1
|
Geng S, Li H, Lv Z, Zhai Y, Tian B, Luo Y, Zhou Y, Han ST. Challenges and Opportunities of Upconversion Nanoparticles for Emerging NIR Optoelectronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419678. [PMID: 40237212 DOI: 10.1002/adma.202419678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/21/2025] [Indexed: 04/18/2025]
Abstract
Upconversion nanoparticles (UCNPs), incorporating lanthanide (Ln) dopants, can convert low-energy near-infrared photons into higher-energy visible or ultraviolet light through nonlinear energy transfer processes. This distinctive feature has attracted considerable attention in both fundamental research and advanced optoelectronics. Challenges such as low energy-conversion efficiency and nonradiative losses limit the performance of UCNP-based optoelectronic devices. Recent advancements including optimized core-shell structures, tailed Ln-doping concentration, and surface modifications show significant promise for improving the efficiency and stability. In addition, combining UCNPs with functional materials can broaden their applications and improve device performance, paving the way for the innovation of next-generation optoelectronics. This paper first categorizes and elaborates on various upconversion mechanisms in UCNPs, focusing on strategies to boost energy transfer efficiency and prolong luminescence. Subsequently, an in-depth discussion of the various materials that can enhance the efficiency of UCNPs and expand their functionality is provided. Furthermore, a wide range of UCNP-based optoelectronic devices is explored, and multiple emerging applications in UCNP-based neuromorphic computing are highlighted. Finally, the existing challenges and potential solutions involved in developing practical UCNPs optoelectronic devices are considered, as well as an outlook on the future of UCNPs in advanced technologies is provided.
Collapse
Affiliation(s)
- Sunyingyue Geng
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Hangfei Li
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| | - Ziyu Lv
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yongbiao Zhai
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bobo Tian
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Shanghai, 200241, P. R. China
- Shanghai Center of Brain-inspired Intelligent Materials and Devices, Shanghai, 200241, P. R. China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401120, P. R. China
| | - Ying Luo
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Su-Ting Han
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
2
|
Chen Q, Zhou F, Wei C, Dai Y, Gan H, Zhang L, Wang H, Yuan H, Li H, Tan J, Feng G, Tu X, Jia X, Zhao Q, Kang L, Chen J, Wu P. Sub-millikelvin-resolved superconducting nanowire single-photon detector operates with sub-pW infrared radiation power. Natl Sci Rev 2025; 12:nwae319. [PMID: 39822729 PMCID: PMC11737322 DOI: 10.1093/nsr/nwae319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/27/2024] [Accepted: 07/14/2024] [Indexed: 01/19/2025] Open
Abstract
The noise equivalent temperature difference (NETD) indicates the minimum temperature difference resolvable by using an infrared detector. The lower the NETD, the better the sensor can register small temperature differences. In this work, we proposed a strategy to achieve a high temperature resolution using a superconducting nanowire single-photon detector (SNSPD) with ultra-high sensitivity. We deduced the model for calculating the NETD of a photon-counting-type detector and applied it to our SNSPD-based set-up. Experimentally, we obtained an NETD as low as 0.65 mK, which is limited by the background radiation of the environment, and the required infrared radiation power is calculated to be <1 pW. Furthermore, the intrinsic NETD of this SNSPD is estimated to be <0.1 mK. This work demonstrated a sub-mK temperature resolution when using the SNSPD, paving the way for future remote infrared thermal imaging with high temperature resolution.
Collapse
Affiliation(s)
- Qi Chen
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Fei Zhou
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Chen Wei
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Dai
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Haiyong Gan
- Institute of Optics and Laser Metrology Science, National Institute of Metrology, Beijing 100029, China
| | - Labao Zhang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Hang Yuan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Haochen Li
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Jingrou Tan
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Guojin Feng
- Institute of Optics and Laser Metrology Science, National Institute of Metrology, Beijing 100029, China
| | - Xuecou Tu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Jia
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Qingyuan Zhao
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Kang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Jian Chen
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Peiheng Wu
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Wu Y, Li F, Wu Y, Wang H, Gu L, Zhang J, Qi Y, Meng L, Kong N, Chai Y, Hu Q, Xing Z, Ren W, Li F, Zhu X. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Nat Commun 2024; 15:2341. [PMID: 38491065 PMCID: PMC10943110 DOI: 10.1038/s41467-024-46727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 μm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Collapse
Affiliation(s)
- Yukai Wu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Fang Li
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yanan Wu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Hao Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Liangtao Gu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Jieying Zhang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yukun Qi
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Na Kong
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China
| | - Qian Hu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Zhenyu Xing
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P.R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| |
Collapse
|
4
|
Harrington B, Ye Z, Signor L, Pickel AD. Luminescence Thermometry Beyond the Biological Realm. ACS NANOSCIENCE AU 2024; 4:30-61. [PMID: 38406316 PMCID: PMC10885336 DOI: 10.1021/acsnanoscienceau.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 02/27/2024]
Abstract
As the field of luminescence thermometry has matured, practical applications of luminescence thermometry techniques have grown in both frequency and scope. Due to the biocompatibility of most luminescent thermometers, many of these applications fall within the realm of biology. However, luminescence thermometry is increasingly employed beyond the biological realm, with expanding applications in areas such as thermal characterization of microelectronics, catalysis, and plasmonics. Here, we review the motivations, methodologies, and advances linked to nonbiological applications of luminescence thermometry. We begin with a brief overview of luminescence thermometry probes and techniques, focusing on those most commonly used for nonbiological applications. We then address measurement capabilities that are particularly relevant for these applications and provide a detailed survey of results across various application categories. Throughout the review, we highlight measurement challenges and requirements that are distinct from those of biological applications. Finally, we discuss emerging areas and future directions that present opportunities for continued research.
Collapse
Affiliation(s)
- Benjamin Harrington
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Ziyang Ye
- Materials
Science Program, University of Rochester, Rochester, New York 14627, United States
| | - Laura Signor
- The
Institute of Optics, University of Rochester, Rochester, New York 14627, United States
| | - Andrea D. Pickel
- Department
of Mechanical Engineering and Materials Science Program, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
5
|
Kim DH, Shin DH, Lee H. Self-powered semitransparent WS 2/LaVO 3vertical-heterostructure photodetectors by employing interfacial hexagonal boron nitride. NANOTECHNOLOGY 2024; 35:155202. [PMID: 38154129 DOI: 10.1088/1361-6528/ad1945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Two-dimensional (2D) semiconductor and LaVO3materials with high absorption coefficients in the visible light region are attractive structures for high-performance photodetector (PD) applications. Insulating 2D hexagonal boron nitride (h-BN) with a large band gap and excellent transmittance is a very attractive material as an interface between 2D/semiconductor heterostructures. We first introduce WS2/h-BN/LaVO3semitransparent PD. The photo-current/dark current ratio of the device exhibits a delta-function characteristic of 4 × 105at 0 V, meaning 'self-powered'. The WS2/h-BN/LaVO3PD shows up to 0.27 A W-1responsivity (R) and 4.6 × 1010cm Hz1/2W-1detectivity (D*) at 730 nm. Especially, it was confirmed that theD* performance improved by about 5 times compared to the WS2/LaVO3device at zero bias. Additionally, it is suggested that the PD maintains 87% of its initialRfor 2000 h under the atmosphere with a temperature of 25 °C and humidity of 30%. Based on the above results, we suggest that the WS2/h-BN/LaVO3heterojunction is promising as a self-powered optoelectronic device.
Collapse
Affiliation(s)
- Da Hee Kim
- Department of Applied Physics, Kyung Hee University, Yongin 17104, Republic of Korea
- Education Institute for Frontier, Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong Hee Shin
- Department of Smart Sensors Engineering, Andong National University, Andong, Gyeongbuk, 36729, Republic of Korea
| | - Hosun Lee
- Department of Applied Physics, Kyung Hee University, Yongin 17104, Republic of Korea
- Education Institute for Frontier, Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
6
|
Rabia M, Elsayed AM, Alnuwaiser MA. Decoration of Poly-3-methyl Aniline with As(III) Oxide and Hydroxide as an Effective Photoelectrode for Electroanalytical Photon Sensing with Photodiode-like Behavior. MICROMACHINES 2023; 14:1573. [PMID: 37630109 PMCID: PMC10456260 DOI: 10.3390/mi14081573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023]
Abstract
This study achieved the decoration of poly-3-methyl aniline (P3MA) with As2O3-As(OH)3 using K2S2O8 and NaAsO2 on the 3-methyl aniline monomer. This resulted in a highly porous nanocomposite polymer composite with wide absorption optical behavior, an average crystalline size of 22 nm, and a 1.73 eV bandgap. The photoelectrode exhibited a great electrical response for electroanalytical applications, such as photon sensing and photodiodes, with a Jph of 0.015 mA/cm2 and Jo of 0.004 mA/cm2. The variable Jph values ranged from 0.015 to 0.010 mA/cm2 under various monochromatic filters from 340 to 730 nm, which demonstrates high sensitivity to wavelengths. Effective photon numbers were calculated to be 8.0 × 1021 and 5.6 × 1021 photons/s for these wavelength values, and the photoresponsivity (R) values were 0.16 and 0.10 mA/W, respectively. These high sensitivities make the nanocomposite material a promising candidate for use in photodetectors and photodiodes, with potential for commercial applications in highly technological systems and devices. Additionally, the material opens up possibilities for the development of photodiodes using n- and p-type materials.
Collapse
Affiliation(s)
- Mohamed Rabia
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt;
| | - Asmaa M. Elsayed
- TH-PPM Group, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Maha Abdallah Alnuwaiser
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
7
|
Zhang G, He Y, Liang H, Chen X, Deng D, Zhou J. Directional and Eye-Tracking Light Field Display with Efficient Rendering and Illumination. MICROMACHINES 2023; 14:1465. [PMID: 37512776 PMCID: PMC10385613 DOI: 10.3390/mi14071465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Current efforts with light field displays are mainly concentrated on the widest possible viewing angle, while a single viewer only needs to view the display in a specific viewing direction. To make the light field display a practical practice, a super multi-view light field display is proposed to compress the information in the viewing zone of a single user by reducing the redundant viewpoints. A quasi-directional backlight is proposed, and a lenticular lens array is applied to achieve the restricted viewing zone. The eye-tracking technique is applied to extend the viewing area. Experimental results show that the proposed scheme can present a vivid 3D scene with smooth motion parallax. Only 16.7% conventional light field display data are required to achieve 3D display. Furthermore, an illumination power of 3.5 watt is sufficient to lighten a 31.5-inch light field display, which takes up 1.5% of the illumination power required for planar display of similar configuration.
Collapse
Affiliation(s)
- Guangyong Zhang
- School of Physics, Sun Yat-sen University, No. 135 Xingang-Xi Road, Guangzhou 510275, China
| | - Yong He
- School of Physics, Sun Yat-sen University, No. 135 Xingang-Xi Road, Guangzhou 510275, China
| | - Haowen Liang
- School of Physics, Sun Yat-sen University, No. 135 Xingang-Xi Road, Guangzhou 510275, China
| | - Xuehao Chen
- School of Physics, Sun Yat-sen University, No. 135 Xingang-Xi Road, Guangzhou 510275, China
| | - Dongyan Deng
- Guangzhou Midstereo Co., Ltd., No. 135 Xingang-Xi Road, Guangzhou 510275, China
| | - Jianying Zhou
- School of Physics, Sun Yat-sen University, No. 135 Xingang-Xi Road, Guangzhou 510275, China
- Guangzhou Midstereo Co., Ltd., No. 135 Xingang-Xi Road, Guangzhou 510275, China
| |
Collapse
|
8
|
Wang Y, Li W, Ma Y, Hu B, Chen X, Lv R. Thermally activated upconversion luminescence and ratiometric temperature sensing under 1064 nm/808 nm excitation. NANOTECHNOLOGY 2023; 34:235704. [PMID: 36857764 DOI: 10.1088/1361-6528/acc037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this research, a thermally activated upconversion luminescence (UCL) probe with ratiometric temperature sensing under 1064 nm and 808 nm excitation was designed. Especially, Nd3+, Tm3+and Ce3+were doped in rare earth nanoparticles (RENPs) as UCL modulators. By optimizing the elements and ratios, the excitation wavelength is successfully modulated to 1064 nm excitation with UCL intensity enhanced. Additionally, the prepared RENPs have a significant temperature response at 1064 nm excitation and can be used for thermochromic coatings. The intensity ratio of three-photon UCL (1064 nm excitation) to two-photon UCL (808 nm excitation) as an exponential function of temperature can be used as a ratiometric temperature detector. Therefore, this designed thermochromic coatings may enable new applications in optoelectronic device and industrial sensor.
Collapse
Affiliation(s)
- Yanxing Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Wenjing Li
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Yaqun Ma
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Bo Hu
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Xueli Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| | - Ruichan Lv
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi 710071, People's Republic of China
| |
Collapse
|
9
|
Zhang W, Huang X, Liu W, Gao Z, Zhong L, Qin Y, Li B, Li J. Semiconductor Plasmon Enhanced Upconversion toward a Flexible Temperature Sensor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4469-4476. [PMID: 36642887 DOI: 10.1021/acsami.2c18412] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Noninvasive and sensitive thermometry is crucial to human health monitoring and applications in disease diagnosis. Despite recent advances in optical temperature detection, the construction of sensitive wearable temperature sensors remains a considerable challenge. Here, a flexible and biocompatible optical temperature sensor is developed by combining plasmonic semiconductor W18O49 enhanced upconversion emission (UCNPs/WO) with flexible poly(lactic acid) (PLA)-based optical fibers. The UCNPs/WO offers highly thermal-sensitive and obviously enhanced dual-wavelength emissions for ratiometric temperature sensing. The PLA polymer endows the sensor with excellent light-transmitting ability for laser excitation and emission collection and high biocompatibility. The fabricated UCNPs/WO-PLA sensor exhibits stable and rapid temperature response in the range 298-368 K, with a high relative sensitivity of 1.53% K-1 and detection limit as low as ±0.4 K. More importantly, this proposed sensor is demonstrated to possess dual function on real-time detection for physiological thermal changes and heat release, exhibiting great potential in wearable health monitoring and biotherapy applications.
Collapse
Affiliation(s)
- Weina Zhang
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Xingwu Huang
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| | - Wenjie Liu
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Zhensen Gao
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Yuwen Qin
- Guangdong Provincial Key Laboratory of Photonics Information Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou510006, China
| | - Baojun Li
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| | - Juan Li
- Institute of Nanophotonics, Jinan University, Guangzhou511443, China
| |
Collapse
|
10
|
Zhou C, Lin Z, Huang S, Li B, Gao A. Progress in Probe-Based Sensing Techniques for In Vivo Diagnosis. BIOSENSORS 2022; 12:943. [PMID: 36354452 PMCID: PMC9688418 DOI: 10.3390/bios12110943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Advancements in robotic surgery help to improve the endoluminal diagnosis and treatment with minimally invasive or non-invasive intervention in a precise and safe manner. Miniaturized probe-based sensors can be used to obtain information about endoluminal anatomy, and they can be integrated with medical robots to augment the convenience of robotic operations. The tremendous benefit of having this physiological information during the intervention has led to the development of a variety of in vivo sensing technologies over the past decades. In this paper, we review the probe-based sensing techniques for the in vivo physical and biochemical sensing in China in recent years, especially on in vivo force sensing, temperature sensing, optical coherence tomography/photoacoustic/ultrasound imaging, chemical sensing, and biomarker sensing.
Collapse
Affiliation(s)
- Cheng Zhou
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zecai Lin
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaoping Huang
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bing Li
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Anzhu Gao
- Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Shen L, Teng C, Wang Z, Bai H, Kumar S, Min R. Semiconductor Multimaterial Optical Fibers for Biomedical Applications. BIOSENSORS 2022; 12:882. [PMID: 36291019 PMCID: PMC9599191 DOI: 10.3390/bios12100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Integrated sensors and transmitters of a wide variety of human physiological indicators have recently emerged in the form of multimaterial optical fibers. The methods utilized in the manufacture of optical fibers facilitate the use of a wide range of functional elements in microscale optical fibers with an extensive variety of structures. This article presents an overview and review of semiconductor multimaterial optical fibers, their fabrication and postprocessing techniques, different geometries, and integration in devices that can be further utilized in biomedical applications. Semiconductor optical fiber sensors and fiber lasers for body temperature regulation, in vivo detection, volatile organic compound detection, and medical surgery will be discussed.
Collapse
Affiliation(s)
- Lingyu Shen
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Chuanxin Teng
- Guangxi Key Laboratory of Optoelectronic Information Processing, School of Optoelectronic Engineering, Guilin University of Electronic Technology, Guilin 541004, China
| | - Zhuo Wang
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| | - Hongyi Bai
- College of Electronics and Engineering, Heilongjiang University, Harbin 150080, China
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Rui Min
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
12
|
Alkallas FH, Ben Gouider Trabelsi A, Alrebdi TA, Ahmed AM, Rabia M. Development of a Highly Efficient Optoelectronic Device Based on CuFeO 2/CuO/Cu Composite Nanomaterials. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6857. [PMID: 36234202 PMCID: PMC9572630 DOI: 10.3390/ma15196857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Herein, an optoelectronic device synthesized from a CuFeO2/CuO/Cu nanocomposite was obtained through the direct combustion of Cu foil coated with Fe2O3 nanomaterials. The chemical, morphological, and optical properties of the nanocomposite were examined via different techniques, such as XRD, XPS, TEM, SEM, and UV/Vis spectrophotometer. The optical reflectance demonstrated a great enhancement in the CuFeO2 optical properties compared to CuO nanomaterials. Such enhancements were clearly distinguished through the bandgap values, which varied between 1.35 and 1.38 eV, respectively. The XRD and XPS analyses confirmed the chemical structure of the prepared materials. The produced current density (Jph) was studied in dark and light conditions, thereby confirming the obtained optoelectronic properties. The Jph dependency to monochromatic wavelength was also investigated. The Jph value was equal to 0.033 mA·cm-2 at 390 nm, which decreased to 0.031 mA·cm-2 at 508 nm, and then increased to 0.0315 mA·cm-2 at 636 nm. The light intensity effects were similarly inspected. The Jph values rose when the light intensities were augmented from 25 to 100 mW·cm-2 to reach 0.031 and 0.05 mA·cm-2, respectively. The photoresponsivity (R) and detectivity (D) values were found at 0.33 mA·W-1 and 7.36 × 1010 Jones at 390 nm. The produced values confirm the high light sensitivity of the prepared optoelectronic device in a broad optical region covering UV, Vis, and near IR, with high efficiency. Further works are currently being designed to develop a prototype of such an optoelectronic device so that it can be applied in industry.
Collapse
Affiliation(s)
- Fatemah H. Alkallas
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Amira Ben Gouider Trabelsi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Tahani A. Alrebdi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ashour M. Ahmed
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mohamed Rabia
- Nanophotonics and Applications Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
- Nanomaterials Science Research Laboratory, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
13
|
Nan X, Wang X, Kang T, Zhang J, Dong L, Dong J, Xia P, Wei D. Review of Flexible Wearable Sensor Devices for Biomedical Application. MICROMACHINES 2022; 13:1395. [PMID: 36144018 PMCID: PMC9505309 DOI: 10.3390/mi13091395] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 05/26/2023]
Abstract
With the development of cross-fertilisation in various disciplines, flexible wearable sensing technologies have emerged, bringing together many disciplines, such as biomedicine, materials science, control science, and communication technology. Over the past few years, the development of multiple types of flexible wearable devices that are widely used for the detection of human physiological signals has proven that flexible wearable devices have strong biocompatibility and a great potential for further development. These include electronic skin patches, soft robots, bio-batteries, and personalised medical devices. In this review, we present an updated overview of emerging flexible wearable sensor devices for biomedical applications and a comprehensive summary of the research progress and potential of flexible sensors. First, we describe the selection and fabrication of flexible materials and their excellent electrochemical properties. We evaluate the mechanisms by which these sensor devices work, and then we categorise and compare the unique advantages of a variety of sensor devices from the perspective of in vitro and in vivo sensing, as well as some exciting applications in the human body. Finally, we summarise the opportunities and challenges in the field of flexible wearable devices.
Collapse
Affiliation(s)
- Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xin Wang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Tongtong Kang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jiale Zhang
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Lanxiao Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Jinfeng Dong
- School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
| | - Peng Xia
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| | - Donglai Wei
- School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
14
|
Zhang H, Peng Y, Zhang N, Yang J, Wang Y, Ding H. Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications. MICROMACHINES 2022; 13:mi13071069. [PMID: 35888886 PMCID: PMC9323269 DOI: 10.3390/mi13071069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Thin-film microscale light-emitting diodes (LEDs) are efficient light sources and their integrated applications offer robust capabilities and potential strategies in biomedical science. By leveraging innovations in the design of optoelectronic semiconductor structures, advanced fabrication techniques, biocompatible encapsulation, remote control circuits, wireless power supply strategies, etc., these emerging applications provide implantable probes that differ from conventional tethering techniques such as optical fibers. This review introduces the recent advancements of thin-film microscale LEDs for biomedical applications, covering the device lift-off and transfer printing fabrication processes and the representative biomedical applications for light stimulation, therapy, and photometric biosensing. Wireless power delivery systems have been outlined and discussed to facilitate the operation of implantable probes. With such wireless, battery-free, and minimally invasive implantable light-source probes, these biomedical applications offer excellent opportunities and instruments for both biomedical sciences research and clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Haijian Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Yanxiu Peng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Nuohan Zhang
- GMA Optoelectronic Technology Limited, Xinyang 464000, China;
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
- Correspondence:
| |
Collapse
|