1
|
Pai P, Nirmal A, Mathias L, Jain S, Shetty MG, Sundara BK. Molecular Mutations in Histiocytosis: A Comprehensive Survey of Genetic Alterations. Mol Biotechnol 2025; 67:438-455. [PMID: 38376733 PMCID: PMC11711569 DOI: 10.1007/s12033-024-01072-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/07/2024] [Indexed: 02/21/2024]
Abstract
Histiocytosis represents a group of uncommon disorders characterized by the abnormal accumulation of specialized immune cells, such as macrophages, dendritic cells, or monocyte-derived cells, in various tissues and organs. Over 100 distinct subtypes have been documented, each displaying a broad spectrum of clinical presentations and histological characteristics. Till today, histiocytosis has been addressed through a combination of chemotherapy, radiotherapy, and surgery, with varying responses from individual patients. Due to its atypical symptoms, it has been prone to misdiagnosis. Advances in our understanding of the cellular and molecular aspects of these conditions are paving the way for improved diagnostic methods and targeted therapies. Researchers have extensively investigated various mutations in patient samples. However, no paper has yet provided a comprehensive summary of the collective analysis of mutations and pathways. Hence, this paper consolidates research efforts that specifically concentrate on gene mutations identified in patient samples of different subtypes of histiocytosis. These insights are essential for developing targeted therapies and improving diagnosis. Further, it provides potential insights to enhance the development of more effective therapeutic approaches for rare diseases.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Arnav Nirmal
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Lian Mathias
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Siya Jain
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Babitha Kampa Sundara
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Sakai Y, Ikawa Y, Takenaka M, Noguchi K, Fujiki T, Ikeda H, Wada T. Histopathological maturation in juvenile xanthogranuloma: a blueberry muffin infant mimicking aleukemic leukemia cutis. Int J Hematol 2024; 119:93-98. [PMID: 37989992 DOI: 10.1007/s12185-023-03675-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
Juvenile xanthogranuloma (JXG) is usually identified by Touton giant cells, so their absence can complicate diagnosis. We encountered a case of non-typical neonatal JXG lacking Touton giant cells, which was difficult to differentiate from aleukemic leukemia cutis because of overlapping histopathological characteristics. A 1 month-old girl presented with a blueberry muffin rash and multiple 1-2 cm nodules within the subcutaneous and deeper soft tissues. Blood tests revealed pancytopenia. The initial nodule biopsy showed mononuclear cell infiltration, suggestive of mature monocytes or histiocytes, but no Touton giant cells. Bone marrow examination showed no evidence of leukemia. Despite worsening of the rash, pancytopenia, and weight gain over the following month, the results of the second biopsy remained consistent with the initial findings. Consequently, we provisionally diagnosed aleukemic leukemia cutis and initiated chemotherapy. After two courses of chemotherapy, the pancytopenia improved, but the nodules only partially regressed. A third biopsy of the nodule was performed to evaluate the histological response, and revealed Touton giant cells, confirming the diagnosis of JXG. In conclusion, distinguishing non-typical JXG from aleukemic leukemia cutis is challenging. This case highlights the importance of multiple biopsies and the potential for histopathological maturation.
Collapse
Affiliation(s)
- Yuta Sakai
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Yasuhiro Ikawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan.
| | - Mika Takenaka
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Kazuhiro Noguchi
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Toshihiro Fujiki
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| | - Hiroko Ikeda
- Department of Diagnostic Pathology, Kanazawa University Hospital, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 13-1 Takara-Machi, Kanazawa, Ishikawa, 920-8641, Japan
| |
Collapse
|
3
|
Samborska I, Maievskyi O, Podzihun L, Lavrynenko V. Features of immune reactivity of the spleen and mechanisms of organ damage under the influence of animal venom toxins including scorpions (review). WIADOMOSCI LEKARSKIE (WARSAW, POLAND : 1960) 2024; 77:120-125. [PMID: 38431816 DOI: 10.36740/wlek202401115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
OBJECTIVE Aim: To establish features of immune reactivity of the spleen and mechanisms of organ damage under the influence of animal venom toxins including scorpions. PATIENTS AND METHODS Materials and Methods: A thorough literature analysis was conducted on the basis of PubMed, Google Scholar, Web of Science, and Scopus databases. When processing the search results, we chose the newest publications up to 5 years old or the most thorough publications that vividly described the essence of our topic. CONCLUSION Conclusions: Spleen plays a leading role in the implementation of the body's defense processes, the elimination of structural elements affected by toxins, and the restoration of immune homeostasis. Its participation in the formation of the immune response can be accompanied by qualitative and quantitative changes in histological organization. Morpho-functional changes in the spleen under the action of animal venom toxins currently require careful study, because from the information available in the literature today, it is not possible to clearly construct a complete picture of lesions of certain components of the organ at the microscopic or submicroscopic levels. Therefore, this direction of research in the medical field is currently relevant, taking into account the existence of a large number of poisonous animals, including scorpions.
Collapse
Affiliation(s)
- Inha Samborska
- NATIONAL PIROGOV MEMORIAL MEDICAL UNIVERSITY, VINNYTSIA, UKRAINE
| | - Oleksandr Maievskyi
- EDUCATIONAL AND SCIENTIFIC CENTER "INSTITUTE OF BIOLOGY AND MEDICINE" OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV, KYIV, UKRAINE
| | | | - Victoriia Lavrynenko
- EDUCATIONAL AND SCIENTIFIC CENTER "INSTITUTE OF BIOLOGY AND MEDICINE" OF TARAS SHEVCHENKO NATIONAL UNIVERSITY OF KYIV, KYIV, UKRAINE
| |
Collapse
|
4
|
Ravindran A, Dasari S, Ruan GJ, Artymiuk CJ, He R, Viswanatha DS, Abeykoon JP, Zanwar S, Young JR, Goyal G, Go RS, Rech KL. Malignant Histiocytosis Comprises a Phenotypic Spectrum That Parallels the Lineage Differentiation of Monocytes, Macrophages, Dendritic Cells, and Langerhans Cells. Mod Pathol 2023; 36:100268. [PMID: 37406859 DOI: 10.1016/j.modpat.2023.100268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Malignant histiocytoses (MHs), or the 'M group' of the Histiocyte Society classification, are characterized by neoplastic histiocytes with large pleomorphic nuclei. MH encompasses the diagnoses of histiocytic sarcoma, interdigitating dendritic cell sarcoma, and Langerhans cell sarcoma. We aimed to define the phenotypic spectrum of MH and examine the genotypic features across this spectrum. Using immunohistochemistry, we arranged the 22 cases into 4 subtypes that correspond to the lines of differentiation from monocytic and dendritic cell precursors as follows: (1) macrophage (n = 5): CD68+, CD163+, CD14+, and Factor 13a+; (2) monocyte-macrophage (n = 5): CD68+, CD163+, CD14+, S100+, and OCT2+; (3) dendritic cell (n = 6): CD68+, CD11c+, S100+, lysozyme+, ZBTB46+, and CD1a/langerin < 5%; and (4) Langerhans cell (n = 6): CD68+, CD11c+, S100+, ZBTB46+, CD1a+, and langerin+. The phenotypic subtypes align with those seen in low-grade histiocytic neoplasms as follows: MH-macrophage type correlates with Erdheim-Chester disease phenotype; MH-monocyte-macrophage type with Rosai-Dorfman disease phenotype, and MH-Langerhans cell type with Langerhans cell histiocytosis. Activating mutations in MAPK-pathway genes were identified in 80% of MH cases; 29% had mutations in the PI3k-AKT-mTOR pathway and 59% had mutations in epigenetic modulating genes. Strong expression of cyclin D1 was present in all cases, whereas p-ERK and p-AKT were not uniformly expressed. Eight of 22 (36%) MH cases were proven to be clonally related to a prior B-cell lymphoma. Defining the phenotypic spectrum of MH provides a guide to diagnosis and allows further exploration into the potential biological and clinical significance.
Collapse
Affiliation(s)
- Aishwarya Ravindran
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota; Division of Laboratory Medicine-Hematopathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Surendra Dasari
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota
| | - Gordon J Ruan
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Cody J Artymiuk
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Rong He
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - David S Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Jithma P Abeykoon
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Saurabh Zanwar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Jason R Young
- Department of Radiology, Mayo Clinic, Jacksonville, Florida
| | - Gaurav Goyal
- Division of Hematology-Medical Oncology, The University of Alabama at Birmingham, Birmingham, Alabama; Research Collaborator (limited tenure), Mayo Clinic, Rochester, Minnesota
| | - Ronald S Go
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Karen L Rech
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
5
|
Obesity-Associated Differentially Methylated Regions in Colon Cancer. J Pers Med 2022; 12:jpm12050660. [PMID: 35629083 PMCID: PMC9142939 DOI: 10.3390/jpm12050660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/11/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity with adiposity is a common disorder in modern days, influenced by environmental factors such as eating and lifestyle habits and affecting the epigenetics of adipose-based gene regulations and metabolic pathways in colorectal cancer (CRC). We compared epigenetic changes of differentially methylated regions (DMR) of genes in colon tissues of 225 colon cancer cases (154 non-obese and 71 obese) and 15 healthy non-obese controls by accessing The Cancer Genome Atlas (TCGA) data. We applied machine-learning-based analytics including generalized regression (GR) as a confirmatory validation model to identify the factors that could contribute to DMRs impacting colon cancer to enhance prediction accuracy. We found that age was a significant predictor in obese cancer patients, both alone (p = 0.003) and interacting with hypomethylated DMRs of ZBTB46, a tumor suppressor gene (p = 0.008). DMRs of three additional genes: HIST1H3I (p = 0.001), an oncogene with a hypomethylated DMR in the promoter region; SRGAP2C (p = 0.006), a tumor suppressor gene with a hypermethylated DMR in the promoter region; and NFATC4 (p = 0.006), an adipocyte differentiating oncogene with a hypermethylated DMR in an intron region, are also significant predictors of cancer in obese patients, independent of age. The genes affected by these DMR could be potential novel biomarkers of colon cancer in obese patients for cancer prevention and progression.
Collapse
|
6
|
Borowska D, Sives S, Vervelde L, Sutton KM. Chicken CSF2 and IL-4-, and CSF2-dependent bone marrow cultures differentiate into macrophages over time. Front Immunol 2022; 13:1064084. [PMID: 36618373 PMCID: PMC9812659 DOI: 10.3389/fimmu.2022.1064084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Chicken bone marrow-derived macrophages (BMMΦ) and dendritic cells (BMDC) are utilized as models to study the mononuclear phagocytic system (MPS). A widely used method to generate macrophages and DC in vitro is to culture bone marrow cells in the presence of colony-stimulating factor-1 (CSF1) to differentiate BMMΦ and granulocyte-macrophage-CSF (GM-CSF, CSF2) and interleukin-4 (IL-4) to differentiate BMDC, while CSF2 alone can lead to the development of granulocyte-macrophage-CSF-derived DC (GMDC). However, in chickens, the MPS cell lineages and their functions represented by these cultures are poorly understood. Here, we decipher the phenotypical, functional and transcriptional differences between chicken BMMΦ and BMDC along with examining differences in DC cultures grown in the absence of IL-4 on days 2, 4, 6 and 8 of culture. BMMΦ cultures develop into a morphologically homogenous cell population in contrast to the BMDC and GMDC cultures, which produce morphologically heterogeneous cell cultures. At a phenotypical level, all cultures contained similar cell percentages and expression levels of MHCII, CD11c and CSF1R-transgene, whilst MRC1L-B expression decreased over time in BMMΦ. All cultures were efficiently able to uptake 0.5 µm beads, but poorly phagocytosed 1 µm beads. Little difference was observed in the kinetics of phagosomal acidification across the cultures on each day of analysis. Temporal transcriptomic analysis indicated that all cultures expressed high levels of CSF3R, MERTK, SEPP1, SPI1 and TLR4, genes associated with macrophages in mammals. In contrast, low levels of FLT3, XCR1 and CAMD1, genes associated with DC, were expressed at day 2 in BMDC and GMDC after which expression levels decreased. Collectively, chicken CSF2 + IL-4- and CSF2-dependent BM cultures represent cells of the macrophage lineage rather than inducing conventional DC.
Collapse
Affiliation(s)
- Dominika Borowska
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Samantha Sives
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Lonneke Vervelde
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kate M Sutton
- The Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
7
|
Doglioni C. Rosai-Dorfman disease. A legacy of Professor Rosai that is still not exploited completely. Pathologica 2021; 113:388-395. [PMID: 34837097 PMCID: PMC8720407 DOI: 10.32074/1591-951x-548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Rosai-Dorfman disease (RDD) is a rare form of non-Langerhans cell histiocytosis described by Rosai and Dorfman in 1969. It is a fascinating disease characterized by accumulation of large, pale histiocytes, frequently showing the emperipolesis phenomenon. The variety of pathological aspects and the spectrum of different clinical forms were deeply investigated by Prof. Rosai. Despite recent advancements in the dissection of pathogenetic mechanisms of RDD, with the identification of gene mutations in the MAP kinase pathway, several biological and clinical aspects of this disease remains to be elucidated: this is one of the Prof. Rosai's legacies.
Collapse
|
8
|
Wen S, Wei H, Liao Q, Li M, Zhong S, Cheng Y, Huang W, Wang D, Shu Y. Identification of Two Novel Candidate Genetic Variants Associated With the Responsiveness to Influenza Vaccination. Front Immunol 2021; 12:664024. [PMID: 34276655 PMCID: PMC8281270 DOI: 10.3389/fimmu.2021.664024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Annual vaccination is the most effective prevention of influenza infection. Up to now, a series of studies have demonstrated the role of genetic variants in regulating the antibody response to influenza vaccine. However, among the Chinese population, the relationship between genetic factors and the responsiveness to influenza vaccination has not been clarified through genome-wide association study (GWAS). Method A total of 1,968 healthy volunteers of Chinese descent were recruited and 1,582 of them were available for the subsequent two-stage analysis. In the discovery stage, according to our inclusion criteria, 123 of 1,582 subjects were selected as group 1 and received whole-genome sequencing to identify potential variants and genes. In the verification stage, 29 candidate variants identified by GWAS were selected for further validation in 481 subjects in group 2. Besides, we also analyzed nine variants from previously published reports in our study. Results Multivariate logistic regression analysis showed that compared with the TT genotype of ZBTB46 rs2281929, the TC + CC genotype was associated with a lower risk of low responsiveness to influenza vaccination adjusted for gender and age (Group 2: P = 7.75E-05, OR = 0.466, 95%CI = 0.319–0.680; Combined group: P = 1.18E-06, OR = 0.423, 95%CI = 0.299–0.599). In the combined group, IQGAP2 rs2455230 GC + CC genotype was correlated with a lower risk of low responsiveness to influenza vaccination compared with the GG genotype (P = 8.90E-04, OR = 0.535, 95%CI = 0.370–0.774), but the difference was not statistically significant in group 2 (P = 0.008). The antibody fold rises of subjects with ZBTB46 rs2281929 TT genotype against H1N1, H3N2,and B were all significantly lower than that of subjects with TC + CC genotype (P < 0.001). Compared with IQGAP2 rs2455230 GC + CC carriers, GG carriers had lower antibody fold rises to H1N1 (P = 0.001) and B (P = 0.032). The GG genotype of rs2455230 tended to be correlated with lower antibody fold rises (P = 0.096) against H3N2, but the difference was not statistically significant. No correlation was found between nine SNPs from previously published reports and the serological response to influenza vaccine in our study. Conclusion Our study identified two novel candidate missense variants, ZBTB46 rs2281929 and IQGAP2 rs2455230, were associated with the immune response to influenza vaccination among the Chinese population. Identifying these variants will provide more evidence for future research and improve the individualized influenza vaccination program.
Collapse
Affiliation(s)
- Simin Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Mao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shuyi Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yanhui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Multiple Papules on an Elderly Man: Answer. Am J Dermatopathol 2020; 42:299-300. [PMID: 32205513 DOI: 10.1097/dad.0000000000001328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Christofi M, Le Sommer S, Mölzer C, Klaska IP, Kuffova L, Forrester JV. Low-dose 2-deoxy glucose stabilises tolerogenic dendritic cells and generates potent in vivo immunosuppressive effects. Cell Mol Life Sci 2020; 78:2857-2876. [PMID: 33074350 PMCID: PMC8004500 DOI: 10.1007/s00018-020-03672-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/04/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
Cell therapies for autoimmune diseases using tolerogenic dendritic cells (tolDC) have been promisingly explored. A major stumbling block has been generating stable tolDC, with low risk of converting to mature immunogenic DC (mDC), exacerbating disease. mDC induction involves a metabolic shift to lactate production from oxidative phosphorylation (OXPHOS) and β-oxidation, the homeostatic energy source for resting DC. Inhibition of glycolysis through the administration of 2-deoxy glucose (2-DG) has been shown to prevent autoimmune disease experimentally but is not clinically feasible. We show here that treatment of mouse bone marrow-derived tolDC ex vivo with low-dose 2-DG (2.5 mM) (2-DGtolDC) induces a stable tolerogenic phenotype demonstrated by their failure to engage lactate production when challenged with mycobacterial antigen (Mtb). ~ 15% of 2-DGtolDC express low levels of MHC class II and 30% express CD86, while they are negative for CD40. 2-DGtolDC also express increased immune checkpoint molecules PDL-1 and SIRP-1α. Antigen-specific T cell proliferation is reduced in response to 2-DGtolDC in vitro. Mtb-stimulated 2-DGtolDC do not engage aerobic glycolysis but respond to challenge via increased OXPHOS. They also have decreased levels of p65 phosphorylation, with increased phosphorylation of the non-canonical p100 pathway. A stable tolDC phenotype is associated with sustained SIRP-1α phosphorylation and p85-AKT and PI3K signalling inhibition. Further, 2-DGtolDC preferentially secrete IL-10 rather than IL-12 upon Mtb-stimulation. Importantly, a single subcutaneous administration of 2-DGtolDC prevented experimental autoimmune uveoretinitis (EAU) in vivo. Inhibiting glycolysis of autologous tolDC prior to transfer may be a useful approach to providing stable tolDC therapy for autoimmune/immune-mediated diseases.
Collapse
Affiliation(s)
- M Christofi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - S Le Sommer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - C Mölzer
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.
| | - I P Klaska
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK
| | - L Kuffova
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK.,Eye Clinic, Aberdeen Royal Infirmary, Aberdeen, Scotland, UK
| | - J V Forrester
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, Foresterhill, University of Aberdeen, Aberdeen, AB25 2ZD, Scotland, UK. .,Ocular Immunology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA, Australia. .,Centre for Experimental Immunology, Lions Eye Institute, Nedlands, WA, Australia.
| |
Collapse
|
11
|
Zinc finger and BTB domain-containing protein 46 is essential for survival and proliferation of acute myeloid leukemia cell line but dispensable for normal hematopoiesis. Chin Med J (Engl) 2020; 133:1688-1695. [PMID: 32604177 PMCID: PMC7401791 DOI: 10.1097/cm9.0000000000000878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Supplemental Digital Content is available in the text Background Zinc finger and BTB domain-containing protein 46 (Zbtb46) is a transcription factor identified in classical dendritic cells, and maintains dendritic cell quiescence in a steady state. Zbtb46 has been reported to be a negative indicator of acute myeloid leukemia (AML). We found that Zbtb46 was expressed at a relatively higher level in hematopoietic stem and progenitor cells (HSPCs) compared to mature cells, and higher in AML cells compared to normal bone marrow (BM) cells. However, the role of Zbtb46 in HSPCs and AML cells remains unclear. Therefore, we sought to elucidate the effect of Zbtb46 in normal hematopoiesis and AML cells. Methods We generated Zbtb46fl/fl and Zbtb46fl/flMx1-Cre mice. The deletion of Zbtb46 in Zbtb46fl/flMx1-Cre mice was induced by intraperitoneal injection of double-stranded poly (I). poly (C) (poly(I:C)), and referred as Zbtb46 cKO. After confirming the deletion of Zbtb46, the frequency and numbers of HSPCs and mature blood cells were analyzed by flow cytometry. Serial intraperitoneal injection of 5-fluorouracil was administrated to determine the repopulation ability of HSCs from Zbtb46fl/fl and Zbtb46 cKO mice. The correlation between Zbtb46 expression and prognosis was analyzed using the data from the Cancer Genome Atlas. To investigate the role of Zbtb46 in AML cells, we knocked down the expression of Zbtb46 in THP-1 cells using lentiviral vectors expressing small hairpin RNAs targeting Zbtb46. Cell proliferation rate was determined by cell count assay. Cell apoptosis and bromodeoxyuridine incorporation were determined by flow cytometry. Results The percentages and absolute numbers of HSPCs and mature blood cells were comparable in Zbtb46 cKO mice and its Zbtb46fl/fl littermates (Zbtb46fl/flvs. Zbtb46 cKO, HPC: 801,310 ± 84,282 vs. 907,202 ± 97,403, t = 0.82, P = 0.46; LSK: 86,895 ± 7802 vs. 102,210 ± 5025, t = 1.65, P = 0.17; HSC: 19,753 ± 3116 vs. 17,608 ± 3508, t = 0.46, P = 0.67). The repopulation ability of HSCs from Zbtb46fl/flMx1-Cre mice was similar to those from Zbtb46fl/fl control (P = 0.26). Zbtb46 had elevated expression in AML cells compared to total BM cells from normal control. Knockdown of Zbtb46 in THP-1 cells led to a significant increase in cell apoptosis and reduced cell growth and proliferation. Conclusion Collectively, our data indicate that Zbtb46 is essential for survival and proliferation of AML cells, but dispensable for normal hematopoiesis.
Collapse
|