1
|
Othman J, Potter N, Ivey A, Tazi Y, Papaemmanuil E, Jovanovic J, Freeman SD, Gilkes A, Gale R, Rapoz-D'Silva T, Runglall M, Kleeman M, Dhami P, Thomas I, Johnson S, Canham J, Cavenagh J, Kottaridis P, Arnold C, Ommen HB, Overgaard UM, Dennis M, Burnett A, Wilhelm-Benartzi C, Huntly B, Russell NH, Dillon R. Molecular, clinical, and therapeutic determinants of outcome in NPM1-mutated AML. Blood 2024; 144:714-728. [PMID: 38691678 DOI: 10.1182/blood.2024024310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/03/2024] Open
Abstract
ABSTRACT Although NPM1-mutated acute myeloid leukemia (AML) carries a generally favorable prognosis, many patients still relapse and die. Previous studies identified several molecular and clinical features associated with poor outcomes; however, only FLT3-internal tandem duplication (ITD) mutation and adverse karyotype are currently used for risk stratification because of inconsistent results and uncertainty about how other factors should influence treatment, particularly given the strong prognostic effect of postinduction measurable residual disease (MRD). Here, we analyzed a large group of patients with NPM1 mutations (NPM1mut) AML enrolled in prospective trials (National Cancer Research Institute [NCRI] AML17 and AML19, n = 1357) to delineate the impact of baseline molecular and clinical features, postinduction MRD status, and treatment intensity on the outcome. FLT3-ITD (hazard ratio [HR], 1.28; 95% confidence interval [CI], 1.01-1.63), DNMT3A (HR, 1.65; 95% CI, 1.32-2.05), WT1 (HR, 1.74; 95% CI, 1.27-2.38), and non-ABD NPM1mut (HR, 1.64; 95% CI, 1.22-2.21) were independently associated with poorer overall survival (OS). These factors were also strongly associated with MRD positivity. For patients who achieved MRD negativity, these mutations (except FLT3-ITD) were associated with an increased cumulative incidence of relapse (CIR) and poorer OS. However, apart from the few patients with adverse cytogenetics, we could not identify any group of MRD-negative patients with a CIR >40% or with benefit from allograft in first remission. Intensified chemotherapy with the FLAG-Ida (fludarabine, cytarabine, granulocyte colony-stimulating factor, and idarubicin) regimen was associated with improved outcomes in all subgroups, with greater benefits observed in the high-risk molecular subgroups.
Collapse
MESH Headings
- Humans
- Nucleophosmin
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/drug therapy
- Nuclear Proteins/genetics
- Mutation
- Middle Aged
- Female
- Male
- Adult
- Aged
- fms-Like Tyrosine Kinase 3/genetics
- Prognosis
- Young Adult
- Neoplasm, Residual/genetics
- DNA Methyltransferase 3A
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- WT1 Proteins/genetics
- DNA (Cytosine-5-)-Methyltransferases/genetics
- Adolescent
- Treatment Outcome
- Aged, 80 and over
Collapse
Affiliation(s)
- Jad Othman
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
- Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Nicola Potter
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Adam Ivey
- Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Yanis Tazi
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jelena Jovanovic
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Sylvie D Freeman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Amanda Gilkes
- Department of Haematology, Cardiff University, Cardiff, United Kingdom
| | - Rosemary Gale
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Tanya Rapoz-D'Silva
- Department of Haematology, University College London Cancer Institute, London, United Kingdom
| | - Manohursingh Runglall
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Michelle Kleeman
- Genomics Facility, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Pawan Dhami
- Genomics Facility, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Ian Thomas
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Sean Johnson
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Joanna Canham
- Centre for Trials Research, Cardiff University, Cardiff, United Kingdom
| | - Jamie Cavenagh
- St Bartholomew's Hospital, Barts Health NHS Trust, London, United Kingdom
| | | | - Claire Arnold
- Clinical Haematology, Belfast City Hospital, Belfast, United Kingdom
| | | | | | - Mike Dennis
- The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Alan Burnett
- Paul O'Gorman Leukaemia Centre, Glasgow University, Glasgow, Scotland
| | | | - Brian Huntly
- Department of Haematology and Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Nigel H Russell
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Department of Haematology, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
2
|
Wu Q, Zhang Y, Yuan B, Huang Y, Jiang L, Liu F, Yan P, Cheng J, Long Z, Jiang X. Influence of genetic co-mutation on chemotherapeutic outcome in NPM1-mutated and FLT3-ITD wild-type AML patients. Cancer Med 2024; 13:e70102. [PMID: 39126219 PMCID: PMC11316012 DOI: 10.1002/cam4.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Nucleophosmin 1 (NPM1) gene-mutated acute myeloid leukemia (NPM1mut AML) is classified as a subtype with a favorable prognosis. However, some patients fail to achieve a complete remission or relapse after intensified chemotherapy. Genetic abnormalities in concomitant mutations contribute to heterogeneous prognosis of NPM1mut AML patients. METHODS In this study, 91 NPM1-mutated and FLT3-ITD wild-type (NPM1mut/FLT3-ITDwt) AML patients with intermediate-risk karyotype were enrolled to analyze the impact of common genetic co-mutations on chemotherapeutic outcome. RESULTS Our data revealed that TET1/2 (52/91, 57.1%) was the most prevalent co-mutation in NPM1mut AML patients, followed by IDH1/2 (36/91, 39.6%), DNMT3A (35/91, 38.5%), myelodysplastic syndrome related genes (MDS-related genes) (ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1 and ZRSR2 genes) (35/91, 38.5%), FLT3-TKD (27/91, 29.7%) and GATA2 (13/91, 14.3%) mutations. Patients with TET1/2mut exhibited significantly worse relapse-free survival (RFS) (median, 28.7 vs. not reached (NR) months; p = 0.0382) compared to patients with TET1/2wt, while no significant difference was observed in overall survival (OS) (median, NR vs. NR; p = 0.3035). GATA2mut subtype was associated with inferior OS (median, 28 vs. NR months; p < 0.0010) and RFS (median, 24 vs. NR months; p = 0.0224) compared to GATA2wt. By multivariate analysis, GATA2mut and MDS-related genesmut were independently associated with worse survival. CONCLUSION Mutations in TET1/2, GATA2 and MDS-related genes were found to significantly influence the chemotherapeutic outcome of patients with NPM1mut AML. The findings of our study have significant clinical implications for identifying patients who have an adverse response to frontline chemotherapy and provide a novel reference for further prognostic stratification of NPM1mut/FLT3-ITDwt AML patients.
Collapse
Affiliation(s)
- Quan Wu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujiao Zhang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Baoyi Yuan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yun Huang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ling Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Fang Liu
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ping Yan
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiaying Cheng
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhiquan Long
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xuejie Jiang
- Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
Li JF, Cheng WY, Lin XJ, Wen LJ, Wang K, Zhu YM, Zhu HM, Chen XJ, Zhang YL, Yin W, Zhang JN, Yi X, Zhang F, Weng XQ, Wang SY, Jiang L, Wu HY, Ren JQ, Lin XJ, Qiao N, Dai YT, Fang H, Tan Y, Sun XJ, Lv G, Yan XY, Chen SN, Chen Z, Jin J, Wu DP, Ren RB, Chen SJ, Shen Y. Aging and comprehensive molecular profiling in acute myeloid leukemia. Proc Natl Acad Sci U S A 2024; 121:e2319366121. [PMID: 38422020 PMCID: PMC10927507 DOI: 10.1073/pnas.2319366121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024] Open
Abstract
Acute myeloid leukemia (AML) is an aging-related and heterogeneous hematopoietic malignancy. In this study, a total of 1,474 newly diagnosed AML patients with RNA sequencing data were enrolled, and targeted or whole exome sequencing data were obtained in 94% cases. The correlation of aging-related factors including age and clonal hematopoiesis (CH), gender, and genomic/transcriptomic profiles (gene fusions, genetic mutations, and gene expression networks or pathways) was systematically analyzed. Overall, AML patients aged 60 y and older showed an apparently dismal prognosis. Alongside age, the frequency of gene fusions defined in the World Health Organization classification decreased, while the positive rate of gene mutations, especially CH-related ones, increased. Additionally, the number of genetic mutations was higher in gene fusion-negative (GF-) patients than those with GF. Based on the status of CH- and myelodysplastic syndromes (MDS)-related mutations, three mutant subgroups were identified among the GF- AML cohort, namely, CH-AML, CH-MDS-AML, and other GF- AML. Notably, CH-MDS-AML demonstrated a predominance of elderly and male cases, cytopenia, and significantly adverse clinical outcomes. Besides, gene expression networks including HOXA/B, platelet factors, and inflammatory responses were most striking features associated with aging and poor prognosis in AML. Our work has thus unraveled the intricate regulatory circuitry of interactions among different age, gender, and molecular groups of AML.
Collapse
Affiliation(s)
- Jian-Feng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wen-Yan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Jie Lin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang310003, China
| | - Li-Jun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Kai Wang
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Yong-Mei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hong-Ming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xin-Jie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Liang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Wei Yin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Nan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao Yi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Fan Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiang-Qin Weng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sheng-Yue Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Lu Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hui-Yi Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jia-Qi Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Jing Lin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Niu Qiao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yu-Ting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yun Tan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Jian Sun
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Gang Lv
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Xiao-Yu Yan
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Su-Ning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, Zhejiang310003, China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, Zhejiang310003, China
- Zhejiang University Cancer Center, Hangzhou, Zhejiang310003, China
| | - De-Pei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou215006, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou215006, China
| | - Rui-Bao Ren
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- International Center for Aging and Cancer, Department of Hematology of The First Affiliated Hospital, Hainan Medical University, Haikou571199, China
| | - Sai-Juan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| |
Collapse
|
4
|
Testa U, Pelosi E, Castelli G. Genetic, Phenotypic, and Clinical Heterogeneity of NPM1-Mutant Acute Myeloid Leukemias. Biomedicines 2023; 11:1805. [PMID: 37509445 PMCID: PMC10376179 DOI: 10.3390/biomedicines11071805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. AML with mutated nucleophosmin 1 (NPM1-mut) is the largest of the genetically defined groups, involving about 30% of adult AMLs and is currently recognized as a distinct entity in the actual AML classifications. NPM1-mut AML usually occurs in de novo AML and is associated predominantly with a normal karyotype and relatively favorable prognosis. However, NPM1-mut AMLs are genetically, transcriptionally, and phenotypically heterogeneous. Furthermore, NPM1-mut is a clinically heterogenous group. Recent studies have in part clarified the consistent heterogeneities of these AMLs and have strongly supported the need for an additional stratification aiming to improve the therapeutic response of the different subgroups of NPM1-mut AML patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
5
|
Zhang YW, Su L, Tan YH, Lin H, Liu XL, Liu QJ, Sun JN, Zhang M, Du YZ, Song F, Han W, Gao SJ. Measurable residual disease detected by flow cytometry independently predicts prognoses of NPM1-mutated acute myeloid leukemia. Ann Hematol 2023; 102:337-347. [PMID: 36378304 DOI: 10.1007/s00277-022-05033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Acute myeloid leukemia (AML) with NPM1 mutation is a distinct genetic entity with favorable outcomes. Nevertheless, emerging evidence suggests that NPM1-mutated AML is still a highly heterogeneous disorder. In this study, 266 patients with AML with NPM1 mutations were retrospectively analyzed to evaluate the associations between variant allele frequency (VAF) of NPM1 mutations, co-mutated genes, measurable residual disease (MRD), and patient outcomes. Multiparameter flow cytometry (MFC) and real-time quantitative polymerase chain reaction (RT-PCR) were used for monitoring MRD. Ultimately, 106 patients were included in the long-term follow-up period. Patients with high NPM1 VAF (≥ 42.43%) had poorer 2-year relapse-free survival (RFS) (55.7% vs. 70.2%, P = 0.017) and overall survival (OS) (63.7% vs. 82.0%, P = 0.027) than those with low VAF. DNMT3A mutations negatively influenced the outcomes of patients with NPM1 mutations. Patients with high DNMT3A VAF or NPM1/DNMT3A/FLT3-ITD triple mutations had shorter RFS and significantly lower OS than that in controls. After two cycles of chemotherapy, patients with positive MFC MRD results had lower RFS (MRD+ vs. MRD-:44.9% vs. 67.6%, P = 0.007) and OS (61.5% vs. 76.6%, P = 0.011) than those without positive MFC MRD results. In multivariate analysis, high NPM1 VAF (hazard ratio [HR] = 2.045; P = 0.034) and positive MRD after two cycles of chemotherapy (HR = 3.289; P = 0.003) were independent risk factors for RFS; MRD positivity after two cycles of chemotherapy (HR = 3.293; P = 0.008) independently predicted the OS of the patients. These results indicate that VAF of both NPM1 gene itself or certain co-occurring gene pre-treatment and MRD post-treatment are potential markers for restratifying the prognoses of patients AML having NPM1 mutations.
Collapse
Affiliation(s)
- Yun-Wei Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Long Su
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ye-Hui Tan
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Hai Lin
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Xiao-Liang Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Qiu-Ju Liu
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Jing-Nan Sun
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Ya-Zhe Du
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Fei Song
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Han
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China
| | - Su-Jun Gao
- Hematology Department, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
6
|
Cantu MD, Kanagal-Shamanna R, Wang SA, Kadia T, Bueso-Ramos CE, Patel SS, Geyer JT, Tam W, Madanat Y, Li P, George TI, Nichols MM, Rogers HJ, Liu YC, Aggarwal N, Kurzer JH, Maracaja DLV, Hsi ED, Zaiem F, Babu D, Foucar K, Laczko D, Bagg A, Orazi A, Arber DA, Hasserjian RP, Weinberg OK. Clinicopathologic and Molecular Analysis of Normal Karyotype Therapy-Related and De Novo Acute Myeloid Leukemia: A Multi-Institutional Study by the Bone Marrow Pathology Group. JCO Precis Oncol 2023; 7:e2200400. [PMID: 36689697 DOI: 10.1200/po.22.00400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE Therapy-related acute myeloid leukemias (t-AML) are a heterogenous group of aggressive neoplasms that arise following exposure to cytotoxic chemotherapy and/or ionizing radiation. Many therapy-related myeloid neoplasms (t-MN) are associated with distinct chromosomal aberrations and/or TP53 alterations, but little is known about the clinicopathologic and molecular features of normal karyotype t-AML (NK-t-AML) and whether this t-MN subtype is distinctly different from NK de novo AML (NK-dn-AML). METHODS This multi-institutional study by the Bone Marrow Pathology Group retrospectively evaluated clinicopathologic and molecular characteristics of 335 patients with NK-AML, comprising 105 t-AML and 230 dn-AML cases. RESULTS Patients with t-AML compared with dn-AML exhibit significantly shorter overall survival (OS; median months: 17.6 v 44.2; P < .0001) and relapse-free survival (RFS; median months: 9.1 v 19.2; P = .0018). Frequency of NPM1, FLT3, KRAS, and GATA2 mutations were significantly different in NK-t-AML compared with NK-dn-AML (NPM1 35% v 49%; P = .0493; FLT3 23% v 36%; P = 0494; KRAS 12% v 5%; P = .0465; GATA2 9% v 2% P = .0105), while TP53 mutations were rare. Patients with t-AML more often stratified into intermediate or adverse 2017 ELN genetic risk groups. Favorable ELN risk predicted favorable OS (hazard ratio [HR], 0.4056; 95% CI, 0 to 0.866; P = .020) and RFS (HR, 0.355; 95% CI, 0 to 0.746; P = .006). Among all patients with NK-AML, stem-cell transplant and favorable ELN risk both significantly affected RFS, while therapy-relatedness and age had a borderline significant impact on OS (HR, 1.355; 95% CI, 0.975 to 1.882; P = .070). CONCLUSION To our knowledge, this is the largest study to date to comprehensively evaluate NK-t-AML and provides a framework that may inform our understanding of NK-t-AML disease biology and could potentially help guide therapeutic management and improved disease classification in t-MNs that lack cytogenetic aberrations.
Collapse
Affiliation(s)
- Miguel D Cantu
- The University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Sa A Wang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tapan Kadia
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | | | - Wayne Tam
- Weill Cornell Medical Center, New York, NY
| | - Yazan Madanat
- The University of Texas Southwestern Medical Center, Dallas, TX
| | - Peng Li
- University of Utah, Salt Lake City, UT
| | | | | | | | | | - Nidhi Aggarwal
- UPMC and University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | | | - Eric D Hsi
- Wake Forest Baptist Health, Winston-Salem, NC
| | | | | | | | - Dorottya Laczko
- Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Adam Bagg
- Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Attilio Orazi
- Texas Tech University Health Science Center, St Lubbock, TX
| | | | | | - Olga K Weinberg
- The University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
7
|
Shi Y, Xue Y, Wang C, Yu L. Nucleophosmin 1: from its pathogenic role to a tantalizing therapeutic target in acute myeloid leukemia. Hematology 2022; 27:609-619. [PMID: 35621728 DOI: 10.1080/16078454.2022.2067939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Nucleophosmin 1 (NPM1, also known as B23) is a multifunctional protein involved in a variety of cellular processes, including ribosomal maturation, centrosome replication, maintenance of genomic stability, cell cycle control, and apoptosis. NPM1 is the most commonly mutated gene in adult acute myeloid leukemia (AML) and is present in approximately 40% of all AML cases. The underlying mechanisms of mutant NPM1 (NPM1mut) in leukemogenesis remain unclear. This review summarizes the structure and physiological function of NPM1, mechanisms underlying the pathogenesis of NPM1-mutated AML, and the potential role of NPM1 as a therapeutic target. It is reported that dysfunctional NPM1 might cause AML pathogenesis via its role as a protein chaperone, inhibiting differentiation of leukemia stem cells and regulation of non-coding RNAs. Besides conventional chemotherapies, NPM1 is a promising therapeutic target against AML that warrants further investigation. NPM1-based therapeutic strategies include inducing nucleolar relocalisation of NPM1 mutants, interfering with NPM1 oligomerization, and NPM1 as an immune response target.
Collapse
Affiliation(s)
- Yuye Shi
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Yuhao Xue
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China
| | - Chunling Wang
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| | - Liang Yu
- Department of Hematology, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, People's Republic of China.,Department of Hematology, The Huaian Clinical College of Xuzhou Medical University, Xuzhou, People's Republic of China
| |
Collapse
|
8
|
Oñate G, Bataller A, Garrido A, Hoyos M, Arnan M, Vives S, Coll R, Tormo M, Sampol A, Escoda L, Salamero O, Garcia A, Bargay J, Aljarilla A, Nomdedeu JF, Esteve J, Sierra J, Pratcorona M. Prognostic impact of DNMT3A mutation in acute myeloid leukemia with mutated NPM1. Blood Adv 2022; 6:882-890. [PMID: 34516636 PMCID: PMC8945292 DOI: 10.1182/bloodadvances.2020004136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/07/2021] [Indexed: 11/20/2022] Open
Abstract
The negative prognostic impact of internal tandem duplication of FLT3 (FLT3-ITD) in patients with acute myeloid leukemia with mutated NPM1 (AML-NPM1) is restricted to those with a higher FLT3-ITD allelic ratio (FLT3high; ≥0.5) and considered negligible in those with a wild-type (FLT3WT)/low ITD ratio (FLT3low). Because the comutation of DNMT3A (DNMT3Amut) has been suggested to negatively influence prognosis in AML-NPM1, we analyzed the impact of DNMT3Amut in FLT3-ITD subsets (absent, low, and high ratios). A total of 164 patients diagnosed with AML-NPM1 included in 2 consecutive CETLAM protocols and with DNMT3A and FLT3 status available were studied. Overall, DNMT3Amut status did not have a prognostic impact, with comparable overall survival (P = .2). Prognostic stratification established by FLT3-ITD (FLT3WT = FLT3low > FLT3high) was independent of DNMT3Amut status. Measurable residual disease (MRD) based on NPM1 quantitative polymerase chain reaction was available for 94 patients. DNMT3Amut was associated with a higher number of mutated NPM1 transcripts after induction (P = .012) and first consolidation (C1; P < .001). All DNMT3Amut patients were MRD+ after C1 (P < .001) and exhibited significant MRD persistence after C2 and C3 (MRD+ vs MRD-; P = .027 and P = .001, respectively). Finally, DNMT3Amut patients exhibited a trend toward greater risk of molecular relapse (P = .054). In conclusion, DNMT3Amut did not modify the overall prognosis exerted by FLT3-ITD in AML-NPM1 despite delayed MRD clearance, possibly because of MRD-driven preemptive intervention.
Collapse
Affiliation(s)
- Guadalupe Oñate
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Ana Garrido
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Montserrat Hoyos
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Montserrat Arnan
- Catalan Institute of Oncology (ICO), Hospital Duran i Reynals, Barcelona, Spain
| | - Susana Vives
- ICO, Hospital Germans Trias i Pujol, José Carreras Leukemia Research Institute, Badalona, Spain
| | - Rosa Coll
- ICO, Hospital Josep Trueta, Girona, Spain
| | - Mar Tormo
- Hospital Clínico Universitario, Instituto de Investigación del Hospital Clínico de la Comunidad Valenciana, Valencia, Spain
| | | | | | | | - Antoni Garcia
- Hospital Universitari Arnau de Vilanova, Lleida, Spain; and
| | - Joan Bargay
- Hospital Son Llàtzer, Palma de Mallorca, Spain
| | - Alba Aljarilla
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Josep F. Nomdedeu
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Jorge Sierra
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Marta Pratcorona
- Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
van der Werf I, Wojtuszkiewicz A, Meggendorfer M, Hutter S, Baer C, Heymans M, Valk PJM, Kern W, Haferlach C, Janssen JJWM, Ossenkoppele GJ, Cloos J, Haferlach T. Splicing factor gene mutations in acute myeloid leukemia offer additive value if incorporated in current risk classification. Blood Adv 2021; 5:3254-3265. [PMID: 34448812 PMCID: PMC8525232 DOI: 10.1182/bloodadvances.2021004556] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 11/20/2022] Open
Abstract
Splicing factor (SF) mutations are important contributors to the pathogenesis of hematological malignancies; however, their relevance in risk classification of acute myeloid leukemia (AML) warrants further investigation. To gain more insight into the characteristics of patients with AML carrying SF mutations, we studied their association with clinical features, cytogenetic and molecular abnormalities, and clinical outcome in a large cohort of 1447 patients with AML and high-risk myelodysplastic syndrome. SF mutations were identified in 22% of patients and were associated with multiple unfavorable clinical features, such as older age, antecedent myeloid disorders, and adverse risk factors (mutations in RUNX1 and ASXL1). Furthermore, they had significantly shorter event-free and overall survival. Notably, in European LeukemiaNet (ELN) 2017 favorable- and intermediate-risk groups, SF3B1 mutations were indicative of relatively poor prognosis. In addition, patients carrying concomitant SF mutations and RUNX1 mutations had a particularly adverse prognosis. In patients without any of the 4 most common SF mutations, RUNX1 mutations were associated with relatively good outcome, which was comparable to that of intermediate-risk patients. In this study, we propose that SF mutations be considered for incorporation into prognostic classification systems. First, SF3B1 mutations could be considered an intermediate prognostic factor when co-occurring with favorable risk features and as an adverse prognostic factor for patients currently categorized as having intermediate risk, according to the ELN 2017 classification. Second, the prognostic value of the current adverse factor RUNX1 mutations seems to be limited to its co-occurrence with SF mutations.
Collapse
Affiliation(s)
- Inge van der Werf
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anna Wojtuszkiewicz
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | | | | | | - Martijn Heymans
- Department of Epidemiology and Biostatistics, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands; and
| | - Peter J M Valk
- Department of Hematology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | | - Jeroen J W M Janssen
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gert J Ossenkoppele
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jacqueline Cloos
- Department of Hematology, Amsterdam University Medical Center, VU University Medical Center, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
10
|
Indeterminate and oncogenic potential: CHIP vs CHOP mutations in AML with NPM1 alteration. Leukemia 2021; 36:394-402. [PMID: 34376804 PMCID: PMC8807394 DOI: 10.1038/s41375-021-01368-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/13/2021] [Accepted: 07/22/2021] [Indexed: 11/08/2022]
Abstract
In AML patients, recurrent mutations were shown to persist in remission, however, only some have a prognostic value and persistent mutations might therefore reflect a re-established premalignant state or truly active disease causing relapse. We aimed to dissect the nature of co-mutations in NPM1 mutated AML where the detection of NPM1 transcripts allows highly specific and sensitive detection of complete molecular remission (CMR). We analysed 150 consecutive patients who achieved CMR following intensive treatment by next generation sequencing on paired samples at diagnosis, CMR and relapse (38/150 patients). Patients with persistence or the acquisition of non-DTA (DNMT3A, TET2, ASXL1) mutations at CMR (23/150 patients, 15%) have a significantly worse prognosis (EFS HR = 2.7, p = 0.003; OS HR = 3.6, p = 0.012). Based on clonal evolution analysis of diagnostic, CMR and relapse samples, we redefine pre-malignant mutations and include IDH1, IDH2 and SRSF2 with the DTA genes in this newly defined group. Only the persistence or acquisition of CHOP-like (clonal hematopoiesis of oncogenic potential) mutations was significantly associated with an inferior outcome (EFS HR = 4.5, p = 0.0002; OS HR = 5.5, p = 0.002). Moreover, the detection of CHOP-like mutations at relapse was detrimental (HR = 4.5, p = 0.01). We confirmed these findings in a second independent whole genome sequencing cohort.
Collapse
|
11
|
Maturation State-Specific Alternative Splicing in FLT3-ITD and NPM1 Mutated AML. Cancers (Basel) 2021; 13:cancers13163929. [PMID: 34439083 PMCID: PMC8394193 DOI: 10.3390/cancers13163929] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/27/2021] [Accepted: 07/30/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In hematological malignancies, genome-wide sequencing studies found the process of splicing to be surprisingly frequently disrupted. While recent studies characterized altered splicing in relation to splicing factor mutations in AML, this study explored differential splicing profiles associated with two most common aberrations in AML: FLT3-ITD and NPM1 mutations. We identified the differential splicing of FAB-type specific gene sets in FLT3-ITD+/NPM1+ specimens as compared to FLT3-ITD−/NPM1− samples. The primary functions perturbed by differential splicing in all three FAB types included cell cycle control and DNA damage response. Interestingly, differential expression mainly affected genes involved in hematopoietic differentiation. Our findings increase our understanding of how genetic mutations translate to phenotypic features of AML cells to further improve response predictions and to find innovative therapeutic approaches. Altogether, to the best of our knowledge, this is the first study to report differential splicing profiles associated with FLT3-ITD with a concomitant NPM1 mutation in AML. Abstract Despite substantial progress achieved in unraveling the genetics of AML in the past decade, its treatment outcome has not substantially improved. Therefore, it is important to better understand how genetic mutations translate to phenotypic features of AML cells to further improve response predictions and to find innovative therapeutic approaches. In this respect, aberrant splicing is a crucial contributor to the pathogenesis of hematological malignancies. Thus far, altered splicing is well characterized in relation to splicing factor mutations in AML. However, splicing profiles associated with mutations in other genes remain largely unexplored. In this study, we explored differential splicing profiles associated with two of the most common aberrations in AML: FLT3-ITD and NPM1 mutations. Using RNA-sequencing data of a total of 382 primary AML samples, we found that the co-occurrence of FLT3-ITD and mutated NPM1 is associated with differential splicing of FAB-type specific gene sets. Despite the FAB-type specificity of particular gene sets, the primary functions perturbed by differential splicing in all three FAB types include cell cycle control and DNA damage response. Interestingly, we observed functional divergence between alternatively spliced and differentially expressed genes in FLT3-ITD+/NPM1+ samples in all analyzed FAB types, with differential expression affecting genes involved in hematopoietic differentiation. Altogether, these observations indicate that concomitant FLT3-ITD and mutated NPM1 are associated with the maturation state-specific differential splicing of genes with potential oncogenic relevance.
Collapse
|
12
|
The Impact of DNMT3A Status on NPM1 MRD Predictive Value and Survival in Elderly AML Patients Treated Intensively. Cancers (Basel) 2021; 13:cancers13092156. [PMID: 33947035 PMCID: PMC8124973 DOI: 10.3390/cancers13092156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of acute myeloid leukemia (AML) patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. A 4log reduction of NPM1 MRD was associated with a better outcome. DNMT3A negative patients who achieved a 4log reduction had a superior outcome to those who did not. However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identify a subgroup of patients at high risk of relapse. Abstract Minimal residual disease (MRD) is now a powerful surrogate marker to assess the response to chemotherapy in acute myeloid leukemia (AML). DNMT3A mutation has been associated with adverse outcomes. In this study, we aimed to investigate the impact of DNMT3A status on NPM1 MRD predictive value for survival in a retrospective cohort of AML patients aged over 60 years old treated intensively. A total of 138 patients treated for NPM1-mutated AML in two French institutions were analyzed retrospectively. DNMT3A status did not influence the probability of having a ≥ 4log MRD1 reduction after induction. Only 20.4% of FLT3-ITD patients reached ≥ 4log MRD1 reduction compared to 47.5% in FLT3wt cases. A 4log reduction of NPM1 MRD was associated with a better outcome, even in FLT3-ITD mutated patients, independent of the allelic ratio. DNMT3A negative patients who reached a 4log reduction had a superior outcome to those who did not (HR = 0.23; p < 0.001). However, postinduction NPM1 MRD1 reduction was not predictive of OS and LFS in DNMT3Amut patients. These results confirm that post-induction NPM1 MRD1 is a reliable tool to assess disease outcome in elderly AML patients. However, the presence of DNMT3A also identifies a subgroup of patients at high risk of relapse.
Collapse
|
13
|
Venugopal K, Feng Y, Shabashvili D, Guryanova OA. Alterations to DNMT3A in Hematologic Malignancies. Cancer Res 2021; 81:254-263. [PMID: 33087320 PMCID: PMC7855745 DOI: 10.1158/0008-5472.can-20-3033] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
In the last decade, large-scale genomic studies in patients with hematologic malignancies identified recurrent somatic alterations in epigenetic modifier genes. Among these, the de novo DNA methyltransferase DNMT3A has emerged as one of the most frequently mutated genes in adult myeloid as well as lymphoid malignancies and in clonal hematopoiesis. In this review, we discuss recent advances in our understanding of the biochemical and structural consequences of DNMT3A mutations on DNA methylation catalysis and binding interactions and summarize their effects on epigenetic patterns and gene expression changes implicated in the pathogenesis of hematologic malignancies. We then review the role played by mutant DNMT3A in clonal hematopoiesis, accompanied by its effect on immune cell function and inflammatory responses. Finally, we discuss how this knowledge informs therapeutic approaches for hematologic malignancies with mutant DNMT3A.
Collapse
Affiliation(s)
- Kartika Venugopal
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Yang Feng
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Daniil Shabashvili
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida
| | - Olga A Guryanova
- Department of Pharmacology and Therapeutics, University of Florida (UF) College of Medicine, Gainesville, Florida.
- University of Florida Health Cancer Center, Gainesville, Florida
| |
Collapse
|
14
|
Zhang R, Li Y, Wang H, Zhu K, Zhang G. The Regulation of circRNA RNF13/miRNA-1224-5p Axis Promotes the Malignant Evolution in Acute Myeloid Leukemia. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5654380. [PMID: 33083473 PMCID: PMC7557902 DOI: 10.1155/2020/5654380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/30/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To study the biological function of circular RNA RNF13 (circRNF13) in acute myeloid leukemia (AML) and its relationship with prognosis. METHODS We constructed stable AML cell lines with downregulated expression of circRNF13, and then, we explored the effect of downregulation of circRNF13 expression on the proliferation, migration, and invasion through qRT-PCR, MTT curve, colony formation, transwell migration and invasion experiment, cell cycle, apoptosis, Caspase 3/7 assay, and other experiments. We also studied the expression of C-myc and Tenascin-C by qRT-PCR to explore the role of circRNF13. RESULTS When the expression of circRNF13 was downregulated, the proliferation rate of AML cells decreased significantly, the cell cycle was blocked to G1 phase, and apoptosis rate increased significantly. C-myc related to cell proliferation decreased significantly at RNA level. Furthermore, when the expression of circRNF13 was downregulated, the migration and invasion ability of AML cells was significantly reduced, and the expression of Tenascin-C related to migration and invasion also decreased significantly. The luciferase reporter assay system confirmed that miRNA-1224-5p was the direct target of circRNF13. CONCLUSION CircRNF13 inhibited the proliferation, migration, and invasion of AML cells by regulating the expression of miRNA-1224-5p. This study provides some clues for the diagnosis and treatment of AML.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yingchun Li
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hongtao Wang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ke Zhu
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Dai YJ, Hu F, He SY, Wang YY. Epigenetic landscape analysis of lncRNAs in acute myeloid leukemia with DNMT3A mutations. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:318. [PMID: 32355762 PMCID: PMC7186694 DOI: 10.21037/atm.2020.02.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Acute myeloid leukemia (AML) is a type of cancer that consists of a group of hematological malignancies with high heterogeneity. DNA methyltransferase 3A (DNMT3A)-mutated AML patients have a poor prognosis. Some long non-coding RNAs (lncRNAs) have been reported to enhance therapeutic sensitivity, and so could affect the overall survival rate of elderly cytogenetically normal acute myeloid leukemia (CN-AML) patients; however, studies on the lncRNA signature in DNMT3A-mutated AML are rare. Method The DNMT3A R878H conditional knock-in mouse model was constructed to explore the lncRNAs of DNMT3A mutation by using the Cuffcomparison method. Cis and trans regulation networks were used to predict candidate genes. The expression levels in leukemic cell lines and the prognostic index of these candidate genes were analyzed with the Broad Institute Cancer Cell Line Encyclopedia (CCLE) and OncoLnc databases. The data for each sample were statistically analyzed using GraphPad Prism. Results In this study, we applied the DNMT3A R878H conditional knock-in mouse model to explore the lncRNA epigenetic landscape of DNMT3A mutation by using the Cuffcomparison method. Twenty-three differentially expressed lncRNAs were identified in Dnmt3aR878H/WTMx1-Cre+ mice. We next predicted the downstream targetable genes regulated by these lncRNAs through cis and trans regulation networks and found 124 candidate genes are related to these lncRNAs. In further analysis of 124 genes, we found that increased mRNA expression levels of interleukin 1 receptor type 2 (IL1R2), Krüppel-like factor 13 (KLF13), ATPase H+ transporting V1 subunit A (ATP6V1A), proteasome 26S Subunit, non-ATPase 3 (PSMD3), and pyrroline-5-carboxylate reductase 2 (PYCR2) were associated with poor prognosis in AML. Functional analysis of these genes demonstrated that the pathways involved in autophagy, cell cycle, and hematopoietic stem cell differentiation were more enriched in Dnmt3aR878H/WTMx1-Cre+ mice. Conclusion Our study was the first to use DNMT3A R878H conditional knock-in mouse model to predict the specific lncRNAs regulated by the DNMT3A mutation in AML. Six candidate genes were found to be associated with DNMT3A mutation with poor prognosis. Our results provided a possible treatment strategy for this disease.
Collapse
Affiliation(s)
- Yu-Jun Dai
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China.,Center State Key Laboratory of Oncology in South China, Guangzhou 510000, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Fang Hu
- Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510000, China.,Center State Key Laboratory of Oncology in South China, Guangzhou 510000, China.,Collaborative Innovation Center for Cancer Medicine, Guangzhou 510000, China
| | - Si-Yuan He
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yue-Ying Wang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
16
|
Abstract
The field of acute myeloid leukaemia (AML) diagnostics, initially based solely on morphological assessment, has integrated more and more disciplines. Today, state-of-the-art AML diagnostics relies on cytomorphology, cytochemistry, immunophenotyping, cytogenetics and molecular genetics. Only the integration of all of these methods allows for a comprehensive and complementary characterisation of each case, which is prerequisite for optimal AML diagnosis and management. Here, we will review why multidisciplinary diagnostics is mandatory today and will gain even more importance in the future, especially in the context of precision medicine. We will discuss ideas and strategies that are likely to shape and improve multidisciplinary diagnostics in AML and may even overcome some of today's gold standards. This includes recent technical advances that provide genome-wide molecular insights. The enormous amount of data obtained by these latter techniques represents a great challenge, but also a unique chance. We will reflect on how this increase in knowledge can be incorporated into the routine to pave the way for personalised medicine in AML.
Collapse
|
17
|
Patkar N, Shaikh AF, Kakirde C, Nathany S, Ramesh H, Bhanshe P, Joshi S, Chaudhary S, Kannan S, Khizer SH, Chatterjee G, Tembhare P, Shetty D, Gokarn A, Punatkar S, Bonda A, Nayak L, Jain H, Khattry N, Bagal B, Sengar M, Gujral S, Subramanian P. A novel machine-learning-derived genetic score correlates with measurable residual disease and is highly predictive of outcome in acute myeloid leukemia with mutated NPM1. Blood Cancer J 2019; 9:79. [PMID: 31575857 PMCID: PMC6773777 DOI: 10.1038/s41408-019-0244-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nikhil Patkar
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India.
| | - Anam Fatima Shaikh
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Chinmayee Kakirde
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Shrinidhi Nathany
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Hridya Ramesh
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Prasanna Bhanshe
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Swapnali Joshi
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Shruti Chaudhary
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Sadhana Kannan
- Biostatistics, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Syed Hasan Khizer
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Gaurav Chatterjee
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Prashant Tembhare
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Dhanalaxmi Shetty
- Department of Cytogenetics, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Anant Gokarn
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Sachin Punatkar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Avinash Bonda
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Lingaraj Nayak
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Hasmukh Jain
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Navin Khattry
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Bhausaheb Bagal
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Manju Sengar
- Adult Haematolymphoid Disease Management Group, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Sumeet Gujral
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Papagudi Subramanian
- Haematopathology Laboratory, ACTREC, Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| |
Collapse
|