1
|
Qin M, Ren J, Chen X, Zhou W, Zhang S, Zhang W, Shi M, Zhang M, Liu H, Ma Y, Yang M, Ji Y. CD19-targeted HSP90 inhibitor nanoparticle combined with TKIs reduces tumor burden and enhances T-cell immunity in murine B-cell malignancies. Theranostics 2025; 15:3589-3609. [PMID: 40093890 PMCID: PMC11905126 DOI: 10.7150/thno.106758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Conventional chemotherapies for B-cell malignancies are often limited by drug resistance and significant side effects due to non-specific targeting. This research aimed to improve treatment efficacy by developing nano-delivery systems that specifically target tumor cells, thereby enhancing therapeutic precision and reducing off-target toxicity. Methods: The construction, biocompatibility, and targeting capability of CD19@NP/17-DMAG were evaluated using TEM, HPLC, FTIR spectroscopy, CCK-8 assay, flow cytometry (FC), and IVIS imaging. Therapeutic efficacy was assessed through Western blotting, RT-qPCR, flow cytometry, H&E staining, BrdU assay, and apoptosis assays. The mechanism of action of CD19@NP/17-DMAG in murine B-cell malignancies was investigated using RNA sequencing, in vivo T-cell depletion, and CRISPR/Cas9 technology. Results: CD19@NP/17-DMAG nanoparticles demonstrated enhanced efficacy in murine models of BCR-ABL1⁺ B-cell acute lymphoblastic leukemia (B-ALL) when combined with tyrosine kinase inhibitors (TKIs), including the BCR-ABL1-targeted imatinib and the broad-spectrum ponatinib. This combination significantly reduced tumor burden, prolonged survival, and induced a robust anti-tumor T-cell response. RNA-seq analysis indicated that the targeted treatment modulated genes related to cell proliferation, apoptosis, and antigen presentation. Notably, this treatment also increased MHC class I (MHC-I) expression, thereby strengthening antigen presentation in BCR-ABL1⁺ B-ALL cells. Ponatinib-based therapy achieved complete remission, eradicated minimal residual disease, and established long-term immune memory in BCR-ABL1⁺ B-ALL. In addition, CD19@NP/17-DMAG was effective in another B-cell malignancy model, A20 lymphoma, significantly slowing tumor growth and amplifying T-cell responses. Conclusions: These findings highlight the CD19@NP/17-DMAG system as a promising therapeutic approach that both augments T cell immune responses and minimizes side effects in B-cell malignancies.
Collapse
Affiliation(s)
- Mengting Qin
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Juan Ren
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Wen Zhou
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Shuyuan Zhang
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Weile Zhang
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Mengxin Shi
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Mingzhen Zhang
- Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Huashen Liu
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| | - Mei Yang
- Department of Organ Procurement and Allocation, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology. School of Basic Medical Sciences, Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
- Department of Hematology, the First Affiliated Hospital of Xi'an Jiaotong University. Xi'an, Shaanxi, 710061, China
| |
Collapse
|
2
|
Li Y, Duan Q, Wang C, Du L, Jiang Z, Li S, Ruan X, Huang L, He Z, Wen C, Zhang Y. Jieduquyuziyin prescription alleviates lupus development via inhibiting neddylation pathway to promote Bim-induced apoptosis of double negative T cells. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118884. [PMID: 39362327 DOI: 10.1016/j.jep.2024.118884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jieduquyuziyin prescription (JP) is an empirical prescription approved for application to treat systemic lupus erythematosus (SLE) in hospital within China. Despite the prominent treatment effect of JP clinically, further investigation is imperative to explore its underlying mechanisms. AIM OF THE STUDY We aim to investigate the impact of JP on DN T cell apoptosis in the treatment of SLE and the specific regulation mechanisms. MATERIALS AND METHODS Firstly, female MRL/lpr mice were treated with JP and the therapeutic efficacy of JP was evaluated via skin lesions, lymphoid organ enlargement, accumulation of autoantibodies and renal function. Then, flow cytometer analysis was performed to evaluate the proportions and the apoptosis of T cell subpopulations. Based on the above results, double-negative (DN) T cells were subjected to proteomic with subsequent differential screening. The expression of Ube2m and Bim was further validated using real-time PCR and Western blot. Subsequently, DN T cells were incubated with JP-contained serum in vitro, and cell apoptosis was quantified using flow cytometry. Additionally, the expression levels of Ube2m, Bim and other associated proteins were also assessed through western blotting. To further clarify whether Ube2m serves as the key target of JP in regulating DN T cell apoptosis, the mice that Ube2m was specific deleted in T cells with spontaneous lupus (Ube2m-/-lpr) were utilized. JP was administered to WTlpr or Ube2m-/-lpr mice, followed by assessment of the lupus condition and DN T cell apoptosis. RESULTS JP administration effectively ameliorated the lupus phenotype. Then flow cytometry assay showed that JP treatment enhanced DN T cell apoptosis to reduce their accumulation and restored the immune homeostasis. Proteomic analysis revealed a significant inhibition of Ube2m for JP treatment, which is essential for maintaining homeostasis of DN T cells. Further experiments confirmed that JP treatment effectively downregulated the expression of Ube2m and subsequently upregulated the level of pro-apoptotic protein Bim with decreased Bim degradation. In vitro experiments also confirmed that JP-contained serum significantly facilitated DN T cell apoptosis and reduced DN T cell accumulation by inhibiting Ube2m expression. Furthermore, Ube2m-/-lpr mice were utilized and the impact of JP treatment on the apoptosis of DN T cells was found to be minimal in the absence of Ube2m. Mechanistic investigation reveals that JP exerts its effects by suppressing the expression of Ube2m, subsequently inhibiting CRL-dependent degradation of Bim, and ultimately promoting Bim-induced apoptosis in DN T cells. Furthermore, the blockade of Ube2m in T cells effectively prevents JP-induced apoptosis in DN T cells, underscoring Ube2m as one crucial therapeutic target of JP in mediating DN T cell apoptosis and managing SLE. CONCLUSIONS Our findings indicate that JP treatment effectively restores the homeostasis of DN T cells in SLE by inhibiting Ube2m expression, thereby reducing Bim ubiquitination degradation. This ultimately enhanced DN T cell apoptosis and alleviated lupus phenotype.
Collapse
Affiliation(s)
- Yiping Li
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Qingchi Duan
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chenxi Wang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lijun Du
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Zhangsheng Jiang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Suling Li
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xinyi Ruan
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lin Huang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Zhixing He
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Chengping Wen
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Zhang
- Innovation Center for Medical Basic Research of Autoimmune Diseases, China National Ministry of Education, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Tang H, Pang X, Li S, Tang L. The Double-Edged Effects of MLN4924: Rethinking Anti-Cancer Drugs Targeting the Neddylation Pathway. Biomolecules 2024; 14:738. [PMID: 39062453 PMCID: PMC11274557 DOI: 10.3390/biom14070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: The neddylation pathway assumes a pivotal role in the initiation and progression of cancer. MLN4924, a potent small-molecule inhibitor of the NEDD8-activating enzyme (NAE), effectively intervenes in the early stages of the neddylation pathway. By instigating diverse cellular responses, such as senescence and apoptosis in cancer cells, MLN4924 also exerts regulatory effects on non-malignant cells within the tumor microenvironment (TME) and tumor virus-infected cells, thereby impeding the onset of tumors. Consequently, MLN4924 has been widely acknowledged as a potent anti-cancer drug. (2) Recent findings: Nevertheless, recent findings have illuminated additional facets of the neddylation pathway, revealing its active involvement in various biological processes detrimental to the survival of cancer cells. This newfound understanding underscores the dual role of MLN4924 in tumor therapy, characterized by both anti-cancer and pro-cancer effects. This dichotomy is herein referred to as the "double-edged effects" of MLN4924. This paper delves into the intricate relationship between the neddylation pathway and cancer, offering a mechanistic exploration and analysis of the causes underlying the double-edged effects of MLN4924-specifically, the accumulation of pro-cancer neddylation substrates. (3) Perspectives: Here, the objective is to furnish theoretical support and novel insights that can guide the development of next-generation anti-cancer drugs targeting the neddylation pathway.
Collapse
Affiliation(s)
- Haoming Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Xin Pang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
- Department of Spine Surgery, People’s Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen 518109, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China; (H.T.); (X.P.)
| |
Collapse
|
4
|
Wang R, He S, Long J, Wang Y, Jiang X, Chen M, Wang J. Emerging therapeutic frontiers in cancer: insights into posttranslational modifications of PD-1/PD-L1 and regulatory pathways. Exp Hematol Oncol 2024; 13:46. [PMID: 38654302 DOI: 10.1186/s40164-024-00515-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
The interaction between programmed cell death ligand 1 (PD-L1), which is expressed on the surface of tumor cells, and programmed cell death 1 (PD-1), which is expressed on T cells, impedes the effective activation of tumor antigen-specific T cells, resulting in the evasion of tumor cells from immune-mediated killing. Blocking the PD-1/PD-L1 signaling pathway has been shown to be effective in preventing tumor immune evasion. PD-1/PD-L1 blocking antibodies have garnered significant attention in recent years within the field of tumor treatments, given the aforementioned mechanism. Furthermore, clinical research has substantiated the efficacy and safety of this immunotherapy across various tumors, offering renewed optimism for patients. However, challenges persist in anti-PD-1/PD-L1 therapies, marked by limited indications and the emergence of drug resistance. Consequently, identifying additional regulatory pathways and molecules associated with PD-1/PD-L1 and implementing judicious combined treatments are imperative for addressing the intricacies of tumor immune mechanisms. This review briefly outlines the structure of the PD-1/PD-L1 molecule, emphasizing the posttranslational modification regulatory mechanisms and related targets. Additionally, a comprehensive overview on the clinical research landscape concerning PD-1/PD-L1 post-translational modifications combined with PD-1/PD-L1 blocking antibodies to enhance outcomes for a broader spectrum of patients is presented based on foundational research.
Collapse
Affiliation(s)
- Rong Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China
| | - Shiwei He
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jun Long
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China.
| | - Yian Wang
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Hunan Normal University, Changsha, Hunan, China
| | - Xianjie Jiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mingfen Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Fujian Medical University, Fujian Medical University, Quanzhou, Fujian, China
| | - Jie Wang
- Department of Pathology, Institute of Oncology, The School of Basic Medical Sciences & Diagnostic Pathology Center, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
5
|
Kong T, Gaudin N, Gordon K, Cox MJ, Zhou AW, Oh ST. A phase I trial of pevonedistat in combination with ruxolitinib for the treatment of myelofibrosis. Ther Adv Hematol 2024; 15:20406207241237607. [PMID: 38481947 PMCID: PMC10935761 DOI: 10.1177/20406207241237607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
Janus kinase 2 (JAK2) inhibitors such as ruxolitinib have become standard-of-care therapy for patients with myeloproliferative neoplasms (MPNs); however, activation of alternate oncogenic pathways including nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) has limited durable response as single-agent therapy. With the rationale of targeting both pathways, we conducted a phase I dose escalation trial of pevonedistat in combination with ruxolitinib for the treatment of patients with myelofibrosis (NCT03386214). The primary objective was to assess the safety and tolerability of combination therapy with additional objectives of treatment efficacy and alterations of biomarkers. There were no dose-limiting toxicities observed with most adverse events being limited to grades 1/2. In secondary measures, anemia response was observed in two patients. Pro-inflammatory cytokines and iron parameters were longitudinally assessed, which revealed suppression of interleukin-6 and interferon-gamma in a dose-dependent manner across a subset of patients. These results suggest that combination therapy targeting both JAK2 and NFκB may hold clinical merit for MPN patients.
Collapse
Affiliation(s)
- Tim Kong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Nicole Gaudin
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Karyn Gordon
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Maggie J. Cox
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Amy W. Zhou
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Stephen T. Oh
- Division of Hematology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, Campus Box 8125, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Immunomonitoring Laboratory, Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
6
|
Guo ZS. Oncolytic virus and inhibitor for NEDD8-activating enzyme pevonedistat: Promising combination for cancer therapy? Mol Ther 2023; 31:3112-3114. [PMID: 37865096 PMCID: PMC10638040 DOI: 10.1016/j.ymthe.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/23/2023] Open
Affiliation(s)
- Zong Sheng Guo
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| |
Collapse
|
7
|
孟 琛, 闫 冰, 黄 雨, 王 成, 张 罗. [Differential expression of NEDD8 in different pathological types of chronic rhinosinusitis with nasal polyps]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2023; 37:897-901. [PMID: 37905484 PMCID: PMC10985667 DOI: 10.13201/j.issn.2096-7993.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Indexed: 11/02/2023]
Abstract
Objective:To analyze the differential expression of neural precursor cell-expressed developmentally downregulated 8(NEDD8) protein in nasal polyp tissues of patients with different pathological types of chronic rhinorhinosinusitis with nasal polyps(CRSwNP). Methods:All specimens were obtained from the specimen library of Beijing Tongren Hospital, and were all patients who underwent nasal endoscopic surgery for chronic rhinosinusitis in Beijing Tongren Hospital. Hematoxylin-eosin staining(HE) was used to detect the number of eosinophils in nasal polyps, and CRSwNP patients were grouped according to the number of eosinophils in nasal polyps, immunohistochemistry was used to detect and analyze the expression level of NEDD8 protein in nasal polyps. Results:The expression level of NEDD8 protein in nasal polyps of patients with eosinophilic chronic rhinorhinosinusitis with nasal polyps was significantly higher than that of patients with non-eosinophilic chronic rhinosinusitis and nasal polyps(P<0.05). In addition, there was a significant positive correlation between the expression level of NEDD8 protein and the number of eosinophils in nasal polyp tissue(r=0.79, P=0.02). Conclusion:There are differences in the expression of NEDD8 protein in patients with chronic rhinosinusitis and nasal polyps of different pathological types.
Collapse
Affiliation(s)
- 琛 孟
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科,耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所,教育部工程中心,鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院,慢性鼻病创新单元Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 冰 闫
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科,耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所,教育部工程中心,鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院,慢性鼻病创新单元Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 雨晴 黄
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科,耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所,教育部工程中心,鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院,慢性鼻病创新单元Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 成硕 王
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科,耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所,教育部工程中心,鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院,慢性鼻病创新单元Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
| | - 罗 张
- 首都医科大学附属北京同仁医院耳鼻咽喉头颈外科,耳鼻咽喉头颈科学教育部重点实验室(首都医科大学)(北京,100730)Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China
- 北京市耳鼻咽喉科研究所,教育部工程中心,鼻病研究北京市重点实验室Beijing Institute of Otolaryngology, Beijing Laboratory of Allergic Diseases, Beijing Key Laboratory of Nasal Diseases, Key Laboratory of Otolaryngology Head and Neck Surgery, Ministry of Education, Capital Medical University
- 中国医学科学院,慢性鼻病创新单元Research Unit of Diagnosis and Treatment of Chronic Nasal Diseases, Chinese Academy of Medical Sciences
- 首都医科大学附属北京同仁医院变态反应科Department of Allergy, Beijing TongRen Hospital, Capital Medical University
| |
Collapse
|