1
|
Niu M, Shan C, Xue C, Xu X, Zhang A, Xiao Y, Wei J, Zou D, Chen GJ, Kyaw AKK, Shum PP. High-Stability Printable Perovskite SERS Substrates in an Aqueous Environment via Plasmon-Induced Resonance Energy Transfer. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39991923 DOI: 10.1021/acsami.4c21069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
The excellent photoelectric conversion efficiency and tunable bandgap of metal halide perovskites make them highly suitable for SERS applications. However, the low stability of perovskites in water and oxygen greatly hinders their use in SERS detection, particularly in biomolecule detection applications, which often require water-based test solutions. Herein, we report a gold (Au)/perovskite-polyvinylidene difluoride (PVDF) nanocomposite/ZnO nanoflower (GPPZ) SERS substrate capable of functioning in aqueous solutions. Its enhancement ability is attributed to plasmon-induced resonance energy transfer (PIRET) and an electromagnetic mechanism. The surface plasmon resonance created by ultrathin Au and ZnO nanoflowers induces resonance energy transfers to the perovskite via PIRET, facilitating a quasi-matched charge transfer between the perovskite and the probe molecule. The PVDF coating protects the perovskite from water and oxygen without affecting the resonance energy-transfer process. As a result, an enhancement factor (EF) approaching 1 × 106 was achieved for the crystal violet molecule. Additionally, we fabricated a flexible GPPZ substrate using silk screen printing, enabling mass production of an SERS array substrate. The printed flexible GPPZ substrates demonstrated micromole-level cysteine detection with an EF of 6.8 × 105, showing potential for application in hyperhomocysteinemia diagnosis.
Collapse
Affiliation(s)
- Minghui Niu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chengwei Shan
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chenlong Xue
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Xu
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aoyan Zhang
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yihong Xiao
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junyu Wei
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Defeng Zou
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gina Jinna Chen
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aung Ko Ko Kyaw
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Perry Ping Shum
- Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Southern University of Science and Technology, Shenzhen 518055, China
- Pengcheng Laboratory, Shenzhen 518000, China
| |
Collapse
|
2
|
Martínez-Moro R, Vázquez L, Pérez M, Del Pozo M, Vilas-Varela M, Castro-Esteban J, Petit-Domínguez MD, Casero E, Quintana C. Enhanced Electrochemical Detection of Nonelectroactive Compounds Based on Surface Supramolecular Interactions on Chevron-like Graphene Nanoribbons Modified through Click Chemistry. ACS OMEGA 2024; 9:39242-39252. [PMID: 39310175 PMCID: PMC11411676 DOI: 10.1021/acsomega.4c06639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024]
Abstract
In this study, we have developed a nanostructured electrochemical sensor based on modified graphene nanoribbons tailored for the analysis of nonelectroactive compounds via a surface competitive assay. Stigmasterol, a nonelectroactive phytosterol, was selected as a representative case. Chevron-like graphene nanoribbons, chemically synthesized, were immobilized onto glassy carbon electrodes and covalently functionalized to allow the on-surface formation of a supramolecular complex. To this end, the nanoribbons were first modified through a diazotization process by electrochemical reduction of a 4-azidoaniline diazonium salt, leaving the electrode surface with azide groups exposed to solution. Next, the incorporation of a ferrocene group, as a redox probe, was carried out by a click chemistry reaction between ethynylferrocene and these azide groups. Finally, the recognition event leads to the formation of a supramolecular complex between ferrocene and a macrocyclic receptor on the electrode surface. To this end, the receptors cucurbit[7]uril, cucurbit[8]uril, and β-cyclodextrin were evaluated, with the better results obtained with β-cyclodextrin. Atomic force microscopy and scanning electron microscopy measurements were performed for the morphological characterization of the resulting electrochemical platform surface. The ability of β-cyclodextrin to form an inclusion complex with ferrocene or with stigmasterol allows to perform a competitive assay, which translates into the decrease and recovery of the ferrocene electrochemical signal. For stigmasterol determination, a linear concentration range between 200 and 750 μM and a detection limit of 60 μM were obtained, with relative errors and relative standard deviations less than 7.1 and 9.8%, respectively.
Collapse
Affiliation(s)
- Rut Martínez-Moro
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Luis Vázquez
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Sor Juana Inés de la Cruz, No. 3, Madrid 28049, Spain
| | - María Pérez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Manuel Vilas-Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Jesús Castro-Esteban
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - M Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, Campus de Excelencia de la Universidad Autónoma de Madrid, c/Francisco Tomás y Valiente, No. 7, Madrid 28049, Spain
| |
Collapse
|
3
|
Chen W, Qiao S, He Y, Zhu J, Wang K, Qi L, Zhou S, Xiao L, Ma Y. Mid-infrared all-fiber light-induced thermoelastic spectroscopy sensor based on hollow-core anti-resonant fiber. PHOTOACOUSTICS 2024; 36:100594. [PMID: 38375332 PMCID: PMC10875298 DOI: 10.1016/j.pacs.2024.100594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
In this article, a mid-infrared all-fiber light-induced thermoelastic spectroscopy (LITES) sensor based on a hollow-core anti-resonant fiber (HC-ARF) was reported for the first time. The HC-ARF was applied as a light transmission medium and gas chamber. The constructed all-fiber structure has merits of low loss, easy optical alignment, good system stability, reduced sensor size and cost. The mid-infrared transmission structure can be utilized to target the strongest gas absorption lines. The reversely-tapered SM1950 fiber and the HC-ARF were spatially butt-coupled with a V-shaped groove between the two fibers to facilitate gas entry. Carbon monoxide (CO) with an absorption line at 4291.50 cm-1 (2.33 µm) was chosen as the target gas to verify the sensing performance. The experimental results showed that the all-fiber LITES sensor based on HC-ARF had an excellent linear response to CO concentration. Allan deviation analysis indicated that the system had excellent long-term stability. A minimum detection limit (MDL) of 3.85 ppm can be obtained when the average time was 100 s.
Collapse
Affiliation(s)
- Weipeng Chen
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Shunda Qiao
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Ying He
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| | - Jie Zhu
- Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Kang Wang
- Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Lei Qi
- Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
| | - Sheng Zhou
- Laser Spectroscopy and Sensing Laboratory, Anhui University, Hefei 230601, China
| | - Limin Xiao
- Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai, China
| | - Yufei Ma
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150001, China
- Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450000, China
| |
Collapse
|
4
|
Sultanaev V, Yakimova L, Nazarova A, Sedov I, Mostovaya O, Mukhametzyanov T, Davletshin D, Takuntseva D, Gilyazova E, Bulatov E, Stoikov I. Pillar[5]arene/albumin biosupramolecular systems for simultaneous native protein preservation and encapsulation of a water-soluble substrate. J Mater Chem B 2024; 12:3103-3114. [PMID: 38450640 DOI: 10.1039/d3tb02961a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The growing resistance of pathogens, bacteria, viruses, and fungi to a number of drugs has encouraged researchers to use natural and synthetic biomimetic systems to overcome this challenge. Multicomponent systems are an attractive approach for drug design and multitarget therapy. In this study, we report the assembly of a three-component (pillar[5]arene, bovine serum albumin, and methyl orange) biosupramolecular system as a potential drug delivery system. We estimated the cytotoxic activity and transfection ability of pillar[5]arene derivatives and investigated the effect of the nature of macrocycle functions (L-phenylalanine, glycine, L-alanine) on the native conformation of serum albumin in a three-component system. NMR, UV-vis, fluorescence, CD spectroscopy, DLS, and molecular docking studies were performed in order to confirm the structure and possible pillar[5]arene/bovine serum albumin/methyl orange interactions occurring during the association process. Results indicate that pillar[5]arene with L-phenylalanine fragments retains the native form of BSA to the maximum extent and forms more stable associates.
Collapse
Affiliation(s)
- Vildan Sultanaev
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Luidmila Yakimova
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Anastasia Nazarova
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Igor Sedov
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Olga Mostovaya
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Timur Mukhametzyanov
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Damir Davletshin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Daria Takuntseva
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| | - Elvina Gilyazova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov Chemistry Institute of Kazan Federal University, 18 Kremlyovskaya Str., 420008 Kazan, Russia.
| |
Collapse
|
5
|
Hu J, Chen GJ, Xue C, Liang P, Xiang Y, Zhang C, Chi X, Liu G, Ye Y, Cui D, Zhang D, Yu X, Dang H, Zhang W, Chen J, Tang Q, Guo P, Ho HP, Li Y, Cong L, Shum PP. RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. LIGHT, SCIENCE & APPLICATIONS 2024; 13:52. [PMID: 38374161 PMCID: PMC10876988 DOI: 10.1038/s41377-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.
Collapse
Affiliation(s)
- Jiaqi Hu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gina Jinna Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Xue
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaokeng Chi
- Department of Nephrology, Chaozhou People's Hospital, Chaozhou, 521011, China
| | - Guoying Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yanfang Ye
- Clinical Research Design Division, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, 510120, China
| | - Dongyu Cui
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - De Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hong Dang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wen Zhang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junfan Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Quan Tang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Penglai Guo
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Longqing Cong
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Perry Ping Shum
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Ma T, Chang S, He J, Liang F. Emerging sensing platforms based on Cucurbit[ n]uril functionalized gold nanoparticles and electrodes. Chem Commun (Camb) 2023; 60:150-167. [PMID: 38054368 DOI: 10.1039/d3cc04851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cucurbit[n]urils (CB[n]s, n = 5-8, 10, and 14), synthetic macrocycles with unique host-guest properties, have triggered increasing research interest in recent years. Gold nanoparticles (Au NPs) and electrodes stand out as exceptional substrates for sensing due to their remarkable physicochemical characteristics. Coupling the CB[n]s with Au NPs and electrodes has enabled the development of emerging sensing platforms for various promising applications. However, monitoring the behavior of analytes at the single-molecule level is currently one of the most challenging topics in the field of CB[n]-based sensing. Constructing supramolecular junctions in a sensing platform provides an ideal structure for single-molecule analysis, which can provide insights for a fundamental understanding of supramolecular interactions and chemical reactions and guide the design of sensing applications. This feature article outlines the progress in the preparation of the CB[n] functionalized Au NPs and Au electrodes, as well as the construction and application of supramolecular junctions in sensing platforms, based on the methods of recognition tunneling (RT), surface-enhanced Raman spectroscopy (SERS), single-molecule force spectroscopy (SMFS), and electrochemical sensing (ECS). A brief perspective on the future development of and challenges in CB[n] mediated sensing platforms is also covered.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
7
|
Wu S, Liang H, Xu B, Zhang Q, Fan H, Wang J, Han Q, Gao M, Yang J, Lang J. A co-precipitation route for the preparation of eco-friendly Cu-Al-layered double hydroxides with efficient tetracycline degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:99412-99426. [PMID: 37612561 DOI: 10.1007/s11356-023-29345-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/10/2023] [Indexed: 08/25/2023]
Abstract
The construction of novel efficient catalysts for the treatment of organic pollutants in the aqueous environment is essential. The lamellar-like Cu-Al layered double hydroxides (CuAl-LDHs) with various mole ratios were synthesized by a simple route of co-precipitation, and the corresponding degradation characteristic was tested for the removal of tetracycline (TC) using PMS activation. The degradation efficiency of TC over CuAl-LDHs increased up to 93% within 10 min for the Cu/Al mole ratio of 3:1 and almost not changed at a higher mole ratio. For further calcining the optimal catalyst at 300 ℃, the degradation efficiency of TC was found to be increased to 96%. Sulfuric radicals and singlet oxygen were analyzed to be the main reason for the change in degradation characteristics, which was proved by radical quenching experiments and electron paramagnetic resonance technique. The parameters including PMS concentration, catalyst dosage, and reaction temperature on the TC degradation as well as the degradation mechanism for PMS activation were elaborated. The best proportion of CuAl-LDHs owned splendid stability and catalytic activity after reusing, which showed enormous potential in practical application.
Collapse
Affiliation(s)
- Si Wu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Huicong Liang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Bingyan Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Hougang Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Jingshu Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Qiang Han
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping, 136000, People's Republic of China.
| |
Collapse
|
8
|
Chen W, Qiao S, Lang Z, Jiang J, He Y, Shi Y, Ma Y. Hollow-waveguide-based light-induced thermoelastic spectroscopy sensing. OPTICS LETTERS 2023; 48:3989-3992. [PMID: 37527100 DOI: 10.1364/ol.497685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
In this Letter, a hollow waveguide (HWG)-based light-induced thermoelastic spectroscopy (LITES) gas sensing is proposed. An HWG with a length of 65 cm and inner diameter of 4 mm was used as the light transmission medium and gas chamber. The inner wall of the HWG was coated with a silver (Ag) film to improve reflectivity. Compared with the usually used multi-pass cell (MPC), the HWG has many advantages, such as small size, simple structure and fast filling. Compared with a hollow-core anti-resonant fiber (HC-ARF), the HWG has the merits of easy optical coupling, high system stability, and wide transmission range. A diode laser with output wavelength of 1.53 µm and a quantum cascade laser (QCL) with output wavelength of 4.58 µm were selected as the sources of excitation to target acetylene (C2H2) and carbon monoxide (CO), respectively, to verify the performance of the HWG-based LITES sensor in the near-infrared and mid-infrared regions. The experimental results showed that the HWG-based LITES sensor had a great linear responsiveness to the target gas concentration. The minimum detection limit (MDL) for C2H2 and CO was 6.07 ppm and 98.66 ppb, respectively.
Collapse
|
9
|
Zhou Y, Lu Y, Liu Y, Hu X, Chen H. Current strategies of plasmonic nanoparticles assisted surface-enhanced Raman scattering toward biosensor studies. Biosens Bioelectron 2023; 228:115231. [PMID: 36934607 DOI: 10.1016/j.bios.2023.115231] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 03/15/2023]
Abstract
With the progressive nanofabrication technology, plasmonic nanoparticles (PNPs) have been increasingly deployed in the field of biosensing. PNPs have favorable biocompatibility, conductivity, and tunable optical properties. In addition, the localized surface plasmon resonance (LSPR) of PNPs plays a vital role in surface-enhanced Raman scattering (SERS). PNPs-based SERS biosensing enables wide-ranging applications for sensitive detection and high spatial and temporal resolution imaging. Numerous reviews of PNPs in the field of SERS biosensing highlight the fabrication or applications in one or more fields. However, the specific strategies for the SERS biosensor construction had not been summarized systematically. Thus, this work offers a comprehensive overview of SERS enhancement strategies based on PNPs, with a focus on SERS label-free detection along with label detection sensing construction, as well as its challenges and future trends.
Collapse
Affiliation(s)
- Yangyang Zhou
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yongkai Lu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yawen Liu
- School of Medicine, Shanghai University, Shanghai, 200444, PR China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Xiaojun Hu
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hongxia Chen
- School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
10
|
Highly sensitive gold nanoparticles-modified silver nanorod arrays for determination of methyl viologen. Mikrochim Acta 2022; 189:479. [DOI: 10.1007/s00604-022-05590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
|
11
|
Zhou T, Huang J, Zhao W, Guo R, Cui S, Li Y, Zhang X, Liu Y, Zhang Q. Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4232. [PMID: 36500854 PMCID: PMC9738658 DOI: 10.3390/nano12234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. The size and localized surface plasmon resonance (LSPR) characteristics of Au NSs were adjusted by varying Au seed additions. In addition, photothermal conversion performance of Au NSs with various Au seed additions was evaluated. Photothermal conversion efficiency of Au NSs with optimal Au seed additions (50 μL) was as high as 28.75% under 808 nm laser irradiation, and the heat generated was sufficient to kill Staphylococcus aureus (S. aureus). Importantly, Au NSs also exhibited excellent SERS activity for the 4-mercaptobenzoic acid (4-MBA) probe molecule, and the local electromagnetic field distribution of Au NSs was explored through finite-difference time-domain (FDTD) simulation. As verified by experiments, Au NSs' SERS substrate could achieve a highly sensitive detection of a low concentration of potentially toxic pollutants such as methylene blue (MB) and bilirubin (BR). This work demonstrates a promising multifunctional nanoplatform with great potential for efficient photothermal inactivation and ultra-sensitive SERS detection.
Collapse
Affiliation(s)
- Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuqing Li
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
12
|
Wang Z, Huang L, Zhang M, Li Z, Wang L, Jin H, Mu X, Dai Z. Chemical Mechanism-Dominated and Reporter-Tunable Surface-Enhanced Raman Scattering via Directional Supramolecular Assembly. J Am Chem Soc 2022; 144:17330-17335. [PMID: 36075049 DOI: 10.1021/jacs.2c06026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular resonance can be strengthened by charge transfer, profiting chemical mechanism (CM)-related surface-enhanced Raman scattering (SERS). Herein a supramolecular assembly enabled SERS system is established by functionalizing para-sulfonatocalix[4]arene (pSC4) onto Au3Cu nanocrystals (NCs). Due to the cooperation of Au and Cu, pSC4 is directionally assembled on the surface of Au3Cu NCs via van der Waals force, enabling photoinduced and hydrogen bond-induced charge transfer, which remarkably enhances the Raman scattering of methylene blue (MB) captured by pSC4. In particular, for the C-N and C-C stretching of MB, the contributions of resonance Raman scattering increase up to 80%. In addition, the SERS system is able to display affinities of different host-guest interactions, and further employed to evaluate effects of drugs for Alzheimer's disease. In this work, charge transfer is realized by performing supramolecular assembly on the surface of plasmonic nanomaterials, providing an avenue to design CM-related and reporter-tunable SERS systems.
Collapse
Affiliation(s)
- Zhaoyin Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lili Huang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Min Zhang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zijun Li
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Wang
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Haozhe Jin
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xijiao Mu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Zhihui Dai
- Collaborative Innovation Center of Biomedical Functional Materials and Key Laboratory of Biofunctional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
13
|
Li S, Lv X, Yang Q, Zhang S, Su J, Cheng SB, Lai Y, Chen J, Zhan J. Dynamic SPME-SERS Induced by Electric Field: Toward In Situ Monitoring of Pharmaceuticals and Personal Care Products. Anal Chem 2022; 94:9270-9277. [PMID: 35729729 DOI: 10.1021/acs.analchem.2c00523] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The core of the surface-enhanced Raman spectroscopy (SERS)-based techniques for dynamic monitoring is to realize rapid and reversible adsorption. Herein, the integration technology of electro-enhanced adsorption, solid-phase microextraction, and surface-enhanced Raman spectroscopy (EE-SPME-SERS) was developed to obtain sensitive, ultrafast, and reversible SERS response toward in situ monitoring of pharmaceuticals and personal care products (PPCPs). In the EE-SPME-SERS method, a roughened Ag fiber with Au modification (r-Ag/Au fiber) was used as the SERS substrate, SPME sorbent, and working electrode. The r-Ag/Au fiber displayed good SERS sensitivity, ultrahigh photostability, and adsorption properties. The adsorption efficiency of benzidine was 76 times accelerated in EE-SPME-SERS compared to that in static adsorption. The whole process of "sampling and detection" in EE-SPME-SERS can be finished within 1 s. Reversible adsorption and desorption can be achieved in situ by switching the direction of electric field, and the regeneration process takes only a few minutes. Simulated release of benzidine from household wastewater was in situ and dynamically monitored using this strategy. EE-SPME-SERS was proved universal for ionized PPCPs and can detect multicomponents simultaneously. In addition, EE-SPME-SERS showed very good analytical properties. Great potential of EE-SPME-SERS can be expected in environmental monitoring.
Collapse
Affiliation(s)
- Shu Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xiaochen Lv
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Qing Yang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shaoying Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jie Su
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shi-Bo Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yongchao Lai
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Jinhua Zhan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Szukalski A, Krawczyk P, Sahraoui B, Rosińska F, Jędrzejewska B. A Modified Oxazolone Dye Dedicated to Spectroscopy and Optoelectronics. J Org Chem 2022; 87:7319-7332. [PMID: 35588394 PMCID: PMC9171828 DOI: 10.1021/acs.joc.2c00500] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Here we present a
newly synthesized bifunctional organic chromophore
with appealing spectroscopic and nonlinear optical features. The positions
of absorption and emission maxima of the dye vary with increasing
solvent polarity and exhibit positive solvatochromism. The determined
change in the dipole moment upon excitation based on the Bilot and
Kawski theory is 5.94 D, which corresponds to the intermolecular displacement
of a charge equal to 1.24 Å. An investigated organic-based system
represents a significant, repeatable, and stable over time optical
signal modulation in the manner of the refractive index value. Its
magnitude is varied both by optical pumping intensity as well as by
external frequency modulation, which indicates that such system is
an alluring and alternative core unit for optoelectronic devices and
complex networks. Then, the same active system, due to the nonresonant
mechanism of higher harmonics of light inducement, can provide second
and third harmonic signals. According to the introduced laser
line spatial modifications (parallel or perpendicular polarization
directions), it is resulted in output SHG signal with magnitude varied
about 100%. Its magnitude is noticeably small; however, to construct
sensitive optical sensors or infrared indicators, such feature may
guarantee satisfying circumstances.
Collapse
Affiliation(s)
- Adam Szukalski
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Przemysław Krawczyk
- Faculty of Pharmacy, Nicolaus Copernicus University, Collegium Medicum, Kurpińskiego 5, Bydgoszcz 85-950, Poland
| | - Bouchta Sahraoui
- Laboratoire MOLTECH-Anjou, Université d'Angers, UFR Sciences, UMR 6200, CNRS, 2 Bd. Lavoisier, Angers Cedex 49045, France
| | - Faustyna Rosińska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, Bydgoszcz 85-326, Poland
| |
Collapse
|
15
|
Kang J, Hong M, Tian Z. Special issue on the 100 th anniversary of Xiamen University. LIGHT, SCIENCE & APPLICATIONS 2021; 10:185. [PMID: 34521816 PMCID: PMC8440623 DOI: 10.1038/s41377-021-00613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Junyong Kang
- Engineering Research Center of Micro-nano Optoelectronic Materials and Devices, Ministry of Education, Fujian Key Laboratory of Semiconductor Materials and Applications, CI center for OSED, College of Physical Science and Technology, 361005, Xiamen, China.
| | - Minghui Hong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576, Singapore, Singapore
| | - Zhongqun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| |
Collapse
|
16
|
Stefancu A, Lee S, Zhu L, Liu M, Lucacel RC, Cortés E, Leopold N. Fermi Level Equilibration at the Metal-Molecule Interface in Plasmonic Systems. NANO LETTERS 2021; 21:6592-6599. [PMID: 34291936 DOI: 10.1021/acs.nanolett.1c02003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We highlight a new metal-molecule charge transfer process by tuning the Fermi energy of plasmonic silver nanoparticles (AgNPs) in situ. The strong adsorption of halide ions upshifts the Fermi level of AgNPs by up to ∼0.3 eV in the order Cl- < Br- < I-, favoring the spontaneous charge transfer to aligned molecular acceptor orbitals until charge neutrality across the interface is achieved. By carefully quantifying, experimentally and theoretically, the Fermi level upshift, we show for the first time that this effect is comparable in energy to different plasmonic effects such as the plasmoelectric effect or hot-carriers production. Moreover, by monitoring in situ the adsorption dynamic of halide ions in different AgNP-molecule systems, we show for the first time that the catalytic role of halide ions in plasmonic nanostructures depends on the surface affinity of halide ions compared to that of the target molecule.
Collapse
Affiliation(s)
- Andrei Stefancu
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Seunghoon Lee
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Li Zhu
- State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 410083 Changsha, China
| | - Min Liu
- State Key Laboratory of Powder Metallurgy, School of Physics and Electronics, Central South University, 410083 Changsha, China
| | | | - Emiliano Cortés
- Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Nicolae Leopold
- Faculty of Physics, Babeş-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|