1
|
Ren G, Pan T, Xu Y, Wang J, Wang L, Deng R, Zhou S, Tian L, Wu X, Zhou L. Near-Infrared Ytterbium Complexes Based on Polycyclic Aromatic Dicarboxylate Ligands and the Solution-Processed NIR OLED with Irradiance up to 110,284 μW/m 2. Inorg Chem 2025; 64:8343-8353. [PMID: 40223216 DOI: 10.1021/acs.inorgchem.5c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Since the O-H and N-H oscillators of solvent molecules attached to ytterbium ion (Yb3+) and C-H oscillators existing in the inner coordination sphere of Yb3+ would quench the excited energy of Yb(III), which leads to low quantum yields (QYs) of Yb(III) complexes, we aimed to design a ligand that could block solvent molecules and C-H oscillators out of the first coordination sphere of Yb3+. Herein, a series of novel polycyclic aromatic dicarboxylate ligands are designed and synthesized to effectively protect Yb3+ from solvent molecules and efficiently sensitize Yb3+ luminescence, while the cost and sophistication of the synthesis are satisfactory. Therein, [Yb(MO-DPyPDA)2](DIEA) exhibited a considerable QY of 5.20% and a long luminescent lifetime of 102 μs in CD3OD. The single-crystal structure demonstrates that there are no solvent molecules and C-H oscillators existing in the inner coordination sphere of Yb3+, which is conducive to alleviating the quenching effect. Meanwhile, we also carried out experiments to verify that it was thermodynamically feasible for ligands to sensitize the luminescence of center ion through internal redox processes. Moreover, several groups of near-infrared organic light-emitting diodes based on [Yb(DTFM-DPyPDA)2](DIEA) were fabricated based on the solution-processing method, and the highest irradiance of 110,284 μW/m2 was realized by optimizing the device structure.
Collapse
Affiliation(s)
- Guozhu Ren
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230027, China
| | - Tingyu Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yue Xu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230027, China
| | - Jingyu Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230027, China
| | - Lingdong Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230027, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shihong Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Long Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaojie Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
2
|
Das B. Unveiling mechanistic insights and applications of aggregation-enhanced emission (AEE)-active polynuclear transition metal complexes. Chem Commun (Camb) 2025; 61:6391-6416. [PMID: 40176728 DOI: 10.1039/d5cc00690b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Aggregation-enhanced emission (AEE) in polynuclear transition metal complexes (PTMCs) represents a major advancement in luminescent materials, overcoming the limitations of aggregation-caused quenching (ACQ) in traditional systems. Unlike conventional materials that suffer from quenching, AEE-active PTMCs exhibit enhanced luminescence in the aggregated state, driven by mechanisms such as restricted molecular motion, π-π stacking, and metal-metal interactions. These properties make PTMCs highly versatile for applications including chemical sensing, bioimaging, photodynamic therapy (PDT), optoelectronics (e.g., OLEDs, WOLEDs, and LEDs), and security technologies (e.g., anti-counterfeiting inks). They enable the sensitive detection of pollutants, facilitate high-performance bioimaging, and enhance the efficiency of energy devices. However, PTMCs face several challenges, including complex synthesis, limited thermal and photostability, solubility issues, and environmental and toxicity concerns. Additionally, high production costs, instability in different media, and the need for optimized energy transfer efficiency must be addressed to enhance their practical performance. This review explores the mechanisms behind AEE in PTMCs and discusses strategies for overcoming these challenges, including ligand engineering, hybrid material development, and sustainable synthesis methods. It also highlights their potential in advancing energy-efficient technologies, precision therapeutics, and secure communication systems, contributing to a more sustainable and innovative future.
Collapse
Affiliation(s)
- Bishnu Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, 741246, India.
| |
Collapse
|
3
|
Kang S, He Q, Shen Y, Ning W, Fang Y. Organic-Inorganic Hybrid Perovskite-Like Indium Chloride with Strong Red Emission. Inorg Chem 2025; 64:4035-4042. [PMID: 39948702 DOI: 10.1021/acs.inorgchem.4c05348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Low-dimensional organic-inorganic hybrid metal halide materials have attracted widespread attention due to their excellent and tunable photoelectric properties. However, the low intrinsic photoluminescence quantum yields (PLQYs) limit their further applications in optoelectronic devices. Here, we report the synthesis of lead-free zero-dimensional hybrid organic-inorganic indium chloride crystals, (FA)3InCl6: xSb3+, with strong red-light emission through controlled Sb3+ doping. The optimal composition, (FA)3InCl6: 20.16% Sb3+, exhibits PLQY up to 30% and emits red broadband light centered at 690 nm. The photoluminescence enhancement of the doped samples was investigated by combining temperature-dependent and wavelength-dependent photoluminescence spectra, revealing the self-trapped exciton (STE) recombination process. The clear elucidation of the self-trapped exciton complexation process has provided a solid theoretical basis for the further optimization of the material properties, which is of great significance for the development of new red light-emitting materials. Far-red light-emitting phosphor-converted LED devices have been constructed with these materials and demonstrate stable and efficient red-light emission at various voltages, exhibiting superior photoluminescence stability. This study highlights the potential of Sb3+-doped metal halides to achieve tunable broadband emission and demonstrates the great potential of these metal halide single crystals for indoor plant lighting, infrared imaging, photodynamic therapy and wound healing.
Collapse
Affiliation(s)
- Shuilong Kang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Qingqing He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yueqi Shen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Weihua Ning
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Yuan Fang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, PR China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, PR China
| |
Collapse
|
4
|
Gao M, Yu J, Shi S, Wang J, Fu L. Fabrication, spectroscopic and photofunctional studies of layered lutetium-dysprosium hydroxides. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125194. [PMID: 39332168 DOI: 10.1016/j.saa.2024.125194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/12/2024] [Accepted: 09/22/2024] [Indexed: 09/29/2024]
Abstract
The spectroscopic studies of layered rare-earth hydroxides (LRHs) have aroused great interests owing to the unique features of combing rare-earth ions with diverse anions. In this work, some anions were incorporated into layered lutetium-dysprosium hydroxides (LLuH:Dy) by the hydrothermal and ion exchange process, in which Dy3+ ion acted as the emission center. The results manifest that the assemblies possess clearly lamellar structure and flake shape, and emit the characteristic yellow and blue light of Dy3+ under ultraviolet excitation. The inorganic WO42- intercalated LLuH:Dy shows enhanced luminescence under the excitation with 280 nm which originates from the O-W charge transfer band. The more fantastic is that the assembly produces bright cyan light due to the appropriate yellow/blue light intensity ratio, and can transform into transparent and flexible film by mixing with certain polymer. Moreover, the intercalation of organic chromophore benzenetetracarboxylic anion into LLuH:Dy also greatly promotes the Dy3+ luminescence, and can easily form the nanosheet colloid through combining with surfactant dodecyl sulfonate. The colloid is very stable at ambient temperature and displays excellent selectivity, sensitivity and accuracy for detecting metal Co2+ in aqueous media, constructing a superior fluorescence sensor for Co2+ with a detection limit of 2.65 × 10-7 mol/L. This work expands the photofunctional performances of LRHs in the form of transparent film and colloidal state.
Collapse
Affiliation(s)
- Mai Gao
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nanomaterials, Hebei Normal University, Shijiazhuang 050024, China
| | - Jingjie Yu
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nanomaterials, Hebei Normal University, Shijiazhuang 050024, China
| | - Shikao Shi
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nanomaterials, Hebei Normal University, Shijiazhuang 050024, China.
| | - Jiye Wang
- College of Chemistry and Materials Science, Hebei Key Laboratory of Inorganic Nanomaterials, Hebei Normal University, Shijiazhuang 050024, China
| | - Lianshe Fu
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Rajkonwar N, Gogoi P, Dutta P. Enhancement of Sm 3+ Luminescence in Sol-Gel Silica Matrix: Effect of Ligands Phenyl Phosphinic Acid and Trioctylphosphine Oxide. J Fluoresc 2024:10.1007/s10895-024-04076-y. [PMID: 39681725 DOI: 10.1007/s10895-024-04076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Sol-gel silica matrices singly doped with Sm3+ and co-doped with ligands phenyl phosphinic acid (PPIA) and trioctylphosphine oxide (TOPO) were fabricated and studied for their structural and spectroscopic behaviour. Structural studies were done by x-ray diffraction (XRD) and Fourier transform infra-red (FTIR) absorption analysis whereas spectroscopic behaviour was studied by ultraviolet - visible (UV-Vis) absorption, photoluminescence (PL) excitation, emission and time-correlated decay analyses. XRD studies exhibit the amorphous nature of the samples and FTIR studies corroborate the presence of the ligands in the silica matrix. UV-Vis absorption and PL studies show significant enhancement in the radiative parameters in ligand co-doped samples compared to singly doped Sm3+ sample. Judd Ofelt parameters estimated from the absorption spectra possess higher values compared to popular hosts; revealing higher asymmetry and covalency around the active Sm3+ ions. An enhancement in PL intensity by 50.38 times and yield by 52.57 times with the co-doping of the ligands PPIA and TOPO is reported. These enhancement in the radiative output in ligand co-doped samples is attributed to the modification of the silica network with the incorporation of the ligands, energy transfer from ligands to nearby Sm3+ ions as well as due to the shielding of Sm3+ ions from the OH quenchers in the silica matrix. The improved PL behaviour especially corresponding to 4G5∕2→6H9∕2 transitions occurring at 643 nm suggests the potential of PPIA and TOPO co-doped Sm3+ silica matrix for diverge optical applications.
Collapse
Affiliation(s)
- Navaneeta Rajkonwar
- Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India
| | - Purabi Gogoi
- Dibrugarh University Institute of Engineering and Technology, Dibrugarh University, Dibrugarh, 786004, Assam, India.
| | - Pankaj Dutta
- Department of Physics, Dibrugarh University, Dibrugarh, 786004, Assam, India
| |
Collapse
|
6
|
Xu Y, Pan T, Ren G, Wang J, Yang H, Wang L, Zhang D, Sun Y, Deng R, Zhou S, Tian L, Qiao X, Zhou L. Efficient Organic Light-Emitting Diodes Obtained by Introducing Gadolinium (Gd) Complexes Based on Pyrazolone Derivative Ligands as Hole Trappers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65100-65107. [PMID: 39546616 DOI: 10.1021/acsami.4c14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The utilization of lanthanide (Ln) complexes in the realm of organic light-emitting diodes (OLEDs) has garnered extensive interest, particularly in their role as luminescent materials or electron trappers. A series of gadolinium (Gd) complexes with energy levels of high HOMO/LUMO and different triplet state energies were designed and synthesized by introducing substituents with different electronic effects onto the pyrazolone derivative ligands. Subsequently, these complexes were precisely purified by vacuum sublimation and codoped into the light-emitting layer (EML) of the OLEDs. This process was facilitated through the well-matched HOMO/LUMO levels and triplet energies among various functional materials. Consequently, the maximum external quantum efficiencies of blue, red, and green OLEDs were simultaneously enhanced with the ratios of 119%, 28%, and 71%, respectively. This improvement can be credited to the introduction of Gd(III) complex molecules within EMLs, which helps to capture excess holes and improve carriers' balance.
Collapse
Affiliation(s)
- Yue Xu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Tingyu Pan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Guozhu Ren
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Jingyu Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Haoran Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Lingdong Wang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Danyang Zhang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Yitong Sun
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Shihong Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Long Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Xin Qiao
- Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China
| | - Liang Zhou
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
7
|
Li Q, Wen Q, Fang Z, Wang Y, Ouyang H, Wang Q, Wei M. Synthesis and fluorescence properties of europium complex functionalized fiberglass paper. RSC Adv 2024; 14:30037-30044. [PMID: 39309652 PMCID: PMC11413861 DOI: 10.1039/d4ra05143b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
The development of novel rare earth fluorescent materials and the exploration of their applications have consistently been focal points of research in the fields of materials science and chemistry. In this work, a novel rare earth composite material with good photo-fluorescence properties and self-supporting has been prepared via a simple ultrasonic solvent reaction method. Initially, the Phen moieties is immobilized onto the surface of a self-supporting fiberglass paper using ICPTES, followed by the coordination of Eu(TTA)3 moieties with Phen moieties through a convenient ultrasonic solvent reaction. The resulting GF-Phen-Eu(TTA)3 has been characterized using FTIR, UV-Vis DRS, fluorescence measurements, and so on. The results indicate that the composite material exhibits strong fluorescent emission and presents a vivid red color under ultraviolet light. Further research has shown that the fluorescence of GF-Phen-Eu(TTA)3 strips demonstrated a pronounced quenching effect in response to some transition metal ions (1 mM). Hence, the rare earth composite materials presented here can be utilized not only for the production of optical materials, but also for the development of fluorescence sensing strips.
Collapse
Affiliation(s)
- Qiuping Li
- FuZhou AI Drug Innovation Center, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - Qianqian Wen
- FuZhou AI Drug Innovation Center, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - Zian Fang
- FuZhou AI Drug Innovation Center, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - Yidi Wang
- FuZhou AI Drug Innovation Center, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - Hongxia Ouyang
- FuZhou AI Drug Innovation Center, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - Qi Wang
- FuZhou AI Drug Innovation Center, School of Pharmacy, Fuzhou Medical College of Nanchang University Fuzhou 344000 China
| | - Meng Wei
- Jiangxi Yatai Technology Co., Ltd Yichun 336100 China
| |
Collapse
|
8
|
Qi R, Shen W, Xu R, Li Z, Long Z, Wang Y, Tang Q, Kipper MJ, Popat K, Belfiore LA, Tang J. Excellent Electroluminescent Property of Eu 3+-Induced Polystyrene- co-poly(acrylic acid) Aggregates (EIPAs) in Polymeric Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:36715-36726. [PMID: 38978456 DOI: 10.1021/acsami.4c06466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Eu3+-induced polystyrene-co-poly(acrylic acid) aggregates (EIPAs) were synthesized using a self-assembly approach, and their structures and photophysical characteristics were examined to achieve effective monochromatic red emission in polymer light-emitting diodes (PLEDs). By adjusting the monomer ratio in RAFT polymerization, the size of Eu3+-induced block copolymer nanoaggregates can be regulated, thereby modulating the luminescence intensity. High-performance bilayer polymer light-emitting devices were fabricated using poly(9,9-dioctylfluorene) (PFO) and 2-(tert-butylphenyl)-5-biphenylyl-1,3,4-oxadiazole (PBD) as the host matrix, with EIPAs as the guest dopant. The devices exhibited narrow red emission at 615 nm with a full width at half-maximum (fwhm) of 15 nm across doping concentrations of 1, 3, 5, and 10 wt %. At a doping concentration of 3 wt %, the device achieved a maximum brightness of 1864.48 cd/m2 at 193.82 mA/cm2 and an external quantum efficiency of 3.20% at a current density of 3.5 mA/cm2. These results indicate that incorporating polystyrene-co-poly(acrylic acid) with Eu3+ complexes enhances the excitation and emission intensity, as well as the structural stability of the emitting layer in PLEDs, thereby improving the device performance.
Collapse
Affiliation(s)
- Rui Qi
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Wenfei Shen
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Rui Xu
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zengkun Li
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Zaixin Long
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Yao Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Qinglin Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| | - Matt J Kipper
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ketul Popat
- Department of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Laurence A Belfiore
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, National Base of International Sci. & Tech. Cooperation on Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, PR China
| |
Collapse
|
9
|
Nakanishi T, Hirai Y, Xu J, Takeda T, Watanabe S, Yasumori A, Hakamada S, Kitagawa Y, Hasegawa Y. Structural metamorphosis and photophysical properties of thermostable nano- and microcrystalline lanthanide polymer with flexible coordination chains. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2023; 24:2183711. [PMID: 36891540 PMCID: PMC9987761 DOI: 10.1080/14686996.2023.2183711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/28/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Luminescent lanthanide coordination polymer crystals (LCPCs) represent an area of growing interest in materials chemistry owing to their unique and tailorable functional properties. The LCPCs provide a high level of structural tunability, including size- and morphology-dependent properties; therefore, they are promising materials for next-generation phosphors in a wide range of applications such as light emitting diodes. Here, by controlling the morphology of thermostable europium coordination polymer crystals, [Eu(hfa)3(dpbp)]n, hfa: hexafluoroacetylacetonate and dpbp:4,4'-bis(diphenyl phosphoryl) biphenyl), we realized a novel red phosphor with narrow linewidth emission (FWHM = 7.8 nm). The obtained luminescent LCPCs with unique structures were characterized by X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), dynamic light scattering (DLS) and thermogravimetric analysis. Among, them, size tunable crystalline polymer spheres were found to have high internal quantum efficiency (ex., IQE = 79%) and highly thermostability (>300°C), and to exhibit dispersibility in PMMA media. The obtained results on the structural tunability of these materials can be used for the development of synthesis techniques for nanoscale materials based on crystalline lanthanide-based coordination phosphors.
Collapse
Affiliation(s)
- Takayuki Nakanishi
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Yuichi Hirai
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Jian Xu
- International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Takashi Takeda
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Shunsuke Watanabe
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Atsuo Yasumori
- Department of Materials Science and Technology, Tokyo University of Science, Tokyo, Japan
| | - Shou Hakamada
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Yuichi Kitagawa
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| | - Yasuchika Hasegawa
- Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Ren G, Zhang D, Wang H, Li X, Deng R, Zhou S, Tian L, Zhou L. A Novel Near-Infrared Ytterbium Complex [Yb(DPPDA) 2](DIPEA) with Φ = 0.46% and τobs = 105 μs. Molecules 2023; 28:molecules28041632. [PMID: 36838619 PMCID: PMC9965908 DOI: 10.3390/molecules28041632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 02/11/2023] Open
Abstract
The luminescent performances of near-infrared (NIR) lanthanide (Ln) complexes were restricted greatly by vibration quenching of X-H (X = C, N, O) oscillators, which are usually contained in ligands and solvents. Encapsulating Ln3+ into a cavity of coordination atoms is a feasible method of alleviating this quenching effect. In this work, a novel ytterbium complex [Yb(DPPDA)2](DIPEA) coordinated with 4,7-diphenyl-1,10-phenanthroline-2,9-dicarboxylic acid (DPPDA) was synthesized and characterized by FT-IR, ESI-MS and elemental analysis. Under the excitation of 335 nm light, [Yb(DPPDA)2](DIPEA) showed two emission peaks at 975 and 1011 nm, respectively, which were assigned to the characteristic 2F5/2 → 2F7/2 transition of Yb3+. Meanwhile, this ytterbium complex exhibited a plausible absolute quantum yield of 0.46% and a luminescent lifetime of 105 μs in CD3OD solution. In particular, its intrinsic quantum yield was calculated to be 12.5%, and this considerably high value was attributed to the near-zero solvent molecules bound to Yb3+ and the absence of X-H oscillators in the first coordination sphere. Based on experimental results, we further proposed that the sensitized luminescence of [Yb(DPPDA)2](DIPEA) occurred via an internal redox mechanism instead of an energy transfer process.
Collapse
Affiliation(s)
- Guozhu Ren
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Danyang Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Hao Wang
- School of Materials Science and Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Xiaofang Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, China
| | - Ruiping Deng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shihong Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Long Tian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230027, China
- Correspondence: ; Tel.: +86-431-85262855; Fax: +86-431-85698041
| |
Collapse
|
11
|
Metlina DA, Goryachii DO, Metlin MT, Mikhalchenko LV, Korshunov VM, Taydakov IV. OLED Structure Optimization for Pure and Efficient NIR Electroluminescence of Nd 3+ Complexes Bearing Fluorinated 1,3-Diketones. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1243. [PMID: 36770249 PMCID: PMC9919853 DOI: 10.3390/ma16031243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
NIR emitting OLEDs (organic light-emitting diodes) with high photoluminescence quantum yields were developed on the basis of fluorinated 1,3-diketonate coordination compounds of the Nd3+ ion. Both thermal evaporation and spin-coating techniques were successfully employed for active layer deposition resulting in electroluminescence quantum yields up to 1.38·10-2%. Blueish-green emission from exciplex and electroplax formations was almost suppressed with the topology optimization of the cell.
Collapse
Affiliation(s)
- Daria A. Metlina
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991 Moscow, Russia
| | - Dmitry O. Goryachii
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991 Moscow, Russia
| | - Mikhail T. Metlin
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991 Moscow, Russia
| | - Lyudmila V. Mikhalchenko
- N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky Prospect, 119991 Moscow, Russia
| | - Vladislav M. Korshunov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991 Moscow, Russia
| | - Ilya V. Taydakov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninsky Prospect, 119991 Moscow, Russia
- G.V. Plekhanov Russian University of Economics, 36 Stremyanny per., 117997 Moscow, Russia
| |
Collapse
|
12
|
Zhang H, Zhang H. Special Issue: Rare earth luminescent materials. LIGHT, SCIENCE & APPLICATIONS 2022; 11:260. [PMID: 36055990 PMCID: PMC9440020 DOI: 10.1038/s41377-022-00956-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
This special issue covers a series of cutting-edge works on exploring novel rare earth luminescent materials and their applications in lighting, display, information storage, sensing, and bioimaging as well as therapy. [Image: see text]
Collapse
Affiliation(s)
- Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, P. O. Box 94157, 1090 GD, Amsterdam, The Netherlands.
| |
Collapse
|