández
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Andres Arroyo-Barea
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
- Department of Biochemistry and Molecular Biology, Pharmacy School Complutense University Madrid Madrid Spain
| | - Tobias Heckel
- Core Unit Systems Medicine University of Würzburg Würzburg Germany
| | - Isabel Cuenca
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Lucia Martin
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Carlotta Höschle
- TranslaTUM, Center for Translational Cancer Research Technical University of Munich Munich Germany
| | - Nicole Müller
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Cornelia Vogt
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | | | - Paula L Del Campo
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Seungbin Han
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Natalia Buenache
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - Xiang Zhou
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Florian Bassermann
- Department of Medicine III, Klinikum rechts der Isar Technical University of Munich Munich Germany
- TranslaTUM, Center for Translational Cancer Research Technical University of Munich Munich Germany
| | - Johannes Waldschmidt
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Torsten Steinbrunn
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
- Department of Medical Oncology Dana-Farber Cancer Institute, Harvard Medical School Boston Massachusetts USA
| | - Leo Rasche
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Thorsten Stühmer
- Comprehensive Cancer Center Mainfranken University Hospital Würzburg Würzburg Germany
| | - Joaquin Martinez-Lopez
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| | - K Martin Kortüm
- Department of Internal Medicine II University Hospital Würzburg Würzburg Germany
| | - Santiago Barrio
- Department of Hematology Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center (CNIO), Complutense University Madrid Madrid Spain
| |
Collapse
|
9
|
Heestermans R, Schots R, De Becker A, Van Riet I. Liquid Biopsies as Non-Invasive Tools for Mutation Profiling in Multiple Myeloma: Application Potential, Challenges, and Opportunities. Int J Mol Sci 2024; 25:5208. [PMID: 38791247 PMCID: PMC11121516 DOI: 10.3390/ijms25105208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Over the last decades, the survival of multiple myeloma (MM) patients has considerably improved. However, despite the availability of new treatments, most patients still relapse and become therapy-resistant at some point in the disease evolution. The mutation profile has an impact on MM patients' outcome, while typically evolving over time. Because of the patchy bone marrow (BM) infiltration pattern, the analysis of a single bone marrow sample can lead to an underestimation of the known genetic heterogeneity in MM. As a result, interest is shifting towards blood-derived liquid biopsies, which allow for a more comprehensive and non-invasive genetic interrogation without the discomfort of repeated BM aspirations. In this review, we compare the application potential for mutation profiling in MM of circulating-tumor-cell-derived DNA, cell-free DNA and extracellular-vesicle-derived DNA, while also addressing the challenges associated with their use.
Collapse
Affiliation(s)
- Robbe Heestermans
- Department of Clinical Biology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Rik Schots
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ann De Becker
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ivan Van Riet
- Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussels, Belgium
- Translational Oncology Research Center (Team Hematology and Immunology), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| |
Collapse
|
10
|
Galas-Filipowicz D, Chavda SJ, Gong JN, Huang DCS, Khwaja A, Yong K. Co-operation of MCL-1 and BCL-X L anti-apoptotic proteins in stromal protection of MM cells from carfilzomib mediated cytotoxicity. Front Oncol 2024; 14:1394393. [PMID: 38651147 PMCID: PMC11033393 DOI: 10.3389/fonc.2024.1394393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Introduction BCL-2 family proteins are important for tumour cell survival and drug resistance in multiple myeloma (MM). Although proteasome inhibitors are effective anti-myeloma drugs, some patients are resistant and almost all eventually relapse. We examined the function of BCL-2 family proteins in stromal-mediated resistance to carfilzomib-induced cytotoxicity in MM cells. Methods Co-cultures employing HS5 stromal cells were used to model the interaction with stroma. MM cells were exposed to CFZ in a 1-hour pulse method. The expression of BCL-2 family proteins was assessed by flow cytometry and WB. Pro-survival proteins: MCL-1, BCL-2 and BCL-XL were inhibited using S63845, ABT-199 and A-1331852 respectively. Changes in BIM binding partners were examined by immunoprecipitation and WB. Results CFZ induced dose-dependent cell death of MM cells, primarily mediated by apoptosis. Culture of MM cells on HS-5 stromal cells resulted in reduced cytotoxicity to CFZ in a cell contact-dependent manner, upregulated expression of MCL-1 and increased dependency on BCL-XL. Inhibiting BCL-XL or MCL-1 with BH-3 mimetics abrogated stromal-mediated protection only at high doses, which may not be achievable in vivo. However, combining BH-3 mimetics at sub-therapeutic doses, which alone were without effect, significantly enhanced CFZ-mediated cytotoxicity even in the presence of stroma. Furthermore, MCL-1 inhibition led to enhanced binding between BCL-XL and BIM, while blocking BCL-XL increased MCL-1/BIM complex formation, indicating the cooperative role of these proteins. Conclusion Stromal interactions alter the dependence on BCL-2 family members, providing a rationale for dual inhibition to abrogate the protective effect of stroma and restore sensitivity to CFZ.
Collapse
Affiliation(s)
| | - Selina J. Chavda
- Cancer Institute, University College London, London, United Kingdom
| | - Jia-Nan Gong
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - David C. S. Huang
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Asim Khwaja
- Cancer Institute, University College London, London, United Kingdom
| | - Kwee Yong
- Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
11
|
Zeissig MN, Hewett DR, Mrozik KM, Panagopoulos V, Wallington-Gates CT, Spencer A, Dold SM, Engelhardt M, Vandyke K, Zannettino ACW. Expression of the chemokine receptor CCR1 decreases sensitivity to bortezomib in multiple myeloma cell lines. Leuk Res 2024; 139:107469. [PMID: 38479337 DOI: 10.1016/j.leukres.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND The proteasome inhibitor bortezomib is one of the primary therapies used for the haematological malignancy multiple myeloma (MM). However, intrinsic or acquired resistance to bortezomib, via mechanisms that are not fully elucidated, is a barrier to successful treatment in many patients. Our previous studies have shown that elevated expression of the chemokine receptor CCR1 in MM plasma cells in newly diagnosed MM patients is associated with poor prognosis. Here, we hypothesised that the poor prognosis conferred by CCR1 expression is, in part, due to a CCR1-mediated decrease in MM plasma cell sensitivity to bortezomib. METHODS In order to investigate the role of CCR1 in MM cells, CCR1 was knocked out in human myeloma cell lines OPM2 and U266 using CRISPR-Cas9. Additionally, CCR1 was overexpressed in the mouse MM cell line 5TGM1. The effect of bortezomib on CCR1 knockout or CCR1-overexpressing cells was then assessed by WST-1 assay, with or without CCL3 siRNA knockdown or addition of recombinant human CCL3. NSG mice were inoculated intratibially with OPM2-CCR1KO cells and were treated with 0.7 mg/kg bortezomib or vehicle twice per week for 3 weeks and GFP+ tumour cells in the bone marrow were quantitated by flow cytometry. The effect of CCR1 overexpression or knockout on unfolded protein response pathways was assessed using qPCR for ATF4, HSPA5, XBP1, ERN1 and CHOP and Western blot for IRE1α and p-Jnk. RESULTS Using CCR1 overexpression or CRIPSR-Cas9-mediated CCR1 knockout in MM cell lines, we found that CCR1 expression significantly decreases sensitivity to bortezomib in vitro, independent of the CCR1 ligand CCL3. In addition, CCR1 knockout rendered the human MM cell line OPM2 more sensitive to bortezomib in an intratibial MM model in NSG mice in vivo. Moreover, CCR1 expression negatively regulated the expression of the unfolded protein response receptor IRE1 and downstream target gene XBP1, suggesting this pathway may be responsible for the decreased bortezomib sensitivity of CCR1-expressing cells. CONCLUSIONS Taken together, these studies suggest that CCR1 expression may be associated with decreased response to bortezomib in MM cell lines.
Collapse
Affiliation(s)
- Mara N Zeissig
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Krzysztof M Mrozik
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Vasilios Panagopoulos
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Craig T Wallington-Gates
- College of Medicine and Public Health, Flinders University, Adelaide, Australia; Flinders Medical Centre, Southern Adelaide Local Health Network, Adelaide, Australia
| | - Andrew Spencer
- Department of Haematology, Alfred Health-Monash University, Melbourne, Australia
| | - Sandra M Dold
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- Department of Hematology, Oncology and Stem Cell Transplantation, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia.
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia; Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia; Central Adelaide Local Health Network, Adelaide, Australia
| |
Collapse
|
12
|
Mitsiades CS. Proteasome Inhibitors in Multiple Myeloma: Biological Insights on Mechanisms of Action or Resistance Informed by Functional Genomics. Hematol Oncol Clin North Am 2024; 38:321-336. [PMID: 38278626 DOI: 10.1016/j.hoc.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
During the last 20 years, proteasome inhibitors have been a cornerstone for the therapeutic management of multiple myeloma (MM). This review highlights how MM research has evolved over time in terms of our understanding of the mechanistic basis for the pronounced clinical activity of proteasome inhibitors in MM, compared with the limited clinical applications of this drug class outside the setting of plasma cell dyscrasias.
Collapse
Affiliation(s)
- Constantine S Mitsiades
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, USA; Ludwig Center at Harvard, Boston, MA, USA.
| |
Collapse
|
13
|
Li M, Bennett MK, Toubia J, Pope VS, Tea MN, Tamang S, Samuel MS, Anderson PH, Gliddon BL, Powell JA, Pitson SM. An orthotopic syngeneic mouse model of bortezomib-resistant multiple myeloma. Br J Haematol 2024; 204:566-570. [PMID: 38053270 DOI: 10.1111/bjh.19240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/11/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
While bortezomib has significant benefits in multiple myeloma (MM) therapy, the disease remains incurable due to the invariable development of bortezomib resistance. This emphasises the need for advanced models for preclinical evaluation of new therapeutic approaches for bortezomib-resistant MM. Here, we describe the development of an orthotopic syngeneic bortezomib-resistant MM mouse model based on the most well-characterised syngeneic MM mouse model derived from spontaneous MM-forming C57BL/KaLwRij mice. Using bortezomib-resistant 5TGM1 cells, we report and characterise a robust syngeneic mouse model of bortezomib-resistant MM that is well suited to the evaluation of new therapeutic approaches for proteasome inhibitor-resistant MM.
Collapse
Affiliation(s)
- Manjun Li
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Victoria S Pope
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Melinda N Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sarah Tamang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Paul H Anderson
- Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Moriya S, Kazama H, Hino H, Takano N, Hiramoto M, Aizawa S, Miyazawa K. Clarithromycin overcomes stromal cell-mediated drug resistance against proteasome inhibitors in myeloma cells via autophagy flux blockage leading to high NOXA expression. PLoS One 2023; 18:e0295273. [PMID: 38039297 PMCID: PMC10691716 DOI: 10.1371/journal.pone.0295273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/19/2023] [Indexed: 12/03/2023] Open
Abstract
We previously reported that macrolide antibiotics, such as clarithromycin (CAM), blocked autophagy flux, and simultaneous proteasome and autophagy inhibition by bortezomib (BTZ) plus CAM resulted in enhanced apoptosis induction in multiple myeloma (MM) cells via increased endoplasmic reticulum (ER) stress loading. However, in actual therapeutic settings, cell adhesion-mediated drug resistance between bone marrow stromal cells (BMSC) and MM cells has been known to be a barrier to treatment. To investigate whether CAM could enhance BTZ-induced cytotoxicity in MM cells under direct cell adhesion with BMSC, we established a co-culture system of EGFP-labeled MM cells with BMSC. The cytotoxic effect of BTZ on MM cells was diminished by its interaction with BMSC; however, the attenuated cytotoxicity was recovered by the co-administration of CAM, which upregulates ER stress loading and NOXA expression. Knockout of NOXA in MM cells canceled the enhanced cell death by CAM, indicating that NOXA is a key molecule for cell death induction by the co-administration of CAM. Since NOXA is degraded by autophagy as well as proteasomes, blocking autophagy with CAM resulted in the sustained upregulation of NOXA in MM cells co-cultured with BMSC in the presence of BTZ. Our data suggest that BMSC-associated BTZ resistance is mediated by the attenuation of ER stress loading. However, the addition of CAM overcomes BMSC-associated resistance via upregulation of NOXA by concomitantly blocking autophagy-mediated NOXA degradation and transcriptional activation of NOXA by ER stress loading.
Collapse
Affiliation(s)
- Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Shin Aizawa
- Division of Anatomical Science, Department of Functional Morphology, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
15
|
Burger KL, Fernandez MR, Meads MB, Sudalagunta P, Oliveira PS, Renatino Canevarolo R, Alugubelli RR, Tungsevik A, De Avila G, Silva M, Graeter AI, Dai HA, Vincelette ND, Prabhu A, Magaletti D, Yang C, Li W, Kulkarni A, Hampton O, Koomen JM, Roush WR, Monastyrskyi A, Berglund AE, Silva AS, Cleveland JL, Shain KH. CK1δ and CK1ε Signaling Sustains Mitochondrial Metabolism and Cell Survival in Multiple Myeloma. Cancer Res 2023; 83:3901-3919. [PMID: 37702657 PMCID: PMC10690099 DOI: 10.1158/0008-5472.can-22-2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/09/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
Multiple myeloma remains an incurable malignancy due to acquisition of intrinsic programs that drive therapy resistance. Here we report that casein kinase-1δ (CK1δ) and CK1ε are therapeutic targets in multiple myeloma that are necessary to sustain mitochondrial metabolism. Specifically, the dual CK1δ/CK1ε inhibitor SR-3029 had potent in vivo and ex vivo anti-multiple myeloma activity, including against primary multiple myeloma patient specimens. RNA sequencing (RNA-seq) and metabolic analyses revealed inhibiting CK1δ/CK1ε disables multiple myeloma metabolism by suppressing genes involved in oxidative phosphorylation (OxPhos), reducing citric acid cycle intermediates, and suppressing complexes I and IV of the electron transport chain. Finally, sensitivity of multiple myeloma patient specimens to SR-3029 correlated with elevated expression of mitochondrial genes, and RNA-seq from 687 multiple myeloma patient samples revealed that increased CSNK1D, CSNK1E, and OxPhos genes correlate with disease progression and inferior outcomes. Thus, increases in mitochondrial metabolism are a hallmark of multiple myeloma progression that can be disabled by targeting CK1δ/CK1ε. SIGNIFICANCE CK1δ and CK1ε are attractive therapeutic targets in multiple myeloma whose expression increases with disease progression and connote poor outcomes, and that are necessary to sustain expression of genes directing OxPhos.
Collapse
Affiliation(s)
- Karen L. Burger
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mario R. Fernandez
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Mark B. Meads
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Praneeth Sudalagunta
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Paula S. Oliveira
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Rafael Renatino Canevarolo
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Alexandre Tungsevik
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Gabe De Avila
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Maria Silva
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Allison I. Graeter
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Nicole D. Vincelette
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Antony Prabhu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Dario Magaletti
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Chunying Yang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Weimin Li
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | | | - John M. Koomen
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | | | - Andrii Monastyrskyi
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Anders E. Berglund
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Ariosto S. Silva
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John L. Cleveland
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Kenneth H. Shain
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
16
|
Kelley ME, Berman AY, Stirling DR, Cimini BA, Han Y, Singh S, Carpenter AE, Kapoor TM, Way GP. High-content microscopy reveals a morphological signature of bortezomib resistance. eLife 2023; 12:e91362. [PMID: 37753907 PMCID: PMC10584373 DOI: 10.7554/elife.91362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023] Open
Abstract
Drug resistance is a challenge in anticancer therapy. In many cases, cancers can be resistant to the drug prior to exposure, that is, possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug resistance. To test this hypothesis, we used HCT116 cells, a mismatch repair-deficient cancer cell line, to isolate clones that were resistant or sensitive to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then expanded these clones and measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features that differed between resistant and sensitive cells. We used these features to generate a morphological signature of bortezomib resistance. We then employed this morphological signature to analyze a set of HCT116 clones (five resistant and five sensitive) that had not been included in the signature training dataset, and correctly predicted sensitivity to bortezomib in seven cases, in the absence of drug treatment. This signature predicted bortezomib resistance better than resistance to other drugs targeting the ubiquitin-proteasome system, indicating specificity for mechanisms of resistance to bortezomib. Our results establish a proof-of-concept framework for the unbiased analysis of drug resistance using high-content microscopy of cancer cells, in the absence of drug treatment.
Collapse
Affiliation(s)
- Megan E Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller UniversityNew York CityUnited States
| | - Adi Y Berman
- Laboratory of Chemistry and Cell Biology, The Rockefeller UniversityNew York CityUnited States
| | | | - Beth A Cimini
- Imaging Platform, Broad InstituteCambridgeUnited States
| | - Yu Han
- Imaging Platform, Broad InstituteCambridgeUnited States
| | | | | | - Tarun M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller UniversityNew York CityUnited States
| | - Gregory P Way
- Imaging Platform, Broad InstituteCambridgeUnited States
- Department of Biomedical Informatics, University of Colorado Anschutz Medical CampusAuroraUnited States
| |
Collapse
|
17
|
Agostini M, Traldi P, Hamdan M. Mass Spectrometry-Based Proteomics: Analyses Related to Drug-Resistance and Disease Biomarkers. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1722. [PMID: 37893440 PMCID: PMC10608342 DOI: 10.3390/medicina59101722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023]
Abstract
Mass spectrometry-based proteomics is a key player in research efforts to characterize aberrant epigenetic alterations, including histone post-translational modifications and DNA methylation. Data generated by this approach complements and enrich datasets generated by genomic, epigenetic and transcriptomics approaches. These combined datasets can provide much-needed information on various mechanisms responsible for drug resistance, the discovery and validation of potential biomarkers for different diseases, the identification of signaling pathways, and genes and enzymes to be targeted by future therapies. The increasing use of high-resolution, high-accuracy mass spectrometers combined with more refined protein labeling and enrichment procedures enhanced the role of this approach in the investigation of these epigenetic modifications. In this review, we discuss recent MS-based studies, which are contributing to current research efforts to understand certain mechanisms behind drug resistance to therapy. We also discuss how these MS-based analyses are contributing to biomarkers discovery and validation.
Collapse
Affiliation(s)
| | - Pietro Traldi
- Istituto di Ricerca Pediatrica Città della Speranza, Corso Stati Uniti 4, 35100 Padova, Italy; (M.A.); (M.H.)
| | | |
Collapse
|
18
|
Brünnert D, Seupel R, Goyal P, Bach M, Schraud H, Kirner S, Köster E, Feineis D, Bargou RC, Schlosser A, Bringmann G, Chatterjee M. Ancistrocladinium A Induces Apoptosis in Proteasome Inhibitor-Resistant Multiple Myeloma Cells: A Promising Therapeutic Agent Candidate. Pharmaceuticals (Basel) 2023; 16:1181. [PMID: 37631095 PMCID: PMC10459547 DOI: 10.3390/ph16081181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The N,C-coupled naphthylisoquinoline alkaloid ancistrocladinium A belongs to a novel class of natural products with potent antiprotozoal activity. Its effects on tumor cells, however, have not yet been explored. We demonstrate the antitumor activity of ancistrocladinium A in multiple myeloma (MM), a yet incurable blood cancer that represents a model disease for adaptation to proteotoxic stress. Viability assays showed a potent apoptosis-inducing effect of ancistrocladinium A in MM cell lines, including those with proteasome inhibitor (PI) resistance, and in primary MM cells, but not in non-malignant blood cells. Concomitant treatment with the PI carfilzomib or the histone deacetylase inhibitor panobinostat strongly enhanced the ancistrocladinium A-induced apoptosis. Mass spectrometry with biotinylated ancistrocladinium A revealed significant enrichment of RNA-splicing-associated proteins. Affected RNA-splicing-associated pathways included genes involved in proteotoxic stress response, such as PSMB5-associated genes and the heat shock proteins HSP90 and HSP70. Furthermore, we found strong induction of ATF4 and the ATM/H2AX pathway, both of which are critically involved in the integrated cellular response following proteotoxic and oxidative stress. Taken together, our data indicate that ancistrocladinium A targets cellular stress regulation in MM and improves the therapeutic response to PIs or overcomes PI resistance, and thus may represent a promising potential therapeutic agent.
Collapse
Affiliation(s)
- Daniela Brünnert
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Raina Seupel
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Pankaj Goyal
- Department of Biotechnology, School of Life Sciences, Central University of Rajasthan, Bandar Sindri, Kishangarh 305817, India;
| | - Matthias Bach
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Heike Schraud
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Stefanie Kirner
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Eva Köster
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Doris Feineis
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Ralf C. Bargou
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97080 Würzburg, Germany
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, 97074 Würzburg, Germany
| | - Manik Chatterjee
- University Hospital of Würzburg, Comprehensive Cancer Center Mainfranken, Translational Oncology, 97080 Würzburg, Germany (M.C.)
| |
Collapse
|
19
|
Patiño-Escobar B, Talbot A, Wiita AP. Overcoming proteasome inhibitor resistance in the immunotherapy era. Trends Pharmacol Sci 2023; 44:507-518. [PMID: 37344251 DOI: 10.1016/j.tips.2023.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
Proteasome inhibitors (PIs) are a fascinating class of small molecules that disrupt protein homeostasis and are highly efficacious in the blood cancer multiple myeloma. However, PIs are not curative, and overcoming PI resistance to extend patient survival remains a major unmet need. Recent strategies to overcome PI resistance, including inhibiting alternative protein homeostasis pathways and targeting the mitochondrion as a nexus of metabolic adaptation to PIs, are gaining momentum. However, these focused approaches may be surpassed or even obviated by quickly emerging immunotherapy strategies that do not selectively target PI resistance mechanisms but are highly efficacious in PI-resistant disease, nonetheless. Informed by insights from these promising areas of research moving in parallel, we propose that pharmacological strategies to enforce immunotherapeutic vulnerabilities in resistant disease may provide a unified outlook to overcome PI resistance in a 'new era' of myeloma treatment.
Collapse
Affiliation(s)
- Bonell Patiño-Escobar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Alexis Talbot
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; INSERM U976, Institut de Recherche Saint Louis, Université de Paris, Paris, France
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA.
| |
Collapse
|
20
|
Kelley ME, Berman AY, Stirling DR, Cimini BA, Han Y, Singh S, Carpenter AE, Kapoor TM, Way GP. High-content microscopy reveals a morphological signature of bortezomib resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539137. [PMID: 37205516 PMCID: PMC10187224 DOI: 10.1101/2023.05.02.539137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Drug resistance is a challenge in anticancer therapy, particularly with targeted therapeutics and cytotoxic compounds. In many cases, cancers can be resistant to the drug prior to exposure, i.e., possess intrinsic drug resistance. However, we lack target-independent methods to anticipate resistance in cancer cell lines or characterize intrinsic drug resistance without a priori knowledge of its cause. We hypothesized that cell morphology could provide an unbiased readout of drug sensitivity prior to treatment. We therefore isolated clonal cell lines that were either sensitive or resistant to bortezomib, a well-characterized proteasome inhibitor and anticancer drug to which many cancer cells possess intrinsic resistance. We then measured high-dimensional single-cell morphology profiles using Cell Painting, a high-content microscopy assay. Our imaging- and computation-based profiling pipeline identified morphological features typically different between resistant and sensitive clones. These features were compiled to generate a morphological signature of bortezomib resistance, which correctly predicted the bortezomib treatment response in seven of ten cell lines not included in the training dataset. This signature of resistance was specific to bortezomib over other drugs targeting the ubiquitin-proteasome system. Our results provide evidence that intrinsic morphological features of drug resistance exist and establish a framework for their identification.
Collapse
Affiliation(s)
- M E Kelley
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - A Y Berman
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - D R Stirling
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - B A Cimini
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Y Han
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - S Singh
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - A E Carpenter
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - T M Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, USA
| | - G P Way
- Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO, USA
| |
Collapse
|
21
|
Allardyce D, Adu Mantey P, Szalecka M, Nkwo R, Loizidou EZ. Identification of a new class of proteasome inhibitors based on a naphthyl-azotricyclic-urea-phenyl scaffold. RSC Med Chem 2023; 14:573-582. [PMID: 36970145 PMCID: PMC10034219 DOI: 10.1039/d2md00404f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/06/2023] [Indexed: 02/09/2023] Open
Abstract
Proteasomes play an important role in protein degradation and regulation of many cellular pathways by maintaining protein balance. Inhibitors of proteasomes disrupt this balance affecting proteins that are key in malignancies and as such have found applications in the treatment of multiple myeloma and mantle cell lymphoma. However, resistance mechanisms have been reported for these proteasome inhibitors including mutations at the β5 site which necessitates the constant development of new inhibitors. In this work, we report the identification of a new class of proteasome inhibitors, polycyclic molecules bearing a naphthyl-azotricyclic-urea-phenyl scaffold, from screening of the ZINC library of natural products. The most potent of these compounds showed evidence of dose dependency through proteasome assays with IC50 values in the low micromolar range, and kinetic analysis revealed competitive binding at the β5c site with an estimated inhibition constant, K i, of 1.15 μM. Inhibition was also shown for the β5i site of the immunoproteasome at levels similar to those of the constitutive proteasome. Structure-activity relationship studies identified the naphthyl substituent to be crucial for activity and this was attributed to enhanced hydrophobic interactions within β5c. Further to this, halogen substitution within the naphthyl ring enhanced the activity and allowed for π-π interactions with Y169 in β5c and Y130 and F124 in β5i. The combined data highlight the importance of hydrophobic and halogen interactions in β5 binding and assist in the design of next generation inhibitors of proteasomes.
Collapse
Affiliation(s)
- Duncan Allardyce
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Priscilla Adu Mantey
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Monika Szalecka
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Robert Nkwo
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| | - Eriketi Z Loizidou
- Faculty of Science and Technology, Department of Natural Sciences, Middlesex University The Burroughs London NW4 4BT UK
| |
Collapse
|
22
|
Zhang R, Shi S. The role of NEDD4 related HECT-type E3 ubiquitin ligases in defective autophagy in cancer cells: molecular mechanisms and therapeutic perspectives. Mol Med 2023; 29:34. [PMID: 36918822 PMCID: PMC10015828 DOI: 10.1186/s10020-023-00628-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/21/2023] [Indexed: 03/15/2023] Open
Abstract
The homologous to the E6-AP carboxyl terminus (HECT)-type E3 ubiquitin ligases are the selective executers in the protein ubiquitination, playing a vital role in modulation of the protein function and stability. Evidence shows the regulatory role of HECT-type E3 ligases in various steps of the autophagic process. Autophagy is an intracellular digestive and recycling process that controls the cellular hemostasis. Defective autophagy is involved in tumorigenesis and has been detected in various types of cancer cells. A growing body of findings indicates that HECT-type E3 ligases, in particular members of the neural precursor cell expressed developmentally downregulated protein 4 (NEDD4) including NEDD4-1, NEDD4-L, SMURFs, WWPs, and ITCH, play critical roles in dysregulation or dysfunction of autophagy in cancer cells. The present review focuses on NEDD4 E3 ligases involved in defective autophagy in cancer cells and discusses their autophagic function in different cancer cells as well as substrates and the signaling pathways in which they participate, conferring a basis for the cancer treatment through the modulating of these E3 ligases.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Thoracic Surgery, The Seventh People's Hospital of Chengdu, Chengdu, 610021, Sichuan, People's Republic of China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, People's Republic of China.
| |
Collapse
|
23
|
Ansari-Pour N, Samur M, Flynt E, Gooding S, Towfic F, Stong N, Estevez MO, Mavrommatis K, Walker B, Morgan G, Munshi N, Avet-Loiseau H, Thakurta A. Whole-genome analysis identifies novel drivers and high-risk double-hit events in relapsed/refractory myeloma. Blood 2023; 141:620-633. [PMID: 36223594 PMCID: PMC10163277 DOI: 10.1182/blood.2022017010] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/20/2022] Open
Abstract
Large-scale analyses of genomic data from patients with newly diagnosed multiple myeloma (ndMM) have been undertaken, however, large-scale analysis of relapsed/refractory MM (rrMM) has not been performed. We hypothesize that somatic variants chronicle the therapeutic exposures and clonal structure of myeloma from ndMM to rrMM stages. We generated whole-genome sequencing (WGS) data from 418 tumors (386 patients) derived from 6 rrMM clinical trials and compared them with WGS from 198 unrelated patients with ndMM in a population-based case-control fashion. We identified significantly enriched events at the rrMM stage, including drivers (DUOX2, EZH2, TP53), biallelic inactivation (TP53), noncoding mutations in bona fide drivers (TP53BP1, BLM), copy number aberrations (CNAs; 1qGain, 17pLOH), and double-hit events (Amp1q-ISS3, 1qGain-17p loss-of-heterozygosity). Mutational signature analysis identified a subclonal defective mismatch repair signature enriched in rrMM and highly active in high mutation burden tumors, a likely feature of therapy-associated expanding subclones. Further analysis focused on the association of genomic aberrations enriched at different stages of resistance to immunomodulatory agent (IMiD)-based therapy. This analysis revealed that TP53, DUOX2, 1qGain, and 17p loss-of-heterozygosity increased in prevalence from ndMM to lenalidomide resistant (LENR) to pomalidomide resistant (POMR) stages, whereas enrichment of MAML3 along with immunoglobulin lambda (IGL) and MYC translocations distinguished POM from the LEN subgroup. Genomic drivers associated with rrMM are those that confer clonal selective advantage under therapeutic pressure. Their role in therapy evasion should be further evaluated in longitudinal patient samples, to confirm these associations with the evolution of clinical resistance and to identify molecular subsets of rrMM for the development of targeted therapies.
Collapse
Affiliation(s)
- Naser Ansari-Pour
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - Mehmet Samur
- Dana-Farber Cancer Institute, Boston, MA
- Harvard T.H. Chan School of Public Health, Boston, MA
| | - Erin Flynt
- Translational Medicine, Bristol Myers Squibb, Summit, NJ
| | - Sarah Gooding
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- National Institute for Health and Care Research Oxford Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
| | | | | | - Maria Ortiz Estevez
- Predictive Sciences, BMS Center for Innovation and Translational Research Europe, A Bristol Myers Squibb Company, Sevilla, Spain
| | | | - Brian Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN
| | - Gareth Morgan
- Perlmutter Cancer Center, NYU Langone Medical Center, New York, NY
| | - Nikhil Munshi
- Dana-Farber Cancer Institute, Boston, MA
- VA Boston Healthcare System, West Roxbury, MA
- Harvard Medical School, Boston, MA
| | | | - Anjan Thakurta
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, United Kingdom
- Bristol Myers Squibb, Summit, NJ
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Disease, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
24
|
Tandon V, Moreno R, Allmeroth K, Quinn J, Wiley S, Nicely L, Denzel M, Edwards J, de la Vega L, Banerjee S. Dual inhibition of HSF1 and DYRK2 impedes cancer progression. Biosci Rep 2023; 43:BSR20222102. [PMID: 36622366 PMCID: PMC9894012 DOI: 10.1042/bsr20222102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/10/2023] Open
Abstract
Preserving proteostasis is a major survival mechanism for cancer. Dual specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) is a key oncogenic kinase that directly activates the transcription factor heat-shock factor 1 (HSF1) and the 26S proteasome. Targeting DYRK2 has proven to be a tractable strategy to target cancers sensitive to proteotoxic stress; however, the development of HSF1 inhibitors remains in its infancy. Importantly, multiple other kinases have been shown to redundantly activate HSF1 that promoted ideas to directly target HSF1. The eventual development of direct HSF1 inhibitor KRIBB11 suggests that the transcription factor is indeed a druggable target. The current study establishes that concurrent targeting of HSF1 and DYRK2 can indeed impede cancer by inducing apoptosis faster than individual targetting. Furthermore, targeting the DYRK2-HSF1 axis induces death in proteasome inhibitor-resistant cells and reduces triple-negative breast cancer (TNBC) burden in ectopic and orthotopic xenograft models. Together the data indicate that cotargeting of kinase DYRK2 and its substrate HSF1 could prove to be a beneficial strategy in perturbing neoplastic malignancies.
Collapse
Affiliation(s)
- Vasudha Tandon
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Rita Moreno
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Kira Allmeroth
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
| | - Jean Quinn
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Sandra E. Wiley
- Department of Pharmacology, School of Medicine, University of California San Diego, CA 92093, U.S.A
| | - Lynden G. Nicely
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Martin S. Denzel
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931, Cologne, Germany
- Altos Labs, Cambridge Institute of Science, Granta Park, Great Abington, Cambridge CB21 6GP, U.K
| | - Joanne Edwards
- Unit of Gastrointestinal Oncology and Molecular Pathology, Institute of Cancer Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, U.K
| | - Laureano de la Vega
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| | - Sourav Banerjee
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, U.K
| |
Collapse
|
25
|
Genetic Alterations in Members of the Proteasome 26S Subunit, AAA-ATPase ( PSMC) Gene Family in the Light of Proteasome Inhibitor Resistance in Multiple Myeloma. Cancers (Basel) 2023; 15:cancers15020532. [PMID: 36672481 PMCID: PMC9856285 DOI: 10.3390/cancers15020532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
For the treatment of Multiple Myeloma, proteasome inhibitors are highly efficient and widely used, but resistance is a major obstacle to successful therapy. Several underlying mechanisms have been proposed but were only reported for a minority of resistant patients. The proteasome is a large and complex machinery. Here, we focus on the AAA ATPases of the 19S proteasome regulator (PSMC1-6) and their implication in PI resistance. As an example of cancer evolution and the acquisition of resistance, we conducted an in-depth analysis of an index patient by applying FISH, WES, and immunoglobulin-rearrangement sequencing in serial samples, starting from MGUS to newly diagnosed Multiple Myeloma to a PI-resistant relapse. The WES analysis uncovered an acquired PSMC2 Y429S mutation at the relapse after intensive bortezomib-containing therapy, which was functionally confirmed to mediate PI resistance. A meta-analysis comprising 1499 newly diagnosed and 447 progressed patients revealed a total of 36 SNVs over all six PSMC genes that were structurally accumulated in regulatory sites for activity such as the ADP/ATP binding pocket. Other alterations impact the interaction between different PSMC subunits or the intrinsic conformation of an individual subunit, consequently affecting the folding and function of the complex. Interestingly, several mutations were clustered in the central channel of the ATPase ring, where the unfolded substrates enter the 20S core. Our results indicate that PSMC SNVs play a role in PI resistance in MM.
Collapse
|
26
|
Haertle L, Barrio S, Munawar U, Han S, Zhou X, Simicek M, Vogt C, Truger M, Fernandez RA, Steinhardt M, Weingart J, Snaurova R, Nerreter S, Teufel E, Garitano-Trojaola A, Da Viá M, Ruiz-Heredia Y, Rosenwald A, Bolli N, Hajek R, Raab P, Raab MS, Weinhold N, Haferlach C, Haaf T, Martinez-Lopez J, Einsele H, Rasche L, Kortüm KM. Single-Nucleotide Variants and Epimutations Induce Proteasome Inhibitor Resistance in Multiple Myeloma. Clin Cancer Res 2023; 29:279-288. [PMID: 36282272 DOI: 10.1158/1078-0432.ccr-22-1161] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/08/2022] [Accepted: 10/21/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE Proteasome inhibitors (PI) are the backbone of various treatment regimens in multiple myeloma. We recently described the first in-patient point mutations affecting the 20S subunit PSMB5 underlying PI resistance. Notably, in vivo, the incidence of mutations in PSMB5 and other proteasome encoding genes is too low to explain the development of resistance in most of the affected patients. Thus, additional genetic and epigenetic alterations need to be explored. EXPERIMENTAL DESIGN We performed DNA methylation profiling by Deep Bisulfite Sequencing in PSMB5, PSMC2, PSMC5, PSMC6, PSMD1, and PSMD5, a subset of proteasome subunits that have hitherto been associated with PI resistance, recruited from our own previous research, the literature, or a meta-analysis on the frequency of somatic mutations. Methylation was followed up on gene expression level and by dual-luciferase reporter assay. The KMS11 cell line served as a model to functionally test the impact of demethylating agents. RESULTS We identified PSMD5 promoter hypermethylation and subsequent epigenetic gene silencing in 24% of PI refractory patients. Hypermethylation correlated with decreased expression and the regulatory impact of this region was functionally confirmed. In contrast, patients with newly diagnosed multiple myeloma, along with peripheral blood mononuclear cells and CD138+ plasma cells from healthy donors, generally show unmethylated profiles. CONCLUSIONS Under the selective pressure of PI treatment, multiple myeloma cells acquire methylation of the PSMD5 promoter silencing the PSMD5 gene expression. PSMD5 acts as a key orchestrator of proteasome assembly and its downregulation was described to increase the cell's proteolytic capacity. PSMD5 hypermethylation, therefore, represents a novel mechanism of PI tolerance in multiple myeloma.
Collapse
Affiliation(s)
- Larissa Haertle
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Department of Hematology, Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Complutense University Madrid, Madrid, Spain
| | - Santiago Barrio
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Department of Hematology, Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Complutense University Madrid, Madrid, Spain.,Altum Sequencing Co., Madrid, Spain
| | - Umair Munawar
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Seungbin Han
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Xiang Zhou
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Michal Simicek
- Haematology, Ostrava University Hospital, Ostrava, Czech Republic.,Faculty of Medicine, Ostrava University, Ostrava, Czech Republic
| | - Cornelia Vogt
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Rafael Alonso Fernandez
- Department of Hematology, Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Complutense University Madrid, Madrid, Spain
| | | | - Julia Weingart
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Renata Snaurova
- Haematology, Ostrava University Hospital, Ostrava, Czech Republic.,Faculty of Medicine, Ostrava University, Ostrava, Czech Republic
| | - Silvia Nerreter
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Eva Teufel
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | - Matteo Da Viá
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Yanira Ruiz-Heredia
- Department of Hematology, Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Complutense University Madrid, Madrid, Spain.,Altum Sequencing Co., Madrid, Spain
| | | | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.,Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Roman Hajek
- Haematology, Ostrava University Hospital, Ostrava, Czech Republic.,Faculty of Medicine, Ostrava University, Ostrava, Czech Republic
| | - Peter Raab
- Department of Orthopaedic Surgery, König Ludwig Haus, University of Würzburg, Würzburg, Germany
| | - Marc S Raab
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,Clinical Cooperation Unit Molecular Hematology/Oncology, Department of Internal Medicine V, Heidelberg University Hospital, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Niels Weinhold
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Joaquin Martinez-Lopez
- Department of Hematology, Hospital Universitario 12 de Octubre, Spanish National Cancer Research Center, Complutense University Madrid, Madrid, Spain.,Altum Sequencing Co., Madrid, Spain
| | - Hermann Einsele
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Leo Rasche
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - K Martin Kortüm
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
27
|
Yadav R, Nath UK, Celik I, Handu S, Jain N, Dhamija P. Identification and in-vitro analysis of potential proteasome inhibitors targeting PSMβ5 for multiple myeloma. Biomed Pharmacother 2023; 157:113963. [PMID: 36399828 DOI: 10.1016/j.biopha.2022.113963] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022] Open
Abstract
The proteasome subunit β5 (PSMβ5) is a chief target of proteasome inhibitors (PIs) for treatment of multiple myeloma (MM). The relevance of PSMβ5 mutations and their functional impact on the development of resistance to PIs have been demonstrated recently. Therefore, this present study deals with an in-depth E-pharmacophore based screening and repurposing of FDA-approved drugs that could target PSMβ5 for MM. Our molecular docking-based investigation revealed risedronate and zoledronate as potential alternative therapeutic molecules for targeting the PSMβ5 gene. Risedronate and zoledronate displayed high binding affinity (-9.51 and -8.56 kcal/mol respectively) to PSMβ5. Moreover, 100 ns molecular dynamics simulation analysis of docking complexes revealed risedronate and zoledronate with a superior binding free energies and stable interactions with PSMβ5. The RMSD plot shows that the risedronate-PSMβ5 (mean: 0.24 nm) and zoledronate-PSMβ5 (mean: 0.25 nm) complexes are identical and stays stable until 100 ns. We further validated the activity of zoledronate in MM cell lines RPMI8226 and U266 where zoledronate showed significant anti-proliferative and apoptotic activity. Importantly, zoledronate showed an enhanced anti-proliferative activity when combined with bortezomib in MM cell lines. Thus, this study demonstrates that combining bortezomib with zoledronate could have a significant impact on reducing MM cell growth and can be an alternative strategy for treating MM.
Collapse
Affiliation(s)
- Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India.
| | - Uttam Kumar Nath
- Department of Medical Oncology/Haematology, All India Institute of Medical Sciences, Rishikesh 249203, India.
| | - Ismail Celik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Erciyes University, Kayseri, Turkey.
| | - Shailendra Handu
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India.
| | - Neeraj Jain
- Division of Cancer Biology, Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Puneet Dhamija
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India.
| |
Collapse
|
28
|
Wan S, Cao J, Chen S, Yang J, Wang H, Wang C, Li K, Yang L. Construction of noninvasive prognostic model of bladder cancer patients based on urine proteomics and screening of natural compounds. J Cancer Res Clin Oncol 2023; 149:281-296. [PMID: 36562811 DOI: 10.1007/s00432-022-04524-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Bladder cancer (BCa) has a high incidence and recurrence rate worldwide. So far, there is no noninvasive detection of BCa therapy and prognosis based on urine multi-omics. Therefore, it is necessary to explore noninvasive predictive models and novel treatment modalities for BCa. METHODS First, we performed protein analysis of urine from five BCa patients and five healthy individuals using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Combining multi-omics data to mine particular and sensitive molecules to predict BCa prognosis. Second, urine proteomics data were combined with TCGA transcriptome data to select differential genes that were specifically highly expressed in urine and tissues. Further, the Lasso equation was used to screen specific molecules to construct a noninvasive prediction model of BCa. Finally, natural compounds of specific molecules were selected by combined network pharmacology and molecular docking to complete molecular structure docking. RESULTS A noninvasive predictive model was constructed using PSMB5, P4HB, S100A16, GET3, CNP, TFRC, DCXR, and MPZL1, specific molecules screened by multi-omics, and clinical features, which had good predictive value at 1, 3, and 5 years of prediction. High expression of these target genes suggests a poor prognosis in patients with BCa, and they were mainly involved in cell adhesion molecules and the IGF pathway. In addition, the corresponding drugs and natural compounds were selected by network pharmacology, and the molecular structure 7NHT of PSMB5 was found to be well docked to Ellagic acid, a natural compound in Hetaoren that we found. The 3D structure 6I7S of P4HB was able to bind to Stigmasterol in Shanzha stably, and the structure 6WRV of TFRC as an iron transport carrier was also able to bind to Stigmasterol in Shanzha stably. The structures 1WOJ, 3D3W, and 6IGW of CNP, DCXR, and MPZL1 can also play an important role in combination with the natural compounds (S)-Stylopine, Kryptoxanthin, and Sitosterol in Maqianzi, Yumixu, and Laoguancao. CONCLUSION The noninvasive prediction model based on urinomics had excellent potential in predicting the prognosis of patients with BCa. The multi-omics screening of specific molecules combined with pharmacology and compound molecular docking can promote the research and development of novel drugs.
Collapse
Affiliation(s)
- Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Jinlong Cao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Siyu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Jianwei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Huabin Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Chenyang Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Kunpeng Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China.,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China
| | - Li Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, 730000, China. .,Gansu Province Clinical Research Center for Urology, Lanzhou, 730000, China.
| |
Collapse
|
29
|
Xie G, Dong KC, Worden EJ, Martin A. High-Throughput Assay for Characterizing Rpn11 Deubiquitinase Activity. Methods Mol Biol 2023; 2591:79-100. [PMID: 36350544 PMCID: PMC11111417 DOI: 10.1007/978-1-0716-2803-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Rpn11 is an essential metalloprotease responsible for the en bloc removal of ubiquitin chains from protein substrates that are targeted for degradation by the 26S proteasome. A unique feature of Rpn11 is that its deubiquitinase (DUB) activity is greatly stimulated by the mechanical translocation of the substrate into the proteasomal AAA+ (ATPase Associated with diverse cellular Activities) motor, which delivers the scissile isopeptide bond between a substrate lysine and the proximal moiety of an attached ubiquitin chain to the DUB catalytic active site. As a consequence, Rpn11 cleaves at the base of ubiquitin chains and lacks selectivity towards specific ubiquitin-chain linkage types, which is in contrast to other DUBs, including the related AMSH that selectively cleaves Lys63-linked chains. Prevention of Rpn11's deubiquitinase activity leads to inhibition of proteasomal degradation by stalling substrate translocation. With the proteasome as an approved anticancer target, Rpn11 is therefore an attractive point of attack for the development of new inhibitors, which requires robust biochemical assays to measure DUB activity. Here we describe a method for the purification of the Rpn8/Rpn11 heterodimer and ubiquitin-GC-TAMRA, a model substrate that can be used to characterize the DUB activity of Rpn11 in isolation without the need of purifying 26S proteasomes. This assay thus enables a high-throughput screening platform for Rpn11-targeted small-molecule discovery.
Collapse
Affiliation(s)
- Gang Xie
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
| | - Ken C Dong
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA
| | | | - Andreas Martin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California at Berkeley, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
30
|
Huynh M, Chang HY, Lisiero DN, Ong IM, Kashyap T, Callander NS, Miyamoto S. HAPLN1 confers multiple myeloma cell resistance to several classes of therapeutic drugs. PLoS One 2022; 17:e0274704. [PMID: 36480501 PMCID: PMC10045543 DOI: 10.1371/journal.pone.0274704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple myeloma (MM), a malignant plasma cell infiltration of the bone marrow, is generally considered incurable: resistance to multiple therapeutic drugs inevitably arises from tumor cell-intrinsic and tumor microenvironment (TME)-mediated mechanisms. Here we report that the proteoglycan tandem repeat 1 (PTR1) domain of the TME matrix protein, hyaluronan and proteoglycan link protein 1 (HAPLN1), induces a host of cell survival genes in MM cells and variable resistance to different classes of clinical drugs, including certain proteasome inhibitors, steroids, immunomodulatory drugs, and DNA damaging agents, in several MM cell lines tested. Collectively, our study identifies HAPLN1 as an extracellular matrix factor that can simultaneously confer MM cell resistance to multiple therapeutic drugs.
Collapse
Affiliation(s)
- Mailee Huynh
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
| | - Hae Yeun Chang
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
| | - Dominique N. Lisiero
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
| | - Irene M. Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center (UWCCC), Madison, WI, United States of America
| | - Trinayan Kashyap
- Karyopharm Therapeutics, Inc., Newton, MA, United States of America
| | - Natalie S. Callander
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
| | - Shigeki Miyamoto
- Department of Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States of America
- McArdle Laboratory for Cancer Research, Madison, WI, United States of America
- University of Wisconsin Carbone Cancer Center (UWCCC), Madison, WI, United States of America
| |
Collapse
|
31
|
Mejia Saldarriaga M, Darwiche W, Jayabalan D, Monge J, Rosenbaum C, Pearse RN, Niesvizky R, Bustoros M. Advances in the molecular characterization of multiple myeloma and mechanism of therapeutic resistance. Front Oncol 2022; 12:1020011. [PMID: 36387095 PMCID: PMC9646612 DOI: 10.3389/fonc.2022.1020011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
Recent insight in the genomic landscape of newly diagnosed multiple myeloma (NDMM) and its precursor conditions, monoclonal gammopathy of uncertain significance (MGUS), and smoldering myeloma have allowed the identification of patients with precursor conditions with a high risk of progression. These cases with "progressor" MGUS/SMM have a higher average mutation burden, have higher rates of mutations in specific genes such as MAPK, DNA repair, MYC, DIS3, and are enriched for specific mutational signatures when compared to non-progressors and are comparable to those found in NDMM. The highly preserved clonal heterogeneity seen upon progression of SMM, combined with the importance of these early variables, suggests that the identification of progressors based on these findings could complement and enhance the currently available clinical models based on tumor burden. Mechanisms leading to relapse/refractory multiple myeloma (RRMM) are of clinical interest given worse overall survival in this population. An Increased mutational burden is seen in patients with RRMM when compared to NDMM, however, there is evidence of branching evolution with many of these mutations being present at the subclonal level. Likewise, alterations in proteins associated with proteosome inhibitor and immunomodulatory drugs activity could partially explain clinical resistance to these agents. Evidence of chromosomal events leading to copy number changes is seen, with the presence of TP53 deletion, mutation, or a combination of both being present in many cases. Additional chromosomal events such as 1q gain and amplification may also interact and lead to resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mark Bustoros
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
32
|
Larsson P, Pettersson D, Engqvist H, Werner Rönnerman E, Forssell-Aronsson E, Kovács A, Karlsson P, Helou K, Parris TZ. Pan-cancer analysis of genomic and transcriptomic data reveals the prognostic relevance of human proteasome genes in different cancer types. BMC Cancer 2022; 22:993. [PMID: 36123629 PMCID: PMC9484138 DOI: 10.1186/s12885-022-10079-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
Background The human proteasome gene family (PSM) consists of 49 genes that play a crucial role in cancer proteostasis. However, little is known about the effect of PSM gene expression and genetic alterations on clinical outcome in different cancer forms. Methods Here, we performed a comprehensive pan-cancer analysis of genetic alterations in PSM genes and the subsequent prognostic value of PSM expression using data from The Cancer Genome Atlas (TCGA) containing over 10,000 samples representing up to 33 different cancer types. External validation was performed using a breast cancer cohort and KM plotter with four cancer types. Results The PSM genetic alteration frequency was high in certain cancer types (e.g. 67%; esophageal adenocarcinoma), with DNA amplification being most common. Compared with normal tissue, most PSM genes were predominantly overexpressed in cancer. Survival analysis also established a relationship with PSM gene expression and adverse clinical outcome, where PSMA1 and PSMD11 expression were linked to more unfavorable prognosis in ≥ 30% of cancer types for both overall survival (OS) and relapse-free interval (PFI). Interestingly, PSMB5 gene expression was associated with OS (36%) and PFI (27%), and OS for PSMD2 (42%), especially when overexpressed. Conclusion These findings indicate that several PSM genes may potentially be prognostic biomarkers and novel therapeutic targets for different cancer forms. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10079-4.
Collapse
Affiliation(s)
- Peter Larsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Daniella Pettersson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hanna Engqvist
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva Forssell-Aronsson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Per Karlsson
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Ferguson ID, Lin YHT, Lam C, Shao H, Tharp KM, Hale M, Kasap C, Mariano MC, Kishishita A, Patiño Escobar B, Mandal K, Steri V, Wang D, Phojanakong P, Tuomivaara ST, Hann B, Driessen C, Van Ness B, Gestwicki JE, Wiita AP. Allosteric HSP70 inhibitors perturb mitochondrial proteostasis and overcome proteasome inhibitor resistance in multiple myeloma. Cell Chem Biol 2022; 29:1288-1302.e7. [PMID: 35853457 PMCID: PMC9434701 DOI: 10.1016/j.chembiol.2022.06.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/21/2022] [Accepted: 06/24/2022] [Indexed: 11/03/2022]
Abstract
Proteasome inhibitor (PI) resistance remains a central challenge in multiple myeloma. To identify pathways mediating resistance, we first mapped proteasome-associated genetic co-dependencies. We identified heat shock protein 70 (HSP70) chaperones as potential targets, consistent with proposed mechanisms of myeloma cells overcoming PI-induced stress. We therefore explored allosteric HSP70 inhibitors (JG compounds) as myeloma therapeutics. JG compounds exhibited increased efficacy against acquired and intrinsic PI-resistant myeloma models, unlike HSP90 inhibition. Shotgun and pulsed SILAC mass spectrometry demonstrated that JGs unexpectedly impact myeloma proteostasis by destabilizing the 55S mitoribosome. Our data suggest JGs have the most pronounced anti-myeloma effect not through inhibiting cytosolic HSP70 proteins but instead through mitochondrial-localized HSP70, HSPA9/mortalin. Analysis of myeloma patient data further supports strong effects of global proteostasis capacity, and particularly HSPA9 expression, on PI response. Our results characterize myeloma proteostasis networks under therapeutic pressure while motivating further investigation of HSPA9 as a specific vulnerability in PI-resistant disease.
Collapse
Affiliation(s)
- Ian D Ferguson
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Yu-Hsiu T Lin
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Christine Lam
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Hao Shao
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kevin M Tharp
- Department of Surgery, University of California, San Francisco, San Francisco CA 94143, USA
| | - Martina Hale
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Corynn Kasap
- Department of Medicine, Division of Hematology or Oncology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margarette C Mariano
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Audrey Kishishita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA; Graduate Program in Chemistry and Chemical Biology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Bonell Patiño Escobar
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Kamal Mandal
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Donghui Wang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Paul Phojanakong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sami T Tuomivaara
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA
| | - Byron Hann
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Christoph Driessen
- Department of Oncology and Hematology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Brian Van Ness
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jason E Gestwicki
- Institute for Neurodegenerative Disease, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA 94107, USA.
| |
Collapse
|
34
|
Zhu YX, Bruins LA, Chen X, Shi C, Bonolo De Campos C, Meurice N, Wang X, Ahmann GJ, Ramsower CA, Braggio E, Rimsza LM, Stewart AK. Transcriptional profiles define drug refractory disease in myeloma. EJHAEM 2022; 3:804-814. [PMID: 36051067 PMCID: PMC9422020 DOI: 10.1002/jha2.455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Identifying biomarkers associated with disease progression and drug resistance are important for personalized care. We investigated the expression of 121 curated genes, related to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs) responsiveness. We analyzed 28 human multiple myeloma (MM) cell lines with known drug sensitivities and 130 primary MM patient samples collected at different disease stages, including newly diagnosed (ND), on therapy (OT), and relapsed and refractory (RR, collected within 12 months before the patients' death) timepoints. Our findings led to the identification of a subset of genes linked to clinical drug resistance, poor survival, and disease progression following combination treatment containing IMIDs and/or PIs. Finally, we built a seven-gene model (MM-IMiD and PI sensitivity-7 genes [IP-7]) using digital gene expression profiling data that significantly separates ND patients from IMiD- and PI-refractory RR patients. Using this model, we retrospectively analyzed RNA sequcencing (RNAseq) data from the Mulltiple Myeloma Research Foundation (MMRF) CoMMpass (n = 578) and Mayo Clinic MM patient registry (n = 487) to divide patients into probabilities of responder and nonresponder, which subsequently correlated with overall survival, disease stage, and number of prior treatments. Our findings suggest that this model may be useful in predicting acquired resistance to treatments containing IMiDs and/or PIs.
Collapse
Affiliation(s)
- Yuan Xiao Zhu
- Division of Hematology‐OncologyMayo ClinicPhoenixArizonaUSA
| | | | - Xianfeng Chen
- Division of Biomedical Statistics and Informatics, Department of Health Science ResearchMayo ClinicRochesterMinnesotaUSA
| | - Chang‐Xin Shi
- Division of Hematology‐OncologyMayo ClinicPhoenixArizonaUSA
| | | | | | - Xuewei Wang
- Division of Biomedical Statistics and Informatics, Department of Health Science ResearchMayo ClinicRochesterMinnesotaUSA
| | - Greg J. Ahmann
- Division of Hematology‐OncologyMayo ClinicPhoenixArizonaUSA
| | | | | | - Lisa M. Rimsza
- Department of Laboratory Medicine and PathologyMayo ClinicPhoenixArizonaUSA
| | - A. Keith Stewart
- Division of Medical Oncology and HematologyPrincess Margaret Cancer CentreTorontoOntarioCanada
| |
Collapse
|
35
|
Downey-Kopyscinski SL, Srinivasa S, Kisselev AF. A clinically relevant pulse treatment generates a bortezomib-resistant myeloma cell line that lacks proteasome mutations and is sensitive to Bcl-2 inhibitor venetoclax. Sci Rep 2022; 12:12788. [PMID: 35896610 PMCID: PMC9329464 DOI: 10.1038/s41598-022-17239-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/22/2022] [Indexed: 11/08/2022] Open
Abstract
Proteasome inhibitors bortezomib and carfilzomib are the backbones of treatments of multiple myeloma, which remains incurable despite many recent advances. With many patients relapsing despite high initial response rates to proteasome inhibitor-containing regimens, it is critical to understand the process of acquired resistance. In vitro generated resistant cell lines are important tools in this process. The majority of previously developed bortezomib-resistant cell lines bear mutations in the proteasome PSMB5 sites, the prime target of bortezomib and carfilzomib, which are rarely observed in patients. Here we present a novel bortezomib-resistant derivative of the KMS-12-BM multiple myeloma cell line, KMS-12-BM-BPR. Unlike previously published bortezomib-resistant cell lines, it was created using clinically relevant twice-weekly pulse treatments with bortezomib instead of continuous incubation. It does not contain mutations in the PSMB5 site and retains its sensitivity to carfilzomib. Reduced load on proteasome due to decreased protein synthesis appears to be the main cause of resistance. In addition, KMS-12-BM-BPR cells are more sensitive to Bcl-2 inhibitor venetoclax. Overall, this study demonstrates the feasibility of creating a proteasome inhibitor resistant myeloma cell lines by using clinically relevant pulse treatments and provides a novel model of acquired resistance.
Collapse
Affiliation(s)
- Sondra L Downey-Kopyscinski
- Department of Molecular and Systems Biology, and Norris Cotton Cancer Center, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
- SLDK-Rancho Biosciences, San Diego, CA, USA
| | - Sriraja Srinivasa
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, PRB, 720 S. Donahue Dr., Auburn, AL, 36849, USA.
| |
Collapse
|
36
|
Sellin M, Berg S, Hagen P, Zhang J. The molecular mechanism and challenge of targeting XPO1 in treatment of relapsed and refractory myeloma. Transl Oncol 2022; 22:101448. [PMID: 35660848 PMCID: PMC9166471 DOI: 10.1016/j.tranon.2022.101448] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/14/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Significant progress has been made on the treatment of MM during past two decades. Acquired drug-resistance continues to drive early relapse in primary refractory MM. XPO1 over-expression and cargo mislocalization are associated with drug-resistance. XPO1 inhibitor selinexor restores drug sensitivity to subsets of RR-MM cells.
Multiple myeloma (MM) treatment regimens have vastly improved since the introduction of immunomodulators, proteasome inhibitors, and anti-CD38 monoclonal antibodies; however, MM is considered an incurable disease due to inevitable relapse and acquired drug resistance. Understanding the molecular mechanism by which drug resistance is acquired will help create novel strategies to prevent relapse and help develop novel therapeutics to treat relapsed/refractory (RR)-MM patients. Currently, only homozygous deletion/mutation of TP53 gene due to “double-hits” on Chromosome 17p region is consistently associated with a poor prognosis. The exciting discovery of XPO1 overexpression and mislocalization of its cargos in the RR-MM cells has led to a novel treatment options. Clinical studies have demonstrated that the XPO1 inhibitor selinexor can restore sensitivity of RR-MM to PIs and dexamethasone. We will elaborate on the problems of MM treatment strategies and discuss the mechanism and challenges of using XPO1 inhibitors in RR-MM therapies while deliberating potential solutions.
Collapse
Affiliation(s)
- Mark Sellin
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Loyola University Chicago, USA
| | - Stephanie Berg
- Loyola University Chicago, Department of Cancer Biology and Internal Medicine, Cardinal Bernardin Cancer Center, Stritch School of Medicine, Maywood, IL, USA.
| | - Patrick Hagen
- Department of Medicine, Division of Hematology/Oncology, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, IL USA
| | - Jiwang Zhang
- Department of Cancer Biology, Oncology Institute, Cardinal Bernardin Cancer Center, Loyola University Medical Center, USA
| |
Collapse
|
37
|
Clonal evolution after treatment pressure in multiple myeloma: heterogenous genomic aberrations and transcriptomic convergence. Leukemia 2022; 36:1887-1897. [PMID: 35643867 PMCID: PMC9252918 DOI: 10.1038/s41375-022-01597-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/27/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
We investigated genomic and transcriptomic changes in paired tumor samples of 29 in-house multiple myeloma (MM) patients and 28 patients from the MMRF CoMMpass study before and after treatment. A change in clonal composition was found in 46/57 (82%) of patients, and single-nucleotide variants (SNVs) increased from median 67 to 86. The highest increase in prevalence of genetic aberrations was found in RAS genes (60% to 72%), amp1q21 (18% to 35%), and TP53 (9% to 18%). The SBS-MM1 mutation signature was detected both in patients receiving high and low dose melphalan. A total of 2589 genes were differentially expressed between early and late samples (FDR < 0.05). Gene set enrichment analysis (GSEA) showed increased expression of E2F, MYC, and glycolysis pathways and a decreased expression in TNF-NFkB and TGFbeta pathways in late compared to early stage. Single sample GSEA (ssGSEA) scores of differentially expressed pathways revealed that these changes were most evident in end-stage disease. Increased expression of several potentially targetable genes was found at late disease stages, including cancer-testis antigens, XPO1 and ABC transporters. Our study demonstrates a transcriptomic convergence of pathways supporting increased proliferation and metabolism during disease progression in MM.
Collapse
|
38
|
Tyner JW, Haderk F, Kumaraswamy A, Baughn LB, Van Ness B, Liu S, Marathe H, Alumkal JJ, Bivona TG, Chan KS, Druker BJ, Hutson AD, Nelson PS, Sawyers CL, Willey CD. Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Res 2022; 82:1448-1460. [PMID: 35195258 PMCID: PMC9018544 DOI: 10.1158/0008-5472.can-21-3695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022]
Abstract
Decades of research into the molecular mechanisms of cancer and the development of novel therapeutics have yielded a number of remarkable successes. However, our ability to broadly assign effective, rationally targeted therapies in a personalized manner remains elusive for many patients, and drug resistance persists as a major problem. This is in part due to the well-documented heterogeneity of cancer, including the diversity of tumor cell lineages and cell states, the spectrum of somatic mutations, the complexity of microenvironments, and immune-suppressive features and immune repertoires, which collectively require numerous different therapeutic approaches. Here, we describe a framework to understand the types and biological causes of resistance, providing translational opportunities to tackle drug resistance by rational therapeutic strategies.
Collapse
Affiliation(s)
- Jeffrey W. Tyner
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Franziska Haderk
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | | | - Linda B. Baughn
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Brian Van Ness
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Himangi Marathe
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Joshi J. Alumkal
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Trever G. Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California
| | - Keith Syson Chan
- Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, California
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Brian J. Druker
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, Oregon
| | - Alan D. Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Peter S. Nelson
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York City, New York
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Christopher D. Willey
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
39
|
Yu Z, Wei X, Liu L, Sun H, Fang T, Wang L, Li Y, Sui W, Wang K, He Y, Zhao Y, Huang W, An G, Meng F, Huang C, Yu T, Anderson KC, Cheng T, Qiu L, Hao M. Indirubin-3'-monoxime acts as proteasome inhibitor: Therapeutic application in multiple myeloma. EBioMedicine 2022; 78:103950. [PMID: 35344764 PMCID: PMC8958548 DOI: 10.1016/j.ebiom.2022.103950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is still an incurable malignancy of plasma cells. Proteasome inhibitors (PIs) work as the backbone agent and have greatly improved the outcome in majority of newly diagnosed patients with myeloma. However, drug resistance remains the major obstacle causing treatment failure in clinical practice. Here, we investigated the effects of Indirubin-3'-monoxime (I3MO), one of the derivatives of Indirubin, in the treatment of MM. METHODS MM patient primary samples and human cell lines were examined. I3MO effects on myeloma treatment and the underling molecular mechanisms were investigated via in vivo and in vitro study. FINDINGS Our results demonstrated the anti-MM activity of I3MO in both drug- sensitive and -resistance MM cells. I3MO sensitizes MM cells to bortezomib-induced apoptosis. Mechanistically, I3MO acts as a multifaceted regulator of cell death, which induced DNA damage, cell cycle arrest, and abrogates NF-κB activation. I3MO efficiently down-regulated USP7 expression, promoted NEK2 degradation, and suppressed NF-κB signaling in MM. Our study reported that I3MO directly bound with and caused the down-regulation of PA28γ (PSME3), and PA200 (PSME4), the proteasome activators. Knockdown of PSME3 or PSME4 caused the inhibition of proteasome capacity and the overload of paraprotein, which sensitizes MM cells to bortezomib-mediated growth arrest. Clinical data demonstrated that PSME3 and PSME4 are over-expressed in relapsed/refractory MM (RRMM) and associated with inferior outcome. INTERPRETATION Altogether, our study indicates that I3MO is agent triggering proteasome inhibition and represents a promising therapeutic strategy to improve patient outcome in MM. FUNDINGS A full list of funding can be found in the acknowledgements.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lanting Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Hao Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Teng Fang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Ying Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Weiwei Sui
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kefei Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yi He
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Yaozhong Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Wenyang Huang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Fancui Meng
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Changjiang Huang
- Tianjin Key Laboratory of Molecular Design and Drug Discovery, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300301, PR China
| | - Tengteng Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Hai he Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, PR China.
| |
Collapse
|
40
|
A drug repurposing strategy for overcoming human multiple myeloma resistance to standard-of-care treatment. Cell Death Dis 2022; 13:203. [PMID: 35246527 PMCID: PMC8897388 DOI: 10.1038/s41419-022-04651-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Despite several approved therapeutic modalities, multiple myeloma (MM) remains an incurable blood malignancy and only a small fraction of patients achieves prolonged disease control. The common anti-MM treatment targets proteasome with specific inhibitors (PI). The resulting interference with protein degradation is particularly toxic to MM cells as they typically accumulate large amounts of toxic proteins. However, MM cells often acquire resistance to PIs through aberrant expression or mutations of proteasome subunits such as PSMB5, resulting in disease recurrence and further treatment failure. Here we propose CuET—a proteasome-like inhibitor agent that is spontaneously formed in-vivo and in-vitro from the approved alcohol-abuse drug disulfiram (DSF), as a readily available treatment effective against diverse resistant forms of MM. We show that CuET efficiently kills also resistant MM cells adapted to proliferate under exposure to common anti-myeloma drugs such as bortezomib and carfilzomib used as the first-line therapy, as well as to other experimental drugs targeting protein degradation upstream of the proteasome. Furthermore, CuET can overcome also the adaptation mechanism based on reduced proteasome load, another clinically relevant form of treatment resistance. Data obtained from experimental treatment-resistant cellular models of human MM are further corroborated using rather unique advanced cytotoxicity experiments on myeloma and normal blood cells obtained from fresh patient biopsies including newly diagnosed as well as relapsed and treatment-resistant MM. Overall our findings suggest that disulfiram repurposing particularly if combined with copper supplementation may offer a promising and readily available treatment option for patients suffering from relapsed and/or therapy-resistant multiple myeloma.
Collapse
|
41
|
Serizawa K, Tanaka H, Ueda T, Fukui A, Kakutani H, Taniguchi T, Inoue H, Kumode T, Taniguchi Y, Rai S, Hirase C, Morita Y, Espinoza JL, Tatsumi Y, Ashida T, Matsumura I. CD34 + myeloma cells with self-renewal activities are therapy-resistant and persist as MRD in cell cycle quiescence. Int J Hematol 2022; 115:336-349. [PMID: 35133572 DOI: 10.1007/s12185-021-03261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 01/13/2023]
Abstract
Side population (SP) is known to include therapy-resistant cells in various cancers. Here, we analyzed SP using multiple myeloma (MM) samples. The SP accounted for 2.96% in MM cells from newly diagnosed MM (NDMM). CD34 was expressed in 47.8% of SP cells, but only in 2.11% of bulk MM cells. CD34+ MM cells expressed more immature cell surface markers and a gene signature than CD34- MM cells. CD34+ but not CD34- MM cells possessed clonogenic activities and showed long-term self-renewal activities in xenotransplantation assays. Similarly, whereas 2.20% of MM cells were CD34+ in NDMM (n = 38), this proportion increased to 42.6% in minimal residual disease (MRD) samples (n = 16) (p < 0.001) and to 17.7% in refractory/relapsed MM (RRMM) (n = 30) (p < 0.01). Cell cycle analysis showed that 24.7% of CD34+ MM cells from NDMM were in G0 phase while this proportion was 54.9% in MRD (p < 0.05) and 14.5% in RRMM, reflecting the expansion of MM. Together, CD34+ MM cells with long-term self-renewal activities persist as MRD in cell cycle quiescence or remain as therapy-resistant cells in RRMM, substantiating the necessity of targeting this population to improve clinical outcomes of MM.
Collapse
Affiliation(s)
- Kentaro Serizawa
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Hirokazu Tanaka
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan.
| | - Takeshi Ueda
- Department of Biochemistry, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Ayano Fukui
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Hiroaki Kakutani
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Takahide Taniguchi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Hiroaki Inoue
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Takahiro Kumode
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuhiro Taniguchi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Shinya Rai
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Chikara Hirase
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yasuyoshi Morita
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - J Luis Espinoza
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Yoichi Tatsumi
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Takashi Ashida
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, 377-2, Ohno-higashi, Osaka-sayama, Osaka, Japan
| |
Collapse
|
42
|
NEDD4L binds the proteasome and promotes autophagy and bortezomib sensitivity in multiple myeloma. Cell Death Dis 2022; 13:197. [PMID: 35236820 PMCID: PMC8891287 DOI: 10.1038/s41419-022-04629-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/20/2022] [Accepted: 02/07/2022] [Indexed: 11/30/2022]
Abstract
Multiple myeloma (MM) remains an incurable plasma cell cancer characterized by abnormal secretion of monoclonal immunoglobulins. The molecular mechanism that regulates the drug sensitivity of MM cells is being intensively studied. Here, we report an unexpected finding that the protein encoded by neural precursor cell-expressed developmentally downregulated gene 4L (NEDD4L), which is a HECT E3 ligase, binds the 19S proteasome, limiting its proteolytic function and enhancing autophagy. Suppression of NEDD4L expression reduced bortezomib (Bor) sensitivity in vitro and in vivo, mainly through autophagy inhibition mediated by low NEDD4L expression, which was rescued by an autophagy activator. Clinically, elevated expression of NEDD4L is associated with a considerably increased probability of responding to Bor, a prolonged response duration, and improved overall prognosis, supporting both the use of NEDD4L as a biomarker to identify patients most likely to benefit from Bor and the regulation of NEDD4L as a new approach in myeloma therapy.
Collapse
|
43
|
Gozzetti A, Ciofini S, Sicuranza A, Pacelli P, Raspadori D, Cencini E, Tocci D, Bocchia M. Drug resistance and minimal residual disease in multiple myeloma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:171-183. [PMID: 35582527 PMCID: PMC8992600 DOI: 10.20517/cdr.2021.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 11/12/2022]
Abstract
Great progress has been made in improving survival in multiple myeloma (MM) patients over the last 30 years. New drugs have been introduced and complete responses are frequently seen. However, the majority of MM patients do experience a relapse at a variable time after treatment, and ultimately the disease becomes drug-resistant following therapies. Recently, minimal residual disease (MRD) detection has been introduced in clinical trials utilizing novel therapeutic agents to measure the depth of response. MRD can be considered as a surrogate for both progression-free and overall survival. In this perspective, the persistence of a residual therapy-resistant myeloma plasma cell clone can be associated with inferior survivals. The present review gives an overview of drug resistance in MM, i.e., mutation of β5 subunit of the proteasome; upregulation of pumps of efflux; heat shock protein induction for proteasome inhibitors; downregulation of CRBN expression; deregulation of IRF4 expression; mutation of CRBN, IKZF1, and IKZF3 for immunomodulatory drugs and decreased target expression; complement protein increase; sBCMA increase; and BCMA down expression for monoclonal antibodies. Multicolor flow cytometry, or next-generation flow, and next-generation sequencing are currently the techniques available to measure MRD with sensitivity at 10-5. Sustained MRD negativity is related to prolonged survival, and it is evaluated in all recent clinical trials as a surrogate of drug efficacy.
Collapse
Affiliation(s)
- Alessandro Gozzetti
- Hematology, University of Siena, Azienda Ospedaliera Universitaria Senese, Siena 53100, Italy
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Constitutive Activation of p62/Sequestosome-1-Mediated Proteaphagy Regulates Proteolysis and Impairs Cell Death in Bortezomib-Resistant Mantle Cell Lymphoma. Cancers (Basel) 2022; 14:cancers14040923. [PMID: 35205670 PMCID: PMC8869867 DOI: 10.3390/cancers14040923] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary To decipher the molecular mechanism underlying the resistance of a significant fraction of mantle cell lymphoma (MCL) patients to the first-in-class proteasome inhibitor bortezomib (BTZ), we have characterized the ubiquitin-related proteome (i.e., ubiquitome) of a set of MCL cell lines with different degrees of sensitivity to the drug by coupling a tandem ubiquitin-binding entity (TUBE) approach to mass spectrometry, followed by phenotypic and functional validations in both in vitro and in vivo models of MCL. We identified an enrichment of autophagy–lysosome system (ALS) components in BTZ-resistant cells, which was associated with constitutive intracellular inactivation of proteasome subunits by a process called proteaphagy. Blockade of this phenomenon by the pharmacological or genetic inactivation of the autophagy receptor p62/SQSTM1 reactivated normal proteasomal activity and restored the BTZ antitumor effect in in vitro and in vivo models of BTZ resistance. Abstract Protein ubiquitylation coordinates crucial cellular events in physiological and pathological conditions. A comparative analysis of the ubiquitin proteome from bortezomib (BTZ)-sensitive and BTZ-resistant mantle cell lymphoma (MCL) revealed an enrichment of the autophagy–lysosome system (ALS) in BTZ-resistant cells. Pharmacological inhibition of autophagy at the level of lysosome-fusion revealed a constitutive activation of proteaphagy and accumulation of proteasome subunits within autophagosomes in different MCL cell lines with acquired or natural resistance to BTZ. Inhibition of the autophagy receptor p62/SQSTM1 upon verteporfin (VTP) treatment disrupted proteaphagosome assembly, reduced co-localization of proteasome subunits with autophagy markers and negatively impacted proteasome activity. Finally, the silencing or pharmacological inhibition of p62 restored the apoptosis threshold at physiological levels in BTZ-resistant cells both in vitro and in vivo. In total, these results demonstrate for the first time a proteolytic switch from the ubiquitin–proteasome system (UPS) to ALS in B-cell lymphoma refractory to proteasome inhibition, pointing out a crucial role for proteaphagy in this phenomenon and paving the way for the design of alternative therapeutic venues in treatment-resistant tumors.
Collapse
|
45
|
Aksenova AY, Zhuk AS, Lada AG, Zotova IV, Stepchenkova EI, Kostroma II, Gritsaev SV, Pavlov YI. Genome Instability in Multiple Myeloma: Facts and Factors. Cancers (Basel) 2021; 13:5949. [PMID: 34885058 PMCID: PMC8656811 DOI: 10.3390/cancers13235949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a malignant neoplasm of terminally differentiated immunoglobulin-producing B lymphocytes called plasma cells. MM is the second most common hematologic malignancy, and it poses a heavy economic and social burden because it remains incurable and confers a profound disability to patients. Despite current progress in MM treatment, the disease invariably recurs, even after the transplantation of autologous hematopoietic stem cells (ASCT). Biological processes leading to a pathological myeloma clone and the mechanisms of further evolution of the disease are far from complete understanding. Genetically, MM is a complex disease that demonstrates a high level of heterogeneity. Myeloma genomes carry numerous genetic changes, including structural genome variations and chromosomal gains and losses, and these changes occur in combinations with point mutations affecting various cellular pathways, including genome maintenance. MM genome instability in its extreme is manifested in mutation kataegis and complex genomic rearrangements: chromothripsis, templated insertions, and chromoplexy. Chemotherapeutic agents used to treat MM add another level of complexity because many of them exacerbate genome instability. Genome abnormalities are driver events and deciphering their mechanisms will help understand the causes of MM and play a pivotal role in developing new therapies.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Anna S. Zhuk
- International Laboratory “Computer Technologies”, ITMO University, 197101 St. Petersburg, Russia;
| | - Artem G. Lada
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA;
| | - Irina V. Zotova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Elena I. Stepchenkova
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 St. Petersburg, Russia; (I.V.Z.); (E.I.S.)
- Vavilov Institute of General Genetics, St. Petersburg Branch, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| | - Ivan I. Kostroma
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Sergey V. Gritsaev
- Russian Research Institute of Hematology and Transfusiology, 191024 St. Petersburg, Russia; (I.I.K.); (S.V.G.)
| | - Youri I. Pavlov
- Eppley Institute for Research in Cancer, Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Departments of Biochemistry and Molecular Biology, Microbiology and Pathology, Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
46
|
Heterogeneous modulation of Bcl-2 family members and drug efflux mediate MCL-1 inhibitor resistance in multiple myeloma. Blood Adv 2021; 5:4125-4139. [PMID: 34478517 PMCID: PMC8945627 DOI: 10.1182/bloodadvances.2020003826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/07/2021] [Indexed: 01/19/2023] Open
Abstract
Antiapoptotic Bcl-2 family members have recently (re)emerged as key drug targets in cancer, with a tissue- and tumor-specific activity profile of available BH3 mimetics. In multiple myeloma, MCL-1 has been described as a major gatekeeper of apoptosis. This discovery has led to the rapid establishment of clinical trials evaluating the impact of various MCL-1 inhibitors. However, our understanding about the clinical impact and optimal use of MCL-1 inhibitors is still limited. We therefore explored mechanisms of acquired MCL-1 inhibitor resistance and optimization strategies in myeloma. Our findings indicated heterogeneous paths to resistance involving baseline Bcl-2 family alterations of proapoptotic (BAK, BAX, and BIM) and antiapoptotic (Bcl-2 and MCL-1) proteins. These manifestations depend on the BH3 profile of parental cells that guide the enhanced formation of Bcl-2:BIM and/or the dynamic (ie, treatment-induced) formation of Bcl-xL:BIM and Bcl-xL:BAK complexes. Accordingly, an unbiased high-throughput drug-screening approach (n = 528) indicated alternative BH3 mimetics as top combination partners for MCL-1 inhibitors in sensitive and resistant cells (Bcl-xL>Bcl-2 inhibition), whereas established drug classes were mainly antagonistic (eg, antimitotic agents). We also revealed reduced activity of MCL-1 inhibitors in the presence of stromal support as a drug-class effect that was overcome by concurrent Bcl-xL or Bcl-2 inhibition. Finally, we demonstrated heterogeneous Bcl-2 family deregulation and MCL-1 inhibitor cross-resistance in carfilzomib-resistant cells, a phenomenon linked to the MDR1-driven drug efflux of MCL-1 inhibitors. The implications of our findings for clinical practice emphasize the need for patient-adapted treatment protocols, with the tracking of tumor- and/or clone-specific adaptations in response to MCL-1 inhibition.
Collapse
|
47
|
Suzuki K, Nishiwaki K, Yano S. Treatment Strategy for Multiple Myeloma to Improve Immunological Environment and Maintain MRD Negativity. Cancers (Basel) 2021; 13:4867. [PMID: 34638353 PMCID: PMC8508145 DOI: 10.3390/cancers13194867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023] Open
Abstract
Improving the immunological environment and eradicating minimal residual disease (MRD) are the two main treatment goals for long-term survival in patients with multiple myeloma (MM). Immunomodulatory drugs (IMiDs), monoclonal antibody drugs (MoAbs), and autologous grafts for autologous stem cell transplantation (ASCT) can improve the immunological microenvironment. ASCT, MoAbs, and proteasome inhibitors (PIs) may be important for the achievement of MRD negativity. An improved immunological environment may be useful for maintaining MRD negativity, although the specific treatment for persistent MRD negativity is unknown. However, whether the ongoing treatment should be continued or changed if the MRD status remains positive is controversial. In this case, genetic, immunophenotypic, and clinical analysis of residual myeloma cells may be necessary to select the effective treatment for the residual myeloma cells. The purpose of this review is to discuss the MM treatment strategy to "cure MM" based on currently available therapies, including IMiDs, PIs, MoAbs, and ASCT, and expected immunotherapies, such as chimeric antigen receptor T cell (CAR-T) therapy, via improvement of the immunological environment and maintenance of MRD negativity.
Collapse
Affiliation(s)
- Kazuhito Suzuki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Kaichi Nishiwaki
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University Kashiwa Hospital, Tokyo 277-8567, Japan;
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| | - Shingo Yano
- Department of Internal Medicine, Division of Clinical Oncology and Hematology, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
48
|
Yerlikaya A, Kanbur E. The Ubiquitin-Proteasome Pathway and Resistance Mechanisms Developed Against the Proteasomal Inhibitors in Cancer Cells. Curr Drug Targets 2021; 21:1313-1325. [PMID: 32448101 DOI: 10.2174/1389450121666200525004714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND The ubiquitin-proteasome pathway is crucial for all cellular processes and is, therefore, a critical target for the investigation and development of novel strategies for cancer treatment. In addition, approximately 30% of newly synthesized proteins never attain their final conformations due to translational errors or defects in post-translational modifications; therefore, they are also rapidly eliminated by the ubiquitin-proteasome pathway. OBJECTIVE Here, an effort was made to outline the recent findings deciphering the new molecular mechanisms involved in the regulation of ubiquitin-proteasome pathway as well as the resistance mechanisms developed against proteasome inhibitors in cell culture experiments and in the clinical trials. RESULTS Since cancer cells have higher proliferation rates and are more prone to translational errors, they require the ubiquitin-proteasome pathway for selective advantage and sustained proliferation. Therefore, drugs targeting the ubiquitin-proteasome pathway are promising agents for the treatment of both hematological and solid cancers. CONCLUSION A number of proteasome inhibitors are approved and used for the treatment of advanced and relapsed multiple myeloma. Unfortunately, drug resistance mechanisms may develop very fast within days of the start of the proteasome inhibitor-treatment either due to the inherent or acquired resistance mechanisms under selective drug pressure. However, a comprehensive understanding of the mechanisms leading to the proteasome inhibitor-resistance will eventually help the design and development of novel strategies involving new drugs and/or drug combinations for the treatment of a number of cancers.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Kutahya Health Sciences University, Faculty of Medicine, Department of Medical Biology, Kütahya, Turkey
| | - Ertan Kanbur
- Bursa Uludag University, Faculty of Medicine, Department of Immunology, Bursa, Turkey
| |
Collapse
|
49
|
Sanderson MP, Friese-Hamim M, Walter-Bausch G, Busch M, Gaus S, Musil D, Rohdich F, Zanelli U, Downey-Kopyscinski SL, Mitsiades CS, Schadt O, Klein M, Esdar C. M3258 Is a Selective Inhibitor of the Immunoproteasome Subunit LMP7 (β5i) Delivering Efficacy in Multiple Myeloma Models. Mol Cancer Ther 2021; 20:1378-1387. [PMID: 34045234 PMCID: PMC9398180 DOI: 10.1158/1535-7163.mct-21-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/05/2021] [Accepted: 05/07/2021] [Indexed: 01/07/2023]
Abstract
Large multifunctional peptidase 7 (LMP7/β5i/PSMB8) is a proteolytic subunit of the immunoproteasome, which is predominantly expressed in normal and malignant hematolymphoid cells, including multiple myeloma, and contributes to the degradation of ubiquitinated proteins. Described herein for the first time is the preclinical profile of M3258; an orally bioavailable, potent, reversible and highly selective LMP7 inhibitor. M3258 demonstrated strong antitumor efficacy in multiple myeloma xenograft models, including a novel model of the human bone niche of multiple myeloma. M3258 treatment led to a significant and prolonged suppression of tumor LMP7 activity and ubiquitinated protein turnover and the induction of apoptosis in multiple myeloma cells both in vitro and in vivo Furthermore, M3258 showed superior antitumor efficacy in selected multiple myeloma and mantle cell lymphoma xenograft models compared with the approved nonselective proteasome inhibitors bortezomib and ixazomib. The differentiated preclinical profile of M3258 supported the initiation of a phase I study in patients with multiple myeloma (NCT04075721).
Collapse
Affiliation(s)
- Michael P. Sanderson
- Merck KGaA, Darmstadt, Germany.,Corresponding Author: Michael P. Sanderson, Merck KGaA, Frankfurter Strasse 250, Darmstadt, 64293, Germany. Phone: 49-615-1725-6970; Fax: 49-61-517-2914-9106; E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Wang Y, An G, Qiu LG. [Progress in clonal evolution of multiple myeloma]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2021; 42:611-615. [PMID: 34455753 PMCID: PMC8408495 DOI: 10.3760/cma.j.issn.0253-2727.2021.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Indexed: 01/10/2023]
Affiliation(s)
- Y Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - G An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - L G Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| |
Collapse
|