1
|
Ajmal R, Zhang W, Liu H, Bai H, Cao L, Peng B, Li L. Development of a Microfluidic System for Mitochondrial Extraction, Purification, and Analysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:20487-20500. [PMID: 40034090 DOI: 10.1021/acsami.4c18415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Mitochondria, as essential cellular organelles, play a key role in numerous diseases, from neurodegenerative disorders to cancer and rare conditions. The extraction of mitochondria from cells has many applications in disease diagnosis, pathological research, and emerging mitochondrial transplantation therapy (MTT). Recent advancements in microfluidic-on-chip systems offer promising improvements in mitochondrial extraction by enabling high-throughput processing, precise control, and flexibility while facilitating integration with other devices and platforms. Despite growing interest in microfluidic mitochondrial extraction (MME), there is a lack of comprehensive reviews on the latest developments in this field. This review aims to summarize recent advancements as well as the advantages and limitations of MME, providing deeper insights into microfluidic-based approaches for mitochondrial extraction, purification, and analysis.
Collapse
Affiliation(s)
- Rukhsar Ajmal
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Weisen Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Guangdong Kangrong Industrial Co, Ltd, 63 Zhongbei Road, Shenshan Industrial Park Town, Jianggao Town, Baiyun District, Guangzhou 510450, China
| | - Hui Liu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Hua Bai
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Lei Cao
- Department of Rehabilitation, Xuanwu Hospital of Capital Medical University, Beijing 100053, China
| | - Bo Peng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, 13 Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Lin Li
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Li L, Zhang J, Yue P, Feng JJ. Mechanical interaction between a hydrogel and an embedded cell in biomicrofluidic applications. BIOMICROFLUIDICS 2025; 19:024104. [PMID: 40190650 PMCID: PMC11972092 DOI: 10.1063/5.0263344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Thanks to their softness, biocompatibility, porosity, and ready availability, hydrogels are commonly used in microfluidic assays and organ-on-chip devices as a matrix for cells. They not only provide a supporting scaffold for the differentiating cells and the developing organoids, but also serve as the medium for transmitting oxygen, nutrients, various chemical factors, and mechanical stimuli to the cells. From a bioengineering viewpoint, the transmission of forces from fluid perfusion to the cells through the hydrogel is critical to the proper function and development of the cell colony. In this paper, we develop a poroelastic model to represent the fluid flow through a hydrogel containing a biological cell modeled as a hyperelastic inclusion. In geometries representing shear and normal flows that occur frequently in microfluidic experiments, we use finite-element simulations to examine how the perfusion engenders interstitial flow in the gel and displaces and deforms the embedded cell. The results show that pressure is the most important stress component in moving and deforming the cell, and the model predicts the velocity in the gel and stress transmitted to the cell that is comparable to in vitro and in vivo data. This work provides a computational tool to design the geometry and flow conditions to achieve optimal flow and stress fields inside the hydrogels and around the cell.
Collapse
Affiliation(s)
- Lei Li
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | - Pengtao Yue
- Department of Mathematics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | |
Collapse
|
3
|
Pajic-Lijakovic I, Milivojevic M, McClintock PVE. Friction in soft biological systems and surface self-organization: the role of viscoelasticity. Biophys Rev 2024; 16:813-829. [PMID: 39830128 PMCID: PMC11735778 DOI: 10.1007/s12551-024-01248-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 01/22/2025] Open
Abstract
Friction is a critical factor in the proper functioning of human organs as well as in the potential development of disease. It is also important for the design of diagnostic and interventional medical devices. Nanoscale surface roughness, viscoelastic or plastic deformations, wear, and lubrication all influence the functions of individual cells. The effects of friction in soft matter systems are quantified using different types of frictional coefficients, including the dynamic friction coefficient, friction-skin drag, and pressure drag. These coefficients are determined by the viscoelastic properties of the two systems in contact and their relative velocity. In this review, several biological systems are considered, including (i) epithelial tissues in contact with soft hydrogel-like implants, (ii) the collective migration of epithelial monolayers on substrate matrices, (iii) blood flow through blood vessels, and (iv) the movement of cancer cells past epithelial clusters along with the migration of epithelial cells within the cluster.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | - Milan Milivojevic
- Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Leonov S, Dorfman A, Pershikova E, Inyang O, Alhaddad L, Wang Y, Pustovalova M, Merkher Y. Extracellular Vesicle- and Mitochondria-Based Targeting of Non-Small Cell Lung Cancer Response to Radiation: Challenges and Perspectives. Cancers (Basel) 2024; 16:2235. [PMID: 38927940 PMCID: PMC11201585 DOI: 10.3390/cancers16122235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
During the cell life cycle, extracellular vesicles (EVs) transport different cargos, including organelles, proteins, RNAs, DNAs, metabolites, etc., that influence cell proliferation and apoptosis in recipient cells. EVs from metastatic cancer cells remodel the extracellular matrix and cells of the tumor microenvironment (TME), promoting tumor invasion and metastatic niche preparation. Although the process is not fully understood, evidence suggests that EVs facilitate genetic material transfer between cells. In the context of NSCLC, EVs can mediate intercellular mitochondrial (Mt) transfer, delivering mitochondria organelle (MtO), mitochondrial DNA (mtDNA), and/or mtRNA/proteinaceous cargo signatures (MtS) through different mechanisms. On the other hand, certain populations of cancer cells can hijack the MtO from TME cells mainly by using tunneling nanotubes (TNTs). This transfer aids in restoring mitochondrial function, benefiting benign cells with impaired metabolism and enabling restoration of their metabolic activity. However, the impact of transferring mitochondria versus transplanting intact mitochondrial organelles in cancer remains uncertain and the subject of debate. Some studies suggest that EV-mediated mitochondria delivery to cancer cells can impact how cancer responds to radiation. It might make the cancer more resistant or more sensitive to radiation. In our review, we aimed to point out the current controversy surrounding experimental data and to highlight new paradigm-shifting modalities in radiation therapy that could potentially overcome cancer resistance mechanisms in NSCLC.
Collapse
Affiliation(s)
- Sergey Leonov
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
- Department of Cellular Mechanisms of Memory Pathology, Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Anna Dorfman
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Elizaveta Pershikova
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Olumide Inyang
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Lina Alhaddad
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Yuzhe Wang
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Margarita Pustovalova
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
| | - Yulia Merkher
- Department of Cell Technologies, Institute of Future Biophysics, 141700 Dolgoprudny, Russia
- Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Pajic-Lijakovic I, Milivojevic M. Collective durotaxis along a self-generated mobile stiffness gradient in vivo. Biosystems 2024; 237:105155. [PMID: 38367761 DOI: 10.1016/j.biosystems.2024.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
A crucial aspect of tissue self-organization during morphogenesis, wound healing, and cancer invasion is directed migration of cell collectives. The majority of in vivo directed migration has been guided by chemotaxis, whereby cells follow a chemical gradient. In certain situations, migrating cell collectives can also self-generate the stiffness gradient in the surrounding tissue, which can have a feedback effect on the directionality of the migration. The phenomenon has been observed during collective durotaxis in vivo. Along the biointerface between neighbouring tissues, heterotypic cell-cell interactions are the main cause of this self-generated stiffness gradient. The physical processes in charge of tissue self-organization along the biointerface, which are related to the interplay between cell signalling and the formation of heterotypic cell-cell adhesion contacts, are less well-developed than the biological mechanisms of the cellular interactions. This complex phenomenon is discussed here in the model system, such as collective migration of neural crest cells between ectodermal placode and mesoderm subpopulations within Xenopus embryos by pointing to the role of the dynamics along the biointerface between adjacent cell subpopulations on the subpopulation stiffness.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, Belgrade, 11000, Serbia.
| | - Milan Milivojevic
- University of Belgrade, Faculty of Technology and Metallurgy, Department of Chemical Engineering, Karnegijeva 4, Belgrade, 11000, Serbia
| |
Collapse
|
6
|
Pajic-Lijakovic I, Milivojevic M. Marangoni effect and cell spreading. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:419-429. [PMID: 35930028 DOI: 10.1007/s00249-022-01612-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Cells are very sensitive to the shear stress (SS). However, undesirable SS is generated during physiological process such as collective cell migration (CCM) and influences the biological processes such as morphogenesis, wound healing and cancer invasion. Despite extensive research devoted to study the SS generation caused by CCM, we still do not fully understand the main cause of SS appearance. An attempt is made here to offer some answers to these questions by considering the rearrangement of cell monolayers. The SS generation represents a consequence of natural and forced convection. While forced convection is dependent on cell speed, the natural convection is induced by the gradient of tissue surface tension. The phenomenon is known as the Marangoni effect. The gradient of tissue surface tension induces directed cell spreading from the regions of lower tissue surface tension to the regions of higher tissue surface tension and leads to the cell sorting. This directional cell migration is described by the Marangoni flux. The phenomenon has been recognized during the rearrangement of (1) epithelial cell monolayers and (2) mixed cell monolayers made by epithelial and mesenchymal cells. The consequence of the Marangoni effect is an intensive spreading of cancer cells through an epithelium. In this work, a review of existing literature about SS generation caused by CCM is given along with the assortment of published experimental findings, to invite experimentalists to test given theoretical considerations in multicellular systems.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Department of Chemical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
7
|
Rahman MH, Xiao Q, Zhao S, Wei AC, Ho YP. Extraction of Functional Mitochondria Based on Membrane Stiffness. Methods Mol Biol 2021; 2276:343-355. [PMID: 34060054 DOI: 10.1007/978-1-0716-1266-8_26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The abnormal functionality of mitochondria has been linked to many life-threatening diseases such as cancers, failure of cardiovascular functions, and neurodegenerative disorders. Therefore, in vitro analysis of mitochondria has garnered great interest for understanding the mechanism of mitochondrial dysfunction-related disease development and therapeutics. However, due to the intrinsic heterogeneity of cell membrane stiffness, it remains challenging to standardize the protocols for the extraction of mitochondria and adequate disruption of the cellular membrane while retaining the functionality of mitochondria. We have previously developed a microfluidics-based cell shredder capable of serving the purpose. In this protocol, we describe the step-by-step procedures to empirically identify the threshold shear stress using this microfluidics-based cell shredder for mitochondrial extraction. The optimal shear stress to disrupt human embryonic kidney cell (HEK 293) and mice muscle cell (C2C12) has been characterized at around 16.4 Pa, whereas cell lines with stiffer membrane stiffness, for example, neuroblastoma cells (SH-SY5Y), require 27.4 Pa to effectively lyse the cells. This protocol also provides detailed procedures to determine the quality of extracted mitochondria based on the membrane potential and the integrity of extracted mitochondria. A comparison with the widely employed Dounce homogenizer has shown that the proposed microscale cell shredder can yield at least 40% more functional mitochondria and retain higher integrity regarding extracted mitochondria than the counterparts extracted from Dounce homogenizer, especially for low cell concentrations (5-20 × 104 cells/mL) and small sample volume (<200 μL).
Collapse
Affiliation(s)
- Md Habibur Rahman
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qinru Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shirui Zhao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yi-Ping Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Centre for Novel Biomaterials, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Shun Hing Institute of Advanced Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Ministry of Education Key Laboratory of Regeneration Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
8
|
Lin YT, Chen ST, Chang JC, Teoh RJ, Liu CS, Wang GJ. Green extraction of healthy and additive free mitochondria with a conventional centrifuge. LAB ON A CHIP 2019; 19:3862-3869. [PMID: 31625549 DOI: 10.1039/c9lc00633h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this research, we propose a novel centrifugal device for the massive extraction of healthy mitochondria with a centrifuge used in general laboratories within 30 minutes. The device mainly consists of two key components. One component is a microfluidic device, which is fabricated by photolithography, nickel electroforming, and polydimethylsiloxane casting, for the efficient disruption of the cell membrane. The other component is a stainless steel container, which is manufactured by computer numerical control machining, for the storage of the cell suspension. After assembly, the appropriate number of cells is pushed through the microfluidic device for cell membrane disruption by centrifugal force generated by a general laboratory centrifuge. The solution which contains cell debris and mitochondria are collected to purify the crude mitochondria via differential centrifugation. Compared with the quantity and efficiency of mitochondria isolated from the same number of cells using a conventional kit, device-extracted mitochondria show a more complete mitochondrial electron transport chain complex and a similar number of mitochondria verified by Western blot analysis of mitochondrial complexes I-V and mitochondrial outer membrane protein Tom20, respectively, as well as a normal mitochondrial structure revealed by transmission electron microscopy. Moreover, the mitochondrial membrane potential of device-extracted mitochondria stained with tetramethylrhodamine ethyl ester is higher than that of kit-extracted mitochondria. Furthermore, the coculture of device-extracted mitochondria with fibroblasts revealed that fibroblasts could uptake foreign mitochondria through endocytosis without drug treatment. These results show that the proposed microfluidic device preserves mitochondrial protein structure, membrane integrity, and membrane potential within 30 minutes of extraction and is a useful tool for therapeutic mitochondrial transplantation and regenerative medicine.
Collapse
Affiliation(s)
- Ying-Ting Lin
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan. and Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Sung-Tzu Chen
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Jui-Chih Chang
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Ren-Jie Teoh
- Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| | - Chin-San Liu
- Vascular and Genomic Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Gou-Jen Wang
- Graduate Institute of Biomedical Engineering, National Chung-Hsing University, Taichung, Taiwan. and Program in Tissue Engineering and Regenerative Medicine, National Chung-Hsing University, Taichung, Taiwan and Department of Mechanical Engineering, National Chung-Hsing University, Taichung, Taiwan
| |
Collapse
|