1
|
Seifert N, Reinke S, Grund J, Müller-Meinhard B, Richter J, Heilmann T, Schlößer H, Kotrova M, Brüggemann M, Borchmann P, Bröckelmann PJ, Altenbuchinger M, Klapper W. T-cell diversity and exclusion of blood-derived T-cells in the tumor microenvironment of classical Hodgkin Lymphoma. Leukemia 2025; 39:684-693. [PMID: 39690183 PMCID: PMC11879864 DOI: 10.1038/s41375-024-02490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
The Tumor Microenvironment (TME) in classical Hodgkin Lymphoma (HL) contains abundant immune cells and only few neoplastic Hodgkin and Reed-Sternberg cells (HRSC). We analyzed the T-cell receptor (TCR) repertoire to detect T-cell expansion in the TME and blood. In contrast to solid cancer tissue, T-cells in the TME of HL are highly polyclonal at first diagnosis and show only minor clonal expansion during anti-PD1 immune checkpoint blockade (ICB). At relapse and during ICB, pre-amplified T-cell populations increase in the TME of solid cancers but to a much lesser extent in HL. In contrast, T-cell populations in the peripheral blood of HL patients display higher clonality than healthy controls reaching clonality levels comparable to solid cancer. However, pre-amplified blood T-cells in HL patients show only minor additional clonal expansion during ICB. Moreover, blood-derived T-cells do not repopulate the TME of HL to the same extent as observed in solid cancers. Thus, the T-cell repertoire in the TME of HL appears unique by a relatively low clonal T-cell content and the exclusion of clonally expanded T-cells from the peripheral blood. Exclusion of clonally expanded tumor-specific T-cells from the TME may present a novel mechanism of immune evasion in HL.
Collapse
Affiliation(s)
- Nicole Seifert
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Sarah Reinke
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Johanna Grund
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Berit Müller-Meinhard
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Julia Richter
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | | | - Hans Schlößer
- Center of Molecular Medicine, Cologne Translational Immunology, University of Cologne, Cologne, Germany
| | - Michaela Kotrova
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Monika Brüggemann
- Department of Hematology and Oncology, University Hospital Schleswig-Holstein Campus, Kiel, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Paul J Bröckelmann
- Department I of Internal Medicine, Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Max-Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael Altenbuchinger
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus, Kiel, Germany.
| |
Collapse
|
2
|
Müller‐Meinhard B, Seifert N, Grund J, Reinke S, Yalcin F, Kaul H, Borchmann S, von Tresckow B, Borchmann P, Plütschow A, Richter J, Engert A, Altenbuchinger M, Bröckelmann PJ, Klapper W. Human leukocyte antigen (HLA) class I expression on Hodgkin-Reed-Sternberg cells is an EBV-independent major determinant of microenvironment composition in classic Hodgkin lymphoma. Hemasphere 2024; 8:e84. [PMID: 38836098 PMCID: PMC11145947 DOI: 10.1002/hem3.84] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 05/02/2024] [Indexed: 06/06/2024] Open
Abstract
Hodgkin-Reed-Sternberg cells (HRSCs) in classic Hodgkin Lymphoma (HL) frequently lack expression of human leukocyte antigen class I (HLA-I), considered to hamper activation of cytotoxic T cells in the tumor microenvironment (TME). Here, we demonstrate HLA-I expression on HRSCs to be a strong determinant of TME composition whereas expression of HLA-II was associated with only minor differential gene expression in the TME. In HLA-I-positive HL the HRSC content and expression of CCL17/TARC in HRSCs are low, independent of the presence of Epstein-Barr virus in HRSCs. Additionally, HLA-I-positive HL shows a high content of CD8+ cytotoxic T cells. However, an increased expression of the inhibitory immune checkpoint LAG3 on CD8+ T cells in close proximity to HRSCs is observed. Suggesting interference with cytotoxic activity, we observed an absence of clonally expanded T cells in the TME. While HLA-I-positive HL is not associated with an unfavorable clinical course in our cohorts, they share features with the recently described H2 subtype of HL. Given the major differences in TME composition, immune checkpoint inhibitors may differ in their mechanism of action in HLA-I-positive compared to HLA-I-negative HL.
Collapse
Affiliation(s)
- Berit Müller‐Meinhard
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Nicole Seifert
- Department of Medical BioinformaticsUniversity Medical Center GöttingenGöttingenGermany
| | - Johanna Grund
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Sarah Reinke
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Fatih Yalcin
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Helen Kaul
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Bastian von Tresckow
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
- Department of Hematology and Stem Cell Transplantation, West German Cancer Center and German Cancer Consortium (DKTK partner site Essen), University Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Annette Plütschow
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | - Julia Richter
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| | - Andreas Engert
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
| | | | - Paul J. Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD) and German Hodgkin Study Group (GHSG), Faculty of Medicine and University Hospital of CologneUniversity of CologneCologneGermany
- German Hodgkin Study Group (GHSG)CologneGermany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD)CologneGermany
- Max‐Planck Institute for Biology of AgeingCologneGermany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of PathologyUniversity Hospital Schleswig‐HolsteinKielGermany
| |
Collapse
|
3
|
Rask Kragh Jørgensen R, Bergström F, Eloranta S, Tang Severinsen M, Bjøro Smeland K, Fosså A, Haaber Christensen J, Hutchings M, Bo Dahl-Sørensen R, Kamper P, Glimelius I, E Smedby K, K Parsons S, Mae Rodday A, J Maurer M, M Evens A, C El-Galaly T, Hjort Jakobsen L. Machine Learning-Based Survival Prediction Models for Progression-Free and Overall Survival in Advanced-Stage Hodgkin Lymphoma. JCO Clin Cancer Inform 2024; 8:e2300255. [PMID: 38608215 PMCID: PMC11161240 DOI: 10.1200/cci.23.00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/21/2024] [Indexed: 04/14/2024] Open
Abstract
PURPOSE Patients diagnosed with advanced-stage Hodgkin lymphoma (aHL) have historically been risk-stratified using the International Prognostic Score (IPS). This study investigated if a machine learning (ML) approach could outperform existing models when it comes to predicting overall survival (OS) and progression-free survival (PFS). PATIENTS AND METHODS This study used patient data from the Danish National Lymphoma Register for model development (development cohort). The ML model was developed using stacking, which combines several predictive survival models (Cox proportional hazard, flexible parametric model, IPS, principal component, penalized regression) into a single model, and was compared with two versions of IPS (IPS-3 and IPS-7) and the newly developed aHL international prognostic index (A-HIPI). Internal model validation was performed using nested cross-validation, and external validation was performed using patient data from the Swedish Lymphoma Register and Cancer Registry of Norway (validation cohort). RESULTS In total, 707 and 760 patients with aHL were included in the development and validation cohorts, respectively. Examining model performance for OS in the development cohort, the concordance index (C-index) for the ML model, IPS-7, IPS-3, and A-HIPI was found to be 0.789, 0.608, 0.650, and 0.768, respectively. The corresponding estimates in the validation cohort were 0.749, 0.700, 0.663, and 0.741. For PFS, the ML model achieved the highest C-index in both cohorts (0.665 in the development cohort and 0.691 in the validation cohort). The time-varying AUCs for both the ML model and the A-HIPI were consistently higher in both cohorts compared with the IPS models within the first 5 years after diagnosis. CONCLUSION The new prognostic model for aHL on the basis of ML techniques demonstrated a substantial improvement compared with the IPS models, but yielded a limited improvement in predictive performance compared with the A-HIPI.
Collapse
Affiliation(s)
- Rasmus Rask Kragh Jørgensen
- Department of Hematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Fanny Bergström
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Eloranta
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Tang Severinsen
- Department of Hematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | | | - Alexander Fosså
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | | | - Martin Hutchings
- Department of Hematology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | | | - Peter Kamper
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Ingrid Glimelius
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Cancer Precision Medicine, Uppsala University, Uppsala, Sweden
| | - Karin E Smedby
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
| | - Susan K Parsons
- Department of Medicine, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA
| | - Angie Mae Rodday
- Department of Medicine, Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA
| | - Matthew J Maurer
- Department of Qualitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Andrew M Evens
- Division of Blood Disorders, Rutgers Cancer Institute New Jersey, New Brunswick, NJ
| | - Tarec C El-Galaly
- Department of Hematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Lasse Hjort Jakobsen
- Department of Hematology, Clinical Cancer Research Centre, Aalborg University Hospital, Aalborg, Denmark
- Department of Mathematical Sciences, Aalborg University, Aalborg, Denmark
| |
Collapse
|
4
|
Gomez F, Fisk B, McMichael JF, Mosior M, Foltz JA, Skidmore ZL, Duncavage EJ, Miller CA, Abel H, Li YS, Russler-Germain DA, Krysiak K, Watkins MP, Ramirez CA, Schmidt A, Martins Rodrigues F, Trani L, Khanna A, Wagner JA, Fulton RS, Fronick CC, O'Laughlin MD, Schappe T, Cashen AF, Mehta-Shah N, Kahl BS, Walker J, Bartlett NL, Griffith M, Fehniger TA, Griffith OL. Ultra-Deep Sequencing Reveals the Mutational Landscape of Classical Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:2312-2330. [PMID: 37910143 PMCID: PMC10648575 DOI: 10.1158/2767-9764.crc-23-0140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/27/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
The malignant Hodgkin and Reed Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) are scarce in affected lymph nodes, creating a challenge to detect driver somatic mutations. As an alternative to cell purification techniques, we hypothesized that ultra-deep exome sequencing would allow genomic study of HRS cells, thereby streamlining analysis and avoiding technical pitfalls. To test this, 31 cHL tumor/normal pairs were exome sequenced to approximately 1,000× median depth of coverage. An orthogonal error-corrected sequencing approach verified >95% of the discovered mutations. We identified mutations in genes novel to cHL including: CDH5 and PCDH7, novel stop gain mutations in IL4R, and a novel pattern of recurrent mutations in pathways regulating Hippo signaling. As a further application of our exome sequencing, we attempted to identify expressed somatic single-nucleotide variants (SNV) in single-nuclei RNA sequencing (snRNA-seq) data generated from a patient in our cohort. Our snRNA analysis identified a clear cluster of cells containing a somatic SNV identified in our deep exome data. This cluster has differentially expressed genes that are consistent with genes known to be dysregulated in HRS cells (e.g., PIM1 and PIM3). The cluster also contains cells with an expanded B-cell clonotype further supporting a malignant phenotype. This study provides proof-of-principle that ultra-deep exome sequencing can be utilized to identify recurrent mutations in HRS cells and demonstrates the feasibility of snRNA-seq in the context of cHL. These studies provide the foundation for the further analysis of genomic variants in large cohorts of patients with cHL. SIGNIFICANCE Our data demonstrate the utility of ultra-deep exome sequencing in uncovering somatic variants in Hodgkin lymphoma, creating new opportunities to define the genes that are recurrently mutated in this disease. We also show for the first time the successful application of snRNA-seq in Hodgkin lymphoma and describe the expression profile of a putative cluster of HRS cells in a single patient.
Collapse
Affiliation(s)
- Felicia Gomez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Bryan Fisk
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Joshua F. McMichael
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Matthew Mosior
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Jennifer A. Foltz
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Zachary L. Skidmore
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Eric J. Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A. Miller
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Haley Abel
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Yi-Shan Li
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - David A. Russler-Germain
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Kilannin Krysiak
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Marcus P. Watkins
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Cody A. Ramirez
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Alina Schmidt
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Fernanda Martins Rodrigues
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Lee Trani
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Ajay Khanna
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Julia A. Wagner
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Robert S. Fulton
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Catrina C. Fronick
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Michelle D. O'Laughlin
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Timothy Schappe
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Amanda F. Cashen
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Neha Mehta-Shah
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Brad S. Kahl
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jason Walker
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Nancy L. Bartlett
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Malachi Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| | - Todd A. Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| | - Obi L. Griffith
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, Missouri
- McDonnell Genome Institute, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
5
|
de Leval L, Alizadeh AA, Bergsagel PL, Campo E, Davies A, Dogan A, Fitzgibbon J, Horwitz SM, Melnick AM, Morice WG, Morin RD, Nadel B, Pileri SA, Rosenquist R, Rossi D, Salaverria I, Steidl C, Treon SP, Zelenetz AD, Advani RH, Allen CE, Ansell SM, Chan WC, Cook JR, Cook LB, d’Amore F, Dirnhofer S, Dreyling M, Dunleavy K, Feldman AL, Fend F, Gaulard P, Ghia P, Gribben JG, Hermine O, Hodson DJ, Hsi ED, Inghirami G, Jaffe ES, Karube K, Kataoka K, Klapper W, Kim WS, King RL, Ko YH, LaCasce AS, Lenz G, Martin-Subero JI, Piris MA, Pittaluga S, Pasqualucci L, Quintanilla-Martinez L, Rodig SJ, Rosenwald A, Salles GA, San-Miguel J, Savage KJ, Sehn LH, Semenzato G, Staudt LM, Swerdlow SH, Tam CS, Trotman J, Vose JM, Weigert O, Wilson WH, Winter JN, Wu CJ, Zinzani PL, Zucca E, Bagg A, Scott DW. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood 2022; 140:2193-2227. [PMID: 36001803 PMCID: PMC9837456 DOI: 10.1182/blood.2022015854] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
With the introduction of large-scale molecular profiling methods and high-throughput sequencing technologies, the genomic features of most lymphoid neoplasms have been characterized at an unprecedented scale. Although the principles for the classification and diagnosis of these disorders, founded on a multidimensional definition of disease entities, have been consolidated over the past 25 years, novel genomic data have markedly enhanced our understanding of lymphomagenesis and enriched the description of disease entities at the molecular level. Yet, the current diagnosis of lymphoid tumors is largely based on morphological assessment and immunophenotyping, with only few entities being defined by genomic criteria. This paper, which accompanies the International Consensus Classification of mature lymphoid neoplasms, will address how established assays and newly developed technologies for molecular testing already complement clinical diagnoses and provide a novel lens on disease classification. More specifically, their contributions to diagnosis refinement, risk stratification, and therapy prediction will be considered for the main categories of lymphoid neoplasms. The potential of whole-genome sequencing, circulating tumor DNA analyses, single-cell analyses, and epigenetic profiling will be discussed because these will likely become important future tools for implementing precision medicine approaches in clinical decision making for patients with lymphoid malignancies.
Collapse
Affiliation(s)
- Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Ash A. Alizadeh
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
- Stanford Cancer Institute, Stanford University, Stanford, CA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA
- Division of Hematology, Department of Medicine, Stanford University, Stanford, CA
| | - P. Leif Bergsagel
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Phoenix, AZ
| | - Elias Campo
- Haematopathology Section, Hospital Clínic, Institut d'Investigaciones Biomèdiques August Pi I Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Andrew Davies
- Centre for Cancer Immunology, University of Southampton, Southampton, United Kingdom
| | - Ahmet Dogan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jude Fitzgibbon
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Steven M. Horwitz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Ari M. Melnick
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - William G. Morice
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Ryan D. Morin
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
- BC Cancer Centre for Lymphoid Cancer, Vancouver, BC, Canada
| | - Bertrand Nadel
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
| | - Stefano A. Pileri
- Haematopathology Division, IRCCS, Istituto Europeo di Oncologia, IEO, Milan, Italy
| | - Richard Rosenquist
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Solna, Sweden
| | - Davide Rossi
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Itziar Salaverria
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | | | - Andrew D. Zelenetz
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Ranjana H. Advani
- Division of Oncology, Department of Medicine, Stanford University, Stanford, CA
| | - Carl E. Allen
- Division of Pediatric Hematology-Oncology, Baylor College of Medicine, Houston, TX
| | | | - Wing C. Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - James R. Cook
- Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH
| | - Lucy B. Cook
- Centre for Haematology, Imperial College London, London, United Kingdom
| | - Francesco d’Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Stefan Dirnhofer
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kieron Dunleavy
- Division of Hematology and Oncology, Georgetown Lombardi Comprehensive Cancer Centre, Georgetown University Hospital, Washington, DC
| | - Andrew L. Feldman
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Falko Fend
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Philippe Gaulard
- Department of Pathology, University Hospital Henri Mondor, AP-HP, Créteil, France
- Faculty of Medicine, IMRB, INSERM U955, University of Paris-Est Créteil, Créteil, France
| | - Paolo Ghia
- Università Vita-Salute San Raffaele and IRCCS Ospedale San Raffaele, Milan, Italy
| | - John G. Gribben
- Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Olivier Hermine
- Service D’hématologie, Hôpital Universitaire Necker, Université René Descartes, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Daniel J. Hodson
- Wellcome MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eric D. Hsi
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - Elaine S. Jaffe
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Keisuke Kataoka
- Division of Molecular Oncology, National Cancer Center Research Institute, Toyko, Japan
- Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Won Seog Kim
- Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, South Korea
| | - Rebecca L. King
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Young H. Ko
- Department of Pathology, Cheju Halla General Hospital, Jeju, Korea
| | | | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Muenster, Muenster, Germany
| | - José I. Martin-Subero
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Miguel A. Piris
- Department of Pathology, Jiménez Díaz Foundation University Hospital, CIBERONC, Madrid, Spain
| | - Stefania Pittaluga
- Hematopathology Section, Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, NY
- Department of Pathology & Cell Biology, Columbia University, New York, NY
- The Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Eberhard Karls University of Tübingen and Comprehensive Cancer Center, University Hospital Tübingen, Tübingen, Germany
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA
| | | | - Gilles A. Salles
- Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Jesus San-Miguel
- Clínica Universidad de Navarra, Navarra, Cancer Center of University of Navarra, Cima Universidad de NavarraI, Instituto de Investigacion Sanitaria de Navarra, Centro de Investigación Biomédica en Red de Céncer, Pamplona, Spain
| | - Kerry J. Savage
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Laurie H. Sehn
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| | - Gianpietro Semenzato
- Department of Medicine, University of Padua and Veneto Institute of Molecular Medicine, Padova, Italy
| | - Louis M. Staudt
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Steven H. Swerdlow
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | | | - Judith Trotman
- Haematology Department, Concord Repatriation General Hospital, Sydney, Australia
| | - Julie M. Vose
- Department of Internal Medicine, Division of Hematology-Oncology, University of Nebraska Medical Center, Omaha, NE
| | - Oliver Weigert
- Department of Medicine III, LMU Hospital, Munich, Germany
| | - Wyndham H. Wilson
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jane N. Winter
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | | | - Pier L. Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna Istitudo di Ematologia “Seràgnoli” and Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Università di Bologna, Bologna, Italy
| | - Emanuele Zucca
- Institute of Oncology Research and Oncology Institute of Southern Switzerland, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Adam Bagg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - David W. Scott
- Centre for Lymphoid Cancer, BC Cancer and University of British Columbia, Vancouver, Canada
| |
Collapse
|
6
|
Fromm JR, Tang C, Naresh KN. Predictors of risk of relapse in classic Hodgkin lymphoma. J Clin Pathol 2022; 76:414-417. [PMID: 36241372 DOI: 10.1136/jcp-2022-208552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/28/2022] [Indexed: 11/04/2022]
Abstract
Using multiparametric flow cytometric analysis, in a cohort of 62 patients with classic Hodgkin lymphoma having a median follow-up period of 69.5 months, we found-patients who experienced primary resistance or disease relapse (DR) had lower percentage of rosetted Hodgkin Reed-Sternberg cells (HRS-cells) as compared with patients who achieved sustained complete remission (SCR) (p=0.022); patients >35 years of age had higher percentage of HRS-cells (p=0.017) and lower percentage of B cells (p=0.017) and the nodular sclerosis subtype had higher percentage of B-cells (p=0.046) and activated B-cells (p=0.03). The proportion of SCR and DR subsets did not differ by histological subtypes, disease stage or age groups.
Collapse
Affiliation(s)
- Jonathan R Fromm
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Claire Tang
- University of Washington, Seattle, Washington, USA
| | - Kikkeri N Naresh
- Pathology / Cancer Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
7
|
Casagrande N, Borghese C, Aldinucci D. Current and Emerging Approaches to Study Microenvironmental Interactions and Drug Activity in Classical Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14102427. [PMID: 35626032 PMCID: PMC9139207 DOI: 10.3390/cancers14102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/06/2022] [Accepted: 05/11/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary In classical Hodgkin Lymphoma (cHL), the tumor microenvironment (TME) plays an important role in tumor progression and treatment response, making its evaluation critical for determining prognosis, treatment strategies and predicting an increase in drug toxicity. Therefore, there is a need to utilize more complex systems to study the cHL-TME and its interplay with tumor cells. To evaluate new anticancer drugs and to find the mechanisms of drug resistance, this review summarizes emerging approaches for the analysis of the TME composition and to identify the state of the disease; the in vitro techniques used to determine the mechanisms involved in the building of an immunosuppressive and protective TME; new 3-dimensional (3D) models, the heterospheroids (HS), developed to mimic TME interactions. Here, we describe the present and likely future clinical applications indicated by the results of these studies and propose a classification for the in vitro culture methods used to study TME interactions in cHL. Abstract Classic Hodgkin lymphoma is characterized by a few tumor cells surrounded by a protective and immunosuppressive tumor microenvironment (TME) composed by a wide variety of noncancerous cells that are an active part of the disease. Therefore, new techniques to study the cHL-TME and new therapeutic strategies targeting specifically tumor cells, reactivating the antitumor immunity, counteracting the protective effects of the TME, were developed. Here, we describe new methods used to study the cell composition, the phenotype, and the spatial distribution of Hodgkin and Reed–Sternberg (HRS) cells and of noncancerous cells in tumor tissues. Moreover, we propose a classification, with increasing complexity, of the in vitro functional studies used to clarify the interactions leading not only to HRS cell survival, growth and drug resistance, but also to the immunosuppressive tumor education of monocytes, T lymphocytes and fibroblasts. This classification also includes new 3-dimensional (3D) models, obtained by cultivating HRS cells in extracellular matrix scaffolds or in sponge scaffolds, under non-adherent conditions with noncancerous cells to form heterospheroids (HS), implanted in developing chick eggs (ovo model). We report results obtained with these approaches and their applications in clinical setting.
Collapse
|
8
|
GEP: time for prospective study in HL? Blood 2022; 139:805-806. [PMID: 35142850 DOI: 10.1182/blood.2021014325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/27/2021] [Indexed: 11/20/2022] Open
|
9
|
Schrod S, Schäfer A, Solbrig S, Lohmayer R, Gronwald W, Oefner PJ, Beißbarth T, Spang R, Zacharias HU, Altenbuchinger M. OUP accepted manuscript. Bioinformatics 2022; 38:i60-i67. [PMID: 35758796 PMCID: PMC9235492 DOI: 10.1093/bioinformatics/btac221] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Estimating the effects of interventions on patient outcome is one of the key aspects of personalized medicine. Their inference is often challenged by the fact that the training data comprises only the outcome for the administered treatment, and not for alternative treatments (the so-called counterfactual outcomes). Several methods were suggested for this scenario based on observational data, i.e. data where the intervention was not applied randomly, for both continuous and binary outcome variables. However, patient outcome is often recorded in terms of time-to-event data, comprising right-censored event times if an event does not occur within the observation period. Albeit their enormous importance, time-to-event data are rarely used for treatment optimization. We suggest an approach named BITES (Balanced Individual Treatment Effect for Survival data), which combines a treatment-specific semi-parametric Cox loss with a treatment-balanced deep neural network; i.e. we regularize differences between treated and non-treated patients using Integral Probability Metrics (IPM). RESULTS We show in simulation studies that this approach outperforms the state of the art. Furthermore, we demonstrate in an application to a cohort of breast cancer patients that hormone treatment can be optimized based on six routine parameters. We successfully validated this finding in an independent cohort. AVAILABILITY AND IMPLEMENTATION We provide BITES as an easy-to-use python implementation including scheduled hyper-parameter optimization (https://github.com/sschrod/BITES). The data underlying this article are available in the CRAN repository at https://rdrr.io/cran/survival/man/gbsg.html and https://rdrr.io/cran/survival/man/rotterdam.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- S Schrod
- To whom correspondence should be addressed. E-mail: or
| | - A Schäfer
- Department of Physics, Institute of Theoretical Physics, University of Regensburg, Regensburg 93051, Germany
| | - S Solbrig
- Department of Physics, Institute of Theoretical Physics, University of Regensburg, Regensburg 93051, Germany
| | - R Lohmayer
- Leibniz Institute for Immunotherapy, Regensburg 93053, Germany
| | - W Gronwald
- Institute of Functional Genomics, University of Regensburg, Regensburg 93053, Germany
| | - P J Oefner
- Institute of Functional Genomics, University of Regensburg, Regensburg 93053, Germany
| | - T Beißbarth
- Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen 37077, Germany
| | - R Spang
- Department of Statistical Bioinformatics, Institute of Functional Genomics, University of Regensburg, Regensburg 93053, Germany
| | - H U Zacharias
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | | |
Collapse
|
10
|
Opinto G, Agostinelli C, Ciavarella S, Guarini A, Maiorano E, Ingravallo G. Hodgkin Lymphoma: A Special Microenvironment. J Clin Med 2021; 10:4665. [PMID: 34682791 PMCID: PMC8541076 DOI: 10.3390/jcm10204665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Classical Hodgkin's lymphoma (cHL) is one of the most particular lymphomas for the few tumor cells surrounded by an inflammatory microenvironment. Reed-Sternberg (RS) and Hodgkin (H) cells reprogram and evade antitumor mechanisms of the normal cells present in the microenvironment. The cells of microenvironment are essential for growth and survival of the RS/H cells and are recruited through the effect of cytokines/chemokines. We summarize recent advances in gene expression profiling (GEP) analysis applied to study microenvironment component in cHL. We also describe the main therapies that target not only the neoplastic cells but also the cellular components of the background.
Collapse
Affiliation(s)
- Giuseppina Opinto
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Claudio Agostinelli
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40138 Bologna, Italy
| | - Sabino Ciavarella
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Attilio Guarini
- Haematology and Cell Therapy Unit, IRCCS-Istituto Tumori ‘Giovanni Paolo II’, 70124 Bari, Italy; (G.O.); (S.C.); (A.G.)
| | - Eugenio Maiorano
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70124 Bari, Italy;
| | - Giuseppe Ingravallo
- Section of Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari Aldo Moro, 70124 Bari, Italy;
| |
Collapse
|