1
|
Qian G, Xu X, Zhu SA, Xu C, Gao F, Yakovlev VV, Liu X, Zhu SY, Wang DW. Quantum Induced Coherence Light Detection and Ranging. PHYSICAL REVIEW LETTERS 2023; 131:033603. [PMID: 37540869 DOI: 10.1103/physrevlett.131.033603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Quantum illumination has been proposed and demonstrated to improve the signal-to-noise ratio (SNR) in light detection and ranging (LiDAR). When relying on coincidence detection alone, such a quantum LiDAR is limited by the timing jitter of the detector and suffers from jamming noise. Inspired by the Zou-Wang-Mandel experiment, we design, construct, and validate a quantum induced coherence (QuIC) LiDAR which is inherently immune to ambient and jamming noises. In traditional LiDAR the direct detection of the reflected probe photons suffers from deteriorating SNR for increasing background noise. In QuIC LiDAR we circumvent this obstacle by only detecting the entangled reference photons, whose single-photon interference fringes are used to obtain the distance of the object, while the reflected probe photons are used to erase path information of the reference photons. In consequence, the noise accompanying the reflected probe light has no effect on the detected signal. We demonstrate such noise resilience with both LED and laser light to mimic the background and jamming noise. The proposed method paves a new way of battling noise in precise quantum electromagnetic sensing and ranging.
Collapse
Affiliation(s)
- Gewei Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Xingqi Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Shun-An Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Fei Gao
- ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - V V Yakovlev
- Texas A&M University, 3120 TAMU, College Station, Texas 77843, USA
| | - Xu Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Hefei National Laboratory, Hefei 230088, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Hefei National Laboratory, Hefei 230088, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
2
|
Panahiyan S, Muñoz CS, Chekhova MV, Schlawin F. Nonlinear Interferometry for Quantum-Enhanced Measurements of Multiphoton Absorption. PHYSICAL REVIEW LETTERS 2023; 130:203604. [PMID: 37267533 DOI: 10.1103/physrevlett.130.203604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 06/04/2023]
Abstract
Multiphoton absorption is of vital importance in many spectroscopic, microscopic, or lithographic applications. However, given that it is an inherently weak process, the detection of multiphoton absorption signals typically requires large field intensities, hindering its applicability in many practical situations. In this Letter, we show that placing a multiphoton absorbent inside an imbalanced nonlinear interferometer can enhance the precision of multiphoton cross section estimation with respect to strategies based on photon-number measurements using coherent or even squeezed light directly transmitted through the medium. In particular, the power scaling of the sensitivity with photon flux can be increased by 1 order compared with transmission measurements of the sample with coherent light, such that the measurement precision at any given intensity can be greatly enhanced. Furthermore, we show that this enhanced measurement precision is robust against experimental imperfections leading to photon losses, which usually tend to degrade the detection sensitivity. We trace the origin of this enhancement to an optimal degree of squeezing which has to be generated in a nonlinear SU(1,1) interferometer.
Collapse
Affiliation(s)
- Shahram Panahiyan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg D-22761, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Carlos Sánchez Muñoz
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria V Chekhova
- Max-Planck Institute for the Science of Light, Staudtstraße 2, Erlangen D-91058, Germany
- University of Erlangen-Nuremberg, Staudtstraße 7/B2, Erlangen D-91058, Germany
| | - Frank Schlawin
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg D-22761, Germany
- University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Toa ZSD, Chekhova MV, Krivitsky LA, Paterova AV. Crystal superlattices for versatile and sensitive quantum spectroscopy. OPTICS EXPRESS 2023; 31:7265-7276. [PMID: 36859862 DOI: 10.1364/oe.477019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Nonlinear interferometers with quantum correlated photons have been demonstrated to improve optical characterization and metrology. These interferometers can be used in gas spectroscopy, which is of particular interest for monitoring greenhouse gas emissions, breath analysis and industrial applications. Here, we show that gas spectroscopy can be further enhanced via the deployment of crystal superlattices. This is a cascaded arrangement of nonlinear crystals forming interferometers, allowing the sensitivity to scale with the number of nonlinear elements. In particular, the enhanced sensitivity is observed via the maximum intensity of interference fringes that scales with low concentration of infrared absorbers, while for high concentration the sensitivity is better in interferometric visibility measurements. Thus, a superlattice acts as a versatile gas sensor since it can operate by measuring different observables, which are relevant to practical applications. We believe that our approach offers a compelling path towards further enhancements for quantum metrology and imaging using nonlinear interferometers with correlated photons.
Collapse
|
4
|
Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferometers are widely used as sensors in precision measurement. Compared with a conventional Mach–Zehnder interferometer, the sensitivity of a correlation-enhanced nonlinear interferometer can break the standard quantum limit. Phase sensitivity plays a significant role in the enhanced performance. In this paper, we review improvement in phase estimation technologies in correlation-enhanced nonlinear interferometers, including SU(1,1) interferometer and SU(1,1)-SU(2) hybrid interferometer, and so on, and the applications in quantum metrology and quantum sensing networks.
Collapse
|
5
|
Two-Colour Spectrally Multimode Integrated SU(1,1) Interferometer. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multimode integrated interferometers have great potential for both spectral engineering and metrological applications. However, the material dispersion of integrated platforms constitutes an obstacle that limits the performance and precision of such interferometers. At the same time, two-colour nonlinear interferometers present an important tool for metrological applications, when measurements in a certain frequency range are difficult. In this manuscript, we theoretically developed and investigated an integrated multimode two-colour SU(1,1) interferometer operating in a supersensitive mode. By ensuring the proper design of the integrated platform, we suppressed the dispersion, thereby significantly increasing the visibility of the interference pattern. The use of a continuous wave pump laser provided the symmetry between the spectral shapes of the signal and idler photons concerning half the pump frequency, despite different photon colours. We demonstrate that such an interferometer overcomes the classical phase sensitivity limit for wide parametric gain ranges, when up to 3×104 photons are generated.
Collapse
|
6
|
Safronenkov DA, Borshchevskaya NA, Novikova TI, Katamadze KG, Kuznetsov KA, Kitaeva GK. Measurement of the biphoton second-order correlation function with analog detectors. OPTICS EXPRESS 2021; 29:36644-36659. [PMID: 34809071 DOI: 10.1364/oe.441488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
An experimental scheme and data processing approaches are proposed for measuring by analog photo detectors the normalized second-order correlation function of the biphoton field generated under spontaneous parametric down-conversion. Obtained results are especially important for quantum SPDC-based technologies in the long-wave spectral ranges, where it is difficult to use the single-photon detector at least in one of the two biphoton channels. The methods of discrimination of analog detection samples are developed to eliminate the negative influence of the detection noises and get quantitatively true values of both the correlation function and the detector quantum efficiency. The methods are demonstrated depending on whether two single-photon avalanche photo detectors are used in both SPDC channels, or at least one single-photon detector is replaced by a photo-multiplier tube which cannot operate in the photon counting mode.
Collapse
|
7
|
Paterova AV, Maniam SM, Yang H, Grenci G, Krivitsky LA. Hyperspectral infrared microscopy with visible light. SCIENCE ADVANCES 2020; 6:eabd0460. [PMID: 33127685 PMCID: PMC7608807 DOI: 10.1126/sciadv.abd0460] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/16/2020] [Indexed: 05/08/2023]
Abstract
Hyperspectral microscopy is an imaging technique that provides spectroscopic information with high spatial resolution. When applied in the relevant wavelength region, such as in the infrared (IR), it can reveal a rich spectral fingerprint across different regions of a sample. Challenges associated with low efficiency and high cost of IR light sources and detector arrays have limited its broad adoption. Here, we introduce a new approach to IR hyperspectral microscopy, where the IR spectral map is obtained with off-the-shelf components built for visible light. The method is based on the nonlinear interference of correlated photons generated via parametric down-conversion. In this proof-of-concept we demonstrate the chemical mapping of a patterned sample, where different areas have distinctive IR spectroscopic fingerprints. The method provides a wide field of view, fast readout, and negligible heat delivered to the sample, which opens prospects for its further development for applications in material and biological studies.
Collapse
Affiliation(s)
- Anna V Paterova
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Sivakumar M Maniam
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
- National Institute of Education, Nanyang Technological University, Singapore 637616, Singapore
| | - Hongzhi Yang
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore
| | - Gianluca Grenci
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Leonid A Krivitsky
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), Singapore 138634, Singapore.
| |
Collapse
|
8
|
Dorfman KE. Nonlinear interferometers with correlated photons: toward spectroscopy and imaging with quantum light. LIGHT, SCIENCE & APPLICATIONS 2020; 9:123. [PMID: 32699611 PMCID: PMC7367816 DOI: 10.1038/s41377-020-00363-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A nonlinear optical interferometer based on crystal superlattices has been demonstrated for the first time in a cascade of up to five crystals. The enhanced sensitivity due to quantum interference and correlations makes it a promising tool for sensing, imaging, and spectroscopy.
Collapse
Affiliation(s)
- Konstantin E. Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241 China
| |
Collapse
|