1
|
Abdulla HD, Alserihi R, Flensburg C, Abeysekera W, Luo MX, Gray DH, Liu X, Smyth GK, Alexander WS, Majewski IJ, McCormack MP. Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition. J Exp Med 2023; 220:e20212383. [PMID: 36920307 PMCID: PMC10037042 DOI: 10.1084/jem.20212383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 03/16/2023] Open
Abstract
Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
Collapse
Affiliation(s)
- Hesham D. Abdulla
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Raed Alserihi
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- College of Applied Medical Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Christoffer Flensburg
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Waruni Abeysekera
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Meng-Xiao Luo
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Daniel H.D. Gray
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Xiaodong Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Institute for Advanced Study, Hangzhou, China
| | - Gordon K. Smyth
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- School of Mathematics and Statistics, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ian J. Majewski
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Matthew P. McCormack
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Australia
- iCamuno Biotherapeutics, Melbourne, Australia
| |
Collapse
|
2
|
Pragya SU, Pragya SC, Griswold AJ, Gu E, Mehta ND, Uddin P, Veeramachaneni P, Mehta N, Mehta D, Abomoelak B. Preksha Dhyāna Meditation Effect on the DNA Methylation Signature in College Students. JOURNAL OF INTEGRATIVE AND COMPLEMENTARY MEDICINE 2023; 29:224-233. [PMID: 36749149 DOI: 10.1089/jicm.2022.0713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: The stress and psychological factors affect the human transcriptomic and epigenomic landscapes. Preksha Dhyana meditation (PM) was found to be effective, in novice healthy college student meditators, at the cognitive skills and transcriptomic levels. Recently published data showed that PM induced alterations at the transcriptome level in healthy and novice college students. Methods: To decipher potential mechanisms underlying the PM effect at the cellular level, array-based methylation analyses in peripheral blood were performed at baseline and 8 weeks postintervention in 34 participants. Results: Overall, 470 CpG sites were nominally differentially methylated (p ≤ 0.05 and change magnitude from ≥3% to ≤ -3%) between baseline and 8 weeks postintervention with 180 sites hypermethylated and 290 sites hypomethylated. Pathway analysis of the genes linked to the differentially methylated sites revealed the enrichment of several molecular and cellular signaling pathways, especially metabolic and brain function signaling pathways. Conclusions: Besides its beneficial effects on cognitive skills and transcriptome alterations, the current data indicate that PM meditation also affects the DNA methylation profile of novice and healthy college students 8 weeks postintervention. Clinical Trial Registration number: NCT03779269.
Collapse
Affiliation(s)
- Samani U Pragya
- Department of Religions and Philosophies, University of London, London, United Kingdom
| | - Samani C Pragya
- Department of Biostatistics, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Anthony J Griswold
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Esther Gu
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Neelam D Mehta
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Parvin Uddin
- College of Arts, Sciences and Education, Florida International University, Miami, FL, USA
| | | | - Naina Mehta
- Neurodevelopmental Pediatrician, Behavioral and Developmental Center, Orlando Health, Orlando, FL, USA
| | - Devendra Mehta
- Gastrointestinal Translational Laboratory, Arnold Palmer Hospital for Children, Orlando, FL, USA
| | - Bassam Abomoelak
- Gastrointestinal Translational Laboratory, Arnold Palmer Hospital for Children, Orlando, FL, USA
| |
Collapse
|
3
|
Chen GW, Chen MN, Liu L, Zheng YY, Wang JP, Gong SS, Huang RF, Fan CM, Chen YZ. A research review of experimental animal models with myelodysplastic syndrome. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:105-113. [PMID: 36068448 DOI: 10.1007/s12094-022-02931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023]
Abstract
Myelodysplastic syndrome (MDS) consists of a group of hematologic tumors that are derived from the clonal proliferation of hematopoietic stem cells, featuring abnormal hematopoietic cell development and ineffective hematopoiesis. Animal models are an important scientific research platform that has been widely applied in the research of human diseases, especially tumors. Animal models with MDS can simulate characteristic human genetic variations and tumor phenotypes. They also provide a reliable platform for the exploration of the pathogenesis and diagnostic markers of MDS as well as for a drug efficacy evaluation. This paper reviews the research status of three animal models and a new spontaneous mouse model with MDS.
Collapse
Affiliation(s)
- Gen-Wang Chen
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Mei-Na Chen
- Clinical Lab, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, 362000, China
| | - Lei Liu
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yu-Yu Zheng
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Jin-Peng Wang
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Si-Si Gong
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Rong-Fu Huang
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Chun-Mei Fan
- Clinical Lab and Medical Diagnostics Laboratory, Donghai Hospital District, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Yue-Zu Chen
- Clinical Lab, Quanzhou Hospital of Traditional Chinese Medicine, Quanzhou, 362000, China
| |
Collapse
|
4
|
LYL1 facilitates AETFC assembly and gene activation by recruiting CARM1 in t(8;21) AML. Proc Natl Acad Sci U S A 2022; 119:e2213718119. [PMID: 36215477 PMCID: PMC9586329 DOI: 10.1073/pnas.2213718119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcription factors (TFs) play critical roles in hematopoiesis, and their aberrant expression can lead to various types of leukemia. The t(8;21) leukemogenic fusion protein AML1-ETO (AE) is the most common fusion protein in acute myeloid leukemia and can enhance hematopoietic stem cell renewal while blocking differentiation. A key question in understanding AE-mediated leukemia is what determines the choice of AE to activate self-renewal genes or repress differentiation genes. Toward the resolution of this problem, we earlier showed that AE resides in the stable AETFC complex and that its components colocalize on up- or down-regulated target genes and are essential for leukemogenesis. In the current study, using biochemical and genomic approaches, we show that AE-containing complexes are heterogeneous, and that assembly of the larger AETFC (containing AE, CBFβ, HEB, E2A, LYL1, LMO2, and LDB1) requires LYL1. Furthermore, we provide strong evidence that the LYL1-containing AETFC preferentially binds to active enhancers and promotes AE-dependent gene activation. Moreover, we show that coactivator CARM1 interacts with AETFC and facilitates gene activation by AETFC. Collectively, this study describes a role of oncoprotein LYL1 in AETFC assembly and gene activation by recruiting CARM1 to chromatin for AML cell survival.
Collapse
|
5
|
Shenoy US, Adiga D, Kabekkodu SP, Hunter KD, Radhakrishnan R. Molecular implications of HOX genes targeting multiple signaling pathways in cancer. Cell Biol Toxicol 2022; 38:1-30. [PMID: 34617205 PMCID: PMC8789642 DOI: 10.1007/s10565-021-09657-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Homeobox (HOX) genes encode highly conserved homeotic transcription factors that play a crucial role in organogenesis and tissue homeostasis. Their deregulation impacts the function of several regulatory molecules contributing to tumor initiation and progression. A functional bridge exists between altered gene expression of individual HOX genes and tumorigenesis. This review focuses on how deregulation in the HOX-associated signaling pathways contributes to the metastatic progression in cancer. We discuss their functional significance, clinical implications and ascertain their role as a diagnostic and prognostic biomarker in the various cancer types. Besides, the mechanism of understanding the theoretical underpinning that affects HOX-mediated therapy resistance in cancers has been outlined. The knowledge gained shall pave the way for newer insights into the treatment of cancer.
Collapse
Affiliation(s)
- U Sangeetha Shenoy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Keith D Hunter
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, S10 2TA, UK
| | - Raghu Radhakrishnan
- Department of Oral Pathology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, 576104, India.
| |
Collapse
|
6
|
Fregona V, Bayet M, Gerby B. Oncogene-Induced Reprogramming in Acute Lymphoblastic Leukemia: Towards Targeted Therapy of Leukemia-Initiating Cells. Cancers (Basel) 2021; 13:cancers13215511. [PMID: 34771671 PMCID: PMC8582707 DOI: 10.3390/cancers13215511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 10/28/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Acute lymphoblastic leukemia is a heterogeneous disease characterized by a diversity of genetic alterations, following a sophisticated and controversial organization. In this review, we present and discuss the concepts exploring the cellular, molecular and functional heterogeneity of leukemic cells. We also review the emerging evidence indicating that cell plasticity and oncogene-induced reprogramming should be considered at the biological and clinical levels as critical mechanisms for identifying and targeting leukemia-initiating cells. Abstract Our understanding of the hierarchical structure of acute leukemia has yet to be fully translated into therapeutic approaches. Indeed, chemotherapy still has to take into account the possibility that leukemia-initiating cells may have a distinct chemosensitivity profile compared to the bulk of the tumor, and therefore are spared by the current treatment, causing the relapse of the disease. Therefore, the identification of the cell-of-origin of leukemia remains a longstanding question and an exciting challenge in cancer research of the last few decades. With a particular focus on acute lymphoblastic leukemia, we present in this review the previous and current concepts exploring the phenotypic, genetic and functional heterogeneity in patients. We also discuss the benefits of using engineered mouse models to explore the early steps of leukemia development and to identify the biological mechanisms driving the emergence of leukemia-initiating cells. Finally, we describe the major prospects for the discovery of new therapeutic strategies that specifically target their aberrant stem cell-like functions.
Collapse
|
7
|
Yin J, Guo Y. HOXD13 promotes the malignant progression of colon cancer by upregulating PTPRN2. Cancer Med 2021; 10:5524-5533. [PMID: 34272834 PMCID: PMC8366098 DOI: 10.1002/cam4.4078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/07/2021] [Accepted: 05/22/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The homeobox (HOX) family plays an important role in multi-biological processes, such as morphogenesis and tumors. However, the function of HOXD13 in colon cancer remains unclear. MATERIALS AND METHODS The Cancer Genome Atlas database was used to analyze the expression of HOXD13 and its effect on the survival rate of colon cancer patients. Wound healing, Transwell, and clone formation were used to evaluate the effects of changes in HOXD13 expression on the function of colon cancer cells. A nude mouse xenograft tumor model was used to test the effects of HOXD13 on tumor growth in vivo. RESULTS Our results showed that HOXD13 was highly expressed in colon cancer and predicted a poor prognosis for patients. In in vitro experiments, the knockdown of HOXD13 can inhibit the proliferation and invasion of colon cancer cells. In vivo experiments showed the inhibited tumor growth after the knockdown of HODX13. In addition, HOXD13 bound to the protein tyrosine phosphatase receptor type N2 (PTPRN2) promoter and promoted the transcription of PTPRN2. CONCLUSION We revealed the function and mechanism of HOXD13 in colon cancer and suggest that HOXD13 may be a candidate marker for the diagnosis and treatment of colon cancer.
Collapse
Affiliation(s)
- Jiangyan Yin
- Department of UltrasoundThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Yi Guo
- Department of General SurgeryChongqing University Central Hospital (Chongqing Emergency Medical CenterChongqingChina
| |
Collapse
|
8
|
Cell-Extrinsic Differentiation Block Mediated by EphA3 in Pre-Leukaemic Thymus Contributes to Disease Progression. Cancers (Basel) 2021; 13:cancers13153858. [PMID: 34359759 PMCID: PMC8345401 DOI: 10.3390/cancers13153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Simple Summary The NUP98-HOXD13 (NHD13) mouse is a model of T-cell leukaemia (T-ALL) featuring a pre-leukemic phase, in which T-cell progenitors from the thymus of an NHD13 mouse can engraft into the thymus of a recipient mouse—an ability that normal T-cell progenitors do not possess. However, loss of this engraftment ability (by deletion of the Lyl1 gene) did not result in any loss of leukemogenesis activity, indicating the activity of redundant oncogenic pathways in this model. Having observed an overexpression of the EphA3 protein in the NHD13 thymocytes, we hypothesized that this gene might be involved in a redundant leukaemogenic pathway. Deletion of EphA3 did not affect the engraftment ability of the thymocytes, but did reduce the incidence of T-ALL. We thus uncovered a distinct mechanism of leukaemogenesis, which we believe operates in parallel to that mediated by Lyl1. Abstract We recently characterised the NUP98-HOXD13 (NHD13) mouse as a model of T-cell pre-leukaemia, featuring thymocytes that can engraft in recipient animals and progress to T-cell acute lymphoblastic leukaemia (T-ALL). However, loss of this engraftment ability by deletion of Lyl1 did not result in any loss of leukemogenesis activity. In the present study, we observe that NHD13 thymocytes overexpress EPHA3, and we characterise thymocyte behaviour in NHD13 mice with deletion of EphA3, which show a markedly reduced incidence of T-ALL. Deletion of EphA3 from the NHD13 mice does not prevent the abnormal accumulation or transplantation ability of these thymocytes. However, upon transplantation, these cells are unable to block the normal progression of recipient wild type (WT) progenitor cells through the normal developmental pathway. This is in contrast to the EphA3+/+ NHD13 thymocytes, which block the progression of incoming WT progenitors past the DN1 stage. Therefore, EphA3 is not critical for classical self-renewal, but is essential for mediating an interaction between the abnormally self-renewing cells and healthy progenitors—an interaction that results in a failure of the healthy cells to differentiate normally. We speculate that this may orchestrate a loss of healthy cell competition, which in itself has been demonstrated to be oncogenic, and that this may explain the decrease in T-ALL incidence in the absence of EphA3. We suggest that pre-leukaemic self-renewal in this model is a complex interplay of cell-intrinsic and -extrinsic factors, and that multiple redundant pathways to leukaemogenesis are active.
Collapse
|
9
|
Xu W, Wang Z, Li K, Jin R. Huai Qi Huang Potentiates Dexamethasone-Mediated Lethality in Acute Lymphoblastic Leukemia Cells by Upregulating Glucocorticoid Receptor α. Med Sci Monit 2020; 26:e921649. [PMID: 32065117 PMCID: PMC7043341 DOI: 10.12659/msm.921649] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Glucocorticoids are important components of a number of chemotherapeutic regimens used to treat pediatric acute lymphoblastic leukemia (ALL). A primary cause of treatment failure of ALL is acquired resistance to glucocorticoids. Recently, traditional Chinese medicines were effectively used to treat solid tumors. Thus, the aim of this study was to investigate whether Huai Qi Huang (HQH), a traditional Chinese medicine, increased the efficacy of glucocorticoids in the treatment of ALL, and if so, to determine the underlying mechanism. Material/Methods Various concentrations of HQH were used to treat Jurkat and Nalm-6 cells for 24 to 72 hours. Subsequently, cells were co-treated with HQH and the glucocorticoid receptor agonist, dexamethasone (DEX), or a MEK inhibitor (PD98059) to verify the synergistic effects on apoptosis in Jurkat and Nalm-6 cells for 24 hours. Cell Counting Kit-8 assay and flow cytometry were used to measure cell viability and apoptosis, respectively. Protein and mRNA expression levels were assessed using western blotting and quantitative polymerase chain reaction. Results The results revealed that cell survival was reduced and apoptosis was increased as the HQH concentration was increased, and this was accompanied with increases in the levels of BAX, cleaved-caspase-3 and glucocorticoid receptor α (GRα) and decreases in the levels of Bcl-2 and phospho-ERK (pERK). Glucocorticoid receptor β (GRβ) and total ERK (t-ERK) had no significant changes. Combined treatment with HQH and DEX or PD98059 increased apoptosis in Jurkat and Nalm-6 cells, and concurrently increased BAX, cleaved-caspase-3, GILZ, NFKBIA, and GRα and decreased Bcl-2 and pERK. Conclusions HQH enhanced the sensitivity of ALL cells to glucocorticoids by increasing the expression of GRα and inhibiting the MEK/ERK pathway, thus providing a rational foundation for the treatment of ALL with HQH.
Collapse
Affiliation(s)
- Wenfu Xu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhujun Wang
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
10
|
Koniaeva E, Stahlhut M, Lange L, Sauer MG, Kustikova OS, Schambach A. Conditional Immortalization of Lymphoid Progenitors via Tetracycline-Regulated LMO2 Expression. Hum Gene Ther 2019; 31:183-198. [PMID: 31760808 DOI: 10.1089/hum.2019.212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Conditional immortalization of hematopoietic progenitors through lentiviral expression of selected transcription factors in hematopoietic stem and progenitor cells provides a promising tool to study stem cell and leukemia biology. In this study, to generate conditionally immortalized lymphoid progenitor (ciLP) cell lines, murine hematopoietic progenitor cells were transduced with an inducible lentiviral "all-in-one" vector expressing LMO2 under doxycycline (DOX) stimulation and the reverse tetracycline-regulated transactivator (rtTA3). For selection of LMO2-expressing ciLPs (LMO2-ciLPs) and longitudinal manipulation in T cell differentiation lymphoid conditions, we developed a robust approach based on coculture with OP9-DL1 stromal cells and improved cytokine conditions allowing a controlled balance between cell proliferation and differentiation in vitro. LMO2-ciLP cell lines with the highest proliferation, vector copy number, and similar insertion pattern were selected for LMO2 "on/off" in vitro study. LMO2 expression under DOX induction resulted in a double negative (DN) 2 differentiation arrest and a propagation of CD44+CD25- myeloid cell population characterized by lymphoid and myeloid phenotypes, respectively. Both DN2 and CD44+CD25- myeloid cell subpopulations expressed c-KIT, suggesting that LMO2-ciLPs were similar to uncommitted progenitors under DOX supplementation. DOX removal resulted in cessation of ectopic LMO2 expression and LMO2-ciLPs continued T cell lymphoid differentiation accompanied by c-KIT downregulation and interleukin 7 receptor expression. Switching off LMO2 expression was accompanied by increased Notch signaling and significant reduction of the CD44+CD25- myeloid cell population under T cell differentiation lymphoid conditions. Although vector insertions in cooperation with LMO2 expression could influence the fate of LMO2-ciLPs and additional experiments are required to evaluate it, our approach provides a promising tool to investigate mechanisms underlying stem cell, leukemia, and lymphocyte biology, leading to novel approaches for disease modeling and therapy evaluation.
Collapse
Affiliation(s)
- Ekaterina Koniaeva
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Maike Stahlhut
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Lucas Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Martin G Sauer
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Olga S Kustikova
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence REBIRTH, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
11
|
Li B, Huang Q, Wei GH. The Role of HOX Transcription Factors in Cancer Predisposition and Progression. Cancers (Basel) 2019; 11:cancers11040528. [PMID: 31013831 PMCID: PMC6520925 DOI: 10.3390/cancers11040528] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/08/2019] [Accepted: 04/10/2019] [Indexed: 12/12/2022] Open
Abstract
Homeobox (HOX) transcription factors, encoded by a subset of homeodomain superfamily genes, play pivotal roles in many aspects of cellular physiology, embryonic development, and tissue homeostasis. Findings over the past decade have revealed that mutations in HOX genes can lead to increased cancer predisposition, and HOX genes might mediate the effect of many other cancer susceptibility factors by recognizing or executing altered genetic information. Remarkably, several lines of evidence highlight the interplays between HOX transcription factors and cancer risk loci discovered by genome-wide association studies, thereby gaining molecular and biological insight into cancer etiology. In addition, deregulated HOX gene expression impacts various aspects of cancer progression, including tumor angiogenesis, cell autophagy, proliferation, apoptosis, tumor cell migration, and metabolism. In this review, we will discuss the fundamental roles of HOX genes in cancer susceptibility and progression, highlighting multiple molecular mechanisms of HOX involved gene misregulation, as well as their potential implications in clinical practice.
Collapse
Affiliation(s)
- Bo Li
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Qilai Huang
- Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, 90220 Oulu, Finland.
| |
Collapse
|