1
|
Zhang Y, Huang C, Xiong R. Advanced materials for intracellular delivery of plant cells: Strategies, mechanisms and applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2024; 160:100821. [DOI: 10.1016/j.mser.2024.100821] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Dou J, Yang Z, Singh B, Ma B, Lu Z, Xu J, He Y. Discussion: Embracing microfluidics to advance environmental science and technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173597. [PMID: 38810741 DOI: 10.1016/j.scitotenv.2024.173597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Microfluidics, also called lab-on-a-chip, represents an emerging research platform that permits more precise and manipulation of samples at the microscale or even down to the nanoscale (nanofluidic) including picoliter droplets, microparticles, and microbes within miniaturized and highly integrated devices. This groundbreaking technology has made significant strides across multiple disciplines by providing an unprecedented view of physical, chemical, and biological events, fostering a holistic and an in-depth understanding of complex systems. The application of microfluidics to address the challenges in environmental science is likely to contribute to our better understanding, however, it's not yet fully developed. To raise researchers' interest, this discussion first delineates the valuable and underutilized environmental applications of microfluidic technology, ranging from environmental surveillance to acting as microreactors for investigating interfacial dynamic processes, and facilitating high-throughput bioassays. We highlight, with examples, how rationally designed microfluidic devices lead to new insights into the advancement of environmental science and technology. We then critically review the key challenges that hinder the practical adoption of microfluidic technologies. Specifically, we discuss the extent to which microfluidics accurately reflect realistic environmental scenarios, outline the areas to be improved, and propose strategies to overcome bottlenecks that impede the broad application of microfluidics. We also envision new opportunities and future research directions, aiming to provide guidelines for the broader utilization of microfluidics in environmental studies.
Collapse
Affiliation(s)
- Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Baljit Singh
- MiCRA Biodiagnostics Technology Gateway and Health, Engineering & Materials Science (HEMS) Research Hub, Technological University Dublin (TU Dublin), Dublin D24 FKT9, Ireland
| | - Bin Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
3
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
4
|
Jiao D, Zhang R, Zhang H, Ma H, Zhang X, Fan X, Chang H. Rapid detection of glycosylated hemoglobin levels by a microchip liquid chromatography system in gradient elution mode. Anal Chim Acta 2024; 1288:342186. [PMID: 38220313 DOI: 10.1016/j.aca.2023.342186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The determination of glycosylated hemoglobin (HbA1c) is crucial for diabetes diagnosis and can provide more substantial results than the simple measurement of glycemia. While there is a lack of simple methods for the determination of HbA1c using a point-of-care test (POCT) compared to glycemia measurement. In particular, high-performance liquid chromatography (HPLC) is considered the current gold standard for determining HbA1c levels. However, commercial HPLC systems usually have some sort of disadvantages such as bulky size, high-cost and need for qualified operators. Therefore, there is an urgent demand to develop a portable, and fast HbA1c detection system consuming fewer reagents. RESULTS We present a novel microchip that integrates a micromixer, passive injector, packed column and detection cell. The integrated microchip, in which all the microstructures were formed in the CNC machining center through micro-milling, is small in size (30 mm × 70 mm × 10 mm), and can withstand 1600 psi of liquid pressure. The integrated design is beneficial to reduce the band broadening caused by dead volume. Based on the microchip, a microchip liquid chromatography (LC) system was built and applied to the analysis of HbA1c. The separation conditions of HbA1c in blood calibrator samples were optimized using the microchip LC system. Samples containing four levels of HbA1c were completely separated within 2 min in optimal gradient conditions, with an inaccuracy (<3.2 %), a coefficient of variation (c.v. < 2.1 %) and a correlation coefficient (R2 = 0.993), indicating excellent separation efficiency and reproducibility. SIGNIFICANCE The POCT of HbA1c is critical for diabetes diagnosis. The microchip chromatography system was developed for HbA1c determination, which contains an integrated microchip and works under a gradient elution. It surpasses existing chip technology in terms of separation performance and detection speed, providing a competitive advantage for POCT of HbA1c. It is considered one important step for realizing efficient portable systems for timely and accurate diabetes diagnosis.
Collapse
Affiliation(s)
- Dezhao Jiao
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruirong Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Hantian Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haoquan Ma
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaorui Zhang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xiaoguang Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Honglong Chang
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
5
|
Li Z, Liu H, Wang D, Zhang M, Yang Y, Ren TL. Recent advances in microfluidic sensors for nutrients detection in water. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
He Y, Huang Q, He Y, Ji H, Zhang T, Wang B, Huang Z. A Low Excitation Working Frequency Capacitively Coupled Contactless Conductivity Detection (C 4D) Sensor for Microfluidic Devices. SENSORS 2021; 21:s21196381. [PMID: 34640701 PMCID: PMC8512373 DOI: 10.3390/s21196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 11/16/2022]
Abstract
In this work, a new capacitively coupled contactless conductivity detection (C4D) sensor for microfluidic devices is developed. By introducing an LC circuit, the working frequency of the new C4D sensor can be lowered by the adjustments of the inductor and the capacitance of the LC circuit. The limits of detection (LODs) of the new C4D sensor for conductivity/ion concentration measurement can be improved. Conductivity measurement experiments with KCl solutions were carried out in microfluidic devices (500 µm × 50 µm). The experimental results indicate that the developed C4D sensor can realize the conductivity measurement with low working frequency (less than 50 kHz). The LOD of the C4D sensor for conductivity measurement is estimated to be 2.2 µS/cm. Furthermore, to show the effectiveness of the new C4D sensor for the concentration measurement of other ions (solutions), SO42− and Li+ ion concentration measurement experiments were also carried out at a working frequency of 29.70 kHz. The experimental results show that at low concentrations, the input-output characteristics of the C4D sensor for SO42− and Li+ ion concentration measurement show good linearity with the LODs estimated to be 8.2 µM and 19.0 µM, respectively.
Collapse
Affiliation(s)
| | | | | | - Haifeng Ji
- Correspondence: ; Tel.: +86-571-8795-2145
| | | | | | | |
Collapse
|