1
|
Clément AE, Merdrignac C, Puiggros SR, Sévère D, Brionne A, Lafond T, Nguyen T, Montfort J, Guyomar C, Dauvé A, Herpin A, Jabaudon D, Colson V, Murat F, Bobe J. Parent-of-origin regulation by maternal auts2 shapes neurodevelopment and behavior in fish. Genome Biol 2025; 26:125. [PMID: 40346605 PMCID: PMC12063280 DOI: 10.1186/s13059-025-03600-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND Parental experience can influence progeny behavior through gamete-mediated non-genetic inheritance, that is, mechanisms that do not involve changes in inherited DNA sequence. However, underlying mechanisms remain poorly understood in vertebrates, especially for maternal effects. Here, we use the medaka, a model fish species, to investigate the role of auts2a, the ortholog of human AUTS2, a gene repressed in the fish oocyte following maternal stress and associated with neurodevelopmental disorders. RESULTS We show that auts2a expression in the oocyte influences long-term progeny behavior, including anxiety-like behavior and environment recognition capabilities. Using single-nuclei RNA-sequencing, we reveal that maternal auts2a influences gene expression in neural cell populations during neurodevelopment. We also show that maternal auts2a knock-out triggers differences in maternally inherited factors, including early embryonic transcriptional and post-transcriptional regulators. CONCLUSIONS Together, our results reveal the unsuspected role of an autism-related gene expressed in the mother's oocyte in shaping progeny neurodevelopment and behavior. Finally, we report that auts2a/AUTS2 is part of a group of evolutionarily conserved genes associated with human neurodevelopmental disorders and expressed in oocytes across species, from fish to mammals. These findings raise important questions about their potential role in the non-genetic regulation of progeny neurodevelopment and behavior in vertebrates.
Collapse
Affiliation(s)
| | | | - Sergi Roig Puiggros
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Dorine Sévère
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Aurélien Brionne
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thomas Lafond
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Thaovi Nguyen
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Jérôme Montfort
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Cervin Guyomar
- Sigenae, GenPhySE, INRAE, ENVT, Université de Toulouse, Toulouse, Castanet Tolosan, France
| | - Alexandra Dauvé
- MGX-Montpellier GenomiX, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Amaury Herpin
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Denis Jabaudon
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Violaine Colson
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Florent Murat
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France
| | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics Institute, Rennes, France.
| |
Collapse
|
2
|
Shimaoka K, Hori K, Miyashita S, Inoue YU, Tabe NKN, Sakamoto A, Hasegawa I, Nishitani K, Yamashiro K, Egusa SF, Tatsumoto S, Go Y, Abe M, Sakimura K, Inoue T, Imamura T, Hoshino M. The microcephaly-associated transcriptional regulator AUTS2 cooperates with Polycomb complex PRC2 to produce upper-layer neurons in mice. EMBO J 2025; 44:1354-1378. [PMID: 39815005 PMCID: PMC11876313 DOI: 10.1038/s44318-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 01/18/2025] Open
Abstract
AUTS2 syndrome is characterized by intellectual disability and microcephaly, and is often associated with autism spectrum disorder, but the underlying mechanisms, particularly concerning microcephaly, remain incompletely understood. Here, we analyze mice mutated for the transcriptional regulator AUTS2, which recapitulate microcephaly. Their brains exhibit reduced division of intermediate progenitor cells (IPCs), leading to fewer neurons and decreased thickness in the upper-layer cortex. Increased expression of the AUTS2 transcriptional target Robo1 in the mutant animals suppresses IPC division, and transcriptomic and chromatin profiling shows that AUTS2 primarily represses transcription of genes like Robo1 in IPCs. Regions around the transcriptional start sites of AUTS2 target genes are enriched for the repressive histone modification H3K27me3, which is reduced in Auts2 mutants. Furthermore, we find that AUTS2 interacts with Polycomb complex PRC2, with which it cooperates to promote IPC division. These findings shed light on the microcephaly phenotype observed in the AUTS2 syndrome.
Collapse
Affiliation(s)
- Kazumi Shimaoka
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kei Hori
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Yukiko U Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Nao K N Tabe
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan
| | - Asami Sakamoto
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Ikuko Hasegawa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kayo Nishitani
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Kunihiko Yamashiro
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Saki F Egusa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Department of System Neuroscience, Division of Behavioral Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
- Graduate School of Information Science, University of Hyogo, Kobe, Hyogo, 650-0047, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Takayoshi Inoue
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan
| | - Takuya Imamura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, 739-8526, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo, 187-8502, Japan.
- Department of NCNP Brain Physiology and Pathology, Institute of Science Tokyo, Tokyo, 113-8510, Japan.
| |
Collapse
|
3
|
Loberti L, Adamo L, Antolini E, Casamassima G, Destrèe A, Brunetti-Pierri N, Genevieve D, Christophe P, Coubes C, Van Esch H, Herget T, Kortüm F, Lisfeld J, Möllring AC, Zenker M, Levy J, Perrin L, Tabet AC, Maruani A, Sorlin A, Stieber D, Herissant L, Dahan K, Sinibaldi L, Capolino R, Dentici ML, Dallapiccola B, Novelli A, Garavelli L, Caraffi SG, Piatelli G, Valenzuela I, Digilio MC, Caumes R, Knopp C, Chwiałkowska K, Jezela-Stanek A, Kwasniewski M, Korotko U, Gorzałczyńska E, Canitano R, Grosso S, Rahikkala E, Mattern L, Elbracht M, Zuffardi O, Caputo V, Toschi B, Beunders G, Leeuwen L, Elting MW, van der Laan L, Broekema MF, Groffen AJ, van de Kamp JM, van Haelst MM, Alders M, Mauro SP, De Razza F, Varvara D, Kick J, Gaspar H, Braun D, Lausberg E, Maier A, Ruault V, Genesio R, Tartaglia M, Tita R, Bruttini M, Longo I, Baldassarri M, Mencarelli MA, Renieri A, Pinto AM. AUTS2-related syndrome: Insights from a large European cohort. Genet Med 2025; 27:101375. [PMID: 39953909 DOI: 10.1016/j.gim.2025.101375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/17/2025] Open
Abstract
PURPOSE AUTS2-related syndrome is characterized by developmental delay, autism spectrum disorder, and intellectual disability. From alternative promoters, AUTS2 encodes 2 distinct long and short isoforms encoding a putative transcriptional activator. METHODS Through a European collaborative study, we collected clinical and genotype data on the largest AUTS2-related syndrome cohort of 58 patients harboring genomic rearrangements or single-nucleotide variants (SNVs). RESULTS Pathogenic SNVs were recurrently found in individuals from different countries, suggesting mutational hotspots. Independent of the underlying defect at the AUTS2 locus, we observed that autistic behavior, hyperactivity, learning difficulties, and speech delay are common features of AUTS2-related syndrome. Among patients with SNVs, individuals carrying pathogenic variants affecting both longer and shorter AUTS2 transcripts showed a recognizable phenotype with microcephaly, brachycephaly, microretrognathia, broad nasal base, and anteverted nares. Behavioral disorders were more common in patients with variants affecting only the longer isoform. Arthrogryposis and stiff movements were only observed in patients with SNVs. CONCLUSION This study provides a comprehensive clinical characterization of AUTS2-related syndrome, reveals few genotype-phenotype correlations, and suggests that the disruption of the 2 distinct AUTS2 transcripts has a different impact on the clinical phenotype.
Collapse
Affiliation(s)
- Lorenzo Loberti
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Loredaria Adamo
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Enrica Antolini
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Giulia Casamassima
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Anne Destrèe
- Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples "Federico II", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy; Scuola Superiore Meridionale (SSM, School of Advanced Studies), Genomics and Experimental Medicine Program, University of Naples Federico II, Naples, Italy
| | - David Genevieve
- Montpellier University and INSERM U1183, Montpellier, France; Reference Center for Malformative Syndrome and Developmental Anomalies, Clinical Genetics Unit, Montpellier University Hospital, ERN ITHACA, Montpellier, France
| | - Philippe Christophe
- Unité Fonctionnelle d'Innovation diagnostique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France; UFR Des Sciences de Santé, INSERM-Université de Bourgogne UMR1231 GAD "Génétique des Anomalies du Développement", FHU-TRANSLAD, Dijon, France
| | - Christine Coubes
- Département de Génétique Médicale, Hôpital Arnaud de Villeneuve, CHRU Montpellier, Montpellier, France
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Theresia Herget
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jasmin Lisfeld
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Martin Zenker
- Institute of Human Genetics, University Hospital, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan Levy
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Laurence Perrin
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anne-Claude Tabet
- Genetics Department, AP-HP, Robert-Debré University Hospital, Paris, France
| | - Anna Maruani
- Excellence Centre for Autism & Neuro-developmental Disorders, Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, and CRMR Déficiences intellectuelles et TND de causes rares-Robert-Debré, Paris, France
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Daniel Stieber
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Lucas Herissant
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Karin Dahan
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Lorenzo Sinibaldi
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Capolino
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Maria Lisa Dentici
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Bruno Dallapiccola
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Gianluca Piatelli
- U.O.C. Neurochirurgia, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Irene Valenzuela
- Area of Clinical and Molecular Genetics, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Maria Cristina Digilio
- Medical Genetics Unit and Scientific Rectorate and Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Karolina Chwiałkowska
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Aleksandra Jezela-Stanek
- IMAGENE.ME SA, Bialystok, Poland; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Miroslaw Kwasniewski
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | - Urszula Korotko
- IMAGENE.ME SA, Bialystok, Poland; Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Białystok, Poland
| | | | - Roberto Canitano
- Division of Child and Adolescent Neuropsychiatry, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Paediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Elisa Rahikkala
- Department of Clinical Genetics, Research Unit of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, and Oulu University Hospital, Oulu, Finland
| | - Larissa Mattern
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Valentina Caputo
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Benedetta Toschi
- Medical Genetics Unit, Oncological Department, University Hospital of Pisa, Pisa, Italy
| | - Gea Beunders
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Lisette Leeuwen
- University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Mariet W Elting
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Liselot van der Laan
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marjoleine F Broekema
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander J Groffen
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jiddeke M van de Kamp
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Mieke M van Haelst
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Marielle Alders
- Department of Human Genetics, Amsterdam Reproduction and Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Dora Varvara
- UOC Genetica Medica, Presidio Ospedaliero Vito Fazzi, Lecce, Italy
| | - Johanna Kick
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Harald Gaspar
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Dominique Braun
- Department of Human Genetics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Andrea Maier
- Department of Neurology, Medical Faculty RWTH Aachen University, Aachen, Germany
| | - Valentin Ruault
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Hôpital Arnaud de Villeneuve, CHU Montpellier, Montpellier, France
| | - Rita Genesio
- Department of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Naples, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rossella Tita
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Ilaria Longo
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Margherita Baldassarri
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | | | - Alessandra Renieri
- Medical Genetics, University of Siena, Siena, Italy; Med Biotech Hub and Competence Centre, Department of Medical Biotechnologies, University of Siena, Siena, Italy; Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Anna Maria Pinto
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy.
| |
Collapse
|
4
|
Geng Z, Tai YT, Wang Q, Gao Z. AUTS2 disruption causes neuronal differentiation defects in human cerebral organoids through hyperactivation of the WNT/β-catenin pathway. Sci Rep 2024; 14:19522. [PMID: 39174599 PMCID: PMC11341827 DOI: 10.1038/s41598-024-69912-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
Individuals with the Autism Susceptibility Candidate 2 (AUTS2) gene disruptions exhibit symptoms such as intellectual disability, microcephaly, growth retardation, and distinct skeletal and facial differences. The role of AUTS2 in neurodevelopment has been investigated using animal and embryonic stem cell models. However, the precise molecular mechanisms of how AUTS2 influences neurodevelopment, particularly in humans, are not thoroughly understood. Our study employed a 3D human cerebral organoid culture system, in combination with genetic, genomic, cellular, and molecular approaches, to investigate how AUTS2 impacts neurodevelopment through cellular signaling pathways. We used CRISPR/Cas9 technology to create AUTS2-deficient human embryonic stem cells and then generated cerebral organoids with these cells. Our transcriptomic analyses revealed that the absence of AUTS2 in cerebral organoids reduces the populations of cells committed to the neuronal lineage, resulting in an overabundance of cells with a transcription profile resembling that of choroid plexus (ChP) cells. Intriguingly, we found that AUTS2 negatively regulates the WNT/β-catenin signaling pathway, evidenced by its overactivation in AUTS2-deficient cerebral organoids and in luciferase reporter cells lacking AUTS2. Importantly, treating the AUTS2-deficient cerebral organoids with a WNT inhibitor reversed the overexpression of ChP genes and increased the downregulated neuronal gene expression. This study offers new insights into the role of AUTS2 in neurodevelopment and suggests potential targeted therapies for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State Hershey Cancer Institute, The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, USA.
| |
Collapse
|
5
|
Ryan CW, Peirent ER, Regan SL, Guxholli A, Bielas SL. H2A monoubiquitination: insights from human genetics and animal models. Hum Genet 2024; 143:511-527. [PMID: 37086328 DOI: 10.1007/s00439-023-02557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
Metazoan development arises from spatiotemporal control of gene expression, which depends on epigenetic regulators like the polycomb group proteins (PcG) that govern the chromatin landscape. PcG proteins facilitate the addition and removal of histone 2A monoubiquitination at lysine 119 (H2AK119ub1), which regulates gene expression, cell fate decisions, cell cycle progression, and DNA damage repair. Regulation of these processes by PcG proteins is necessary for proper development, as pathogenic variants in these genes are increasingly recognized to underly developmental disorders. Overlapping features of developmental syndromes associated with pathogenic variants in specific PcG genes suggest disruption of central developmental mechanisms; however, unique clinical features observed in each syndrome suggest additional non-redundant functions for each PcG gene. In this review, we describe the clinical manifestations of pathogenic PcG gene variants, review what is known about the molecular functions of these gene products during development, and interpret the clinical data to summarize the current evidence toward an understanding of the genetic and molecular mechanism.
Collapse
Affiliation(s)
- Charles W Ryan
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
- Medical Science Training Program, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Emily R Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA
| | - Samantha L Regan
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA
| | - Stephanie L Bielas
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109-5618, USA.
- Department of Human Genetics, University of Michigan Medical School, 3703 Med Sci II, 1241 E. Catherine St., Ann Arbor, MI, 48109-5618, USA.
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, 48199-5618, USA.
| |
Collapse
|
6
|
Bugara B, Durbas M, Kudrycka M, Malinowska A, Horwacik I, Rokita H. Silencing of the PHLDA1 leads to global proteome changes and differentiation pathways of human neuroblastoma cells. Front Pharmacol 2024; 15:1351536. [PMID: 38495105 PMCID: PMC10941682 DOI: 10.3389/fphar.2024.1351536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 03/19/2024] Open
Abstract
Neuroblastoma (NB) is the most common extracranial pediatric solid tumor originating from the abnormal development of cells of the sympathoadrenal lineage of the neural crest. Targeting GD2 ganglioside (GD2), a glycolipid expressed on neuroblastoma cells, with GD2 ganglioside-recognizing antibodies affects several pivotal signaling routes that drive or influence the malignant phenotype of the cells. Previously performed gene expression profiling helped us to identify the PHLDA1 (pleckstrin homology-like domain family A member 1) gene as the most upregulated gene in the IMR-32 human neuroblastoma cells treated with the mouse 14G2a monoclonal antibody. Mass spectrometry-based proteomic analyses were applied to better characterize a role of PHLDA1 protein in the response of neuroblastoma cells to chimeric ch14.18/CHO antibody. Additionally, global protein expression profile analysis in the IMR-32 cell line with PHLDA1 silencing revealed the increase in biological functions of mitochondria, accompanied by differentiation-like phenotype of the cells. Moreover, mass spectrometry analysis of the proteins co-immunoprecipitated using anti-PHLDA1-specific antibody, selected a group of possible PHLDA1 binding partners. Also, a more detailed analysis suggested that PHLDA1 interacts with the DCAF7/AUTS2 complex, a key component of neuronal differentiation in vitro. Importantly, our results indicate that PHLDA1 silencing enhances the EGF receptor signaling pathway and combinatory treatment of gefitinib and ch14.18/CHO antibodies might be beneficial for neuroblastoma patients. Data are available via ProteomeXchange with the identifier PXD044319.
Collapse
Affiliation(s)
- Beata Bugara
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Durbas
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Maja Kudrycka
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Agata Malinowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Irena Horwacik
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Hanna Rokita
- Laboratory of Molecular Genetics and Virology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
7
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin-lineage cells, generates a specific suite of brain, behavioral, and molecular pathologies. Genetics 2024; 226:iyad182. [PMID: 37816306 PMCID: PMC10763537 DOI: 10.1093/genetics/iyad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/25/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay, and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2-linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with mutations in 3' exons (exons 8-19) that disrupt both major isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2-l target genes. Furthermore, in contrast to 3' Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity and repetitive behaviors, phenotypes exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1-expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
Affiliation(s)
- Yunshu Song
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Chih-Ying Chen
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | - Amber LeBlanc
- Pacific Northwest Research Institute, Seattle WA 98122, USA
| | | | - Lisa Stubbs
- Pacific Northwest Research Institute, Seattle WA 98122, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Omelková M, Fenger CD, Murray M, Hammer TB, Pravata VM, Bartual SG, Czajewski I, Bayat A, Ferenbach AT, Stavridis MP, van Aalten DMF. An O-GlcNAc transferase pathogenic variant linked to intellectual disability affects pluripotent stem cell self-renewal. Dis Model Mech 2023; 16:dmm049132. [PMID: 37334838 PMCID: PMC10309585 DOI: 10.1242/dmm.049132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/19/2023] [Indexed: 06/21/2023] Open
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential enzyme that modifies proteins with O-GlcNAc. Inborn OGT genetic variants were recently shown to mediate a novel type of congenital disorder of glycosylation (OGT-CDG), which is characterised by X-linked intellectual disability (XLID) and developmental delay. Here, we report an OGTC921Y variant that co-segregates with XLID and epileptic seizures, and results in loss of catalytic activity. Colonies formed by mouse embryonic stem cells carrying OGTC921Y showed decreased levels of protein O-GlcNAcylation accompanied by decreased levels of Oct4 (encoded by Pou5f1), Sox2 and extracellular alkaline phosphatase (ALP), implying reduced self-renewal capacity. These data establish a link between OGT-CDG and embryonic stem cell self-renewal, providing a foundation for examining the developmental aetiology of this syndrome.
Collapse
Affiliation(s)
- Michaela Omelková
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Christina Dühring Fenger
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
- Amplexa Genetics A/S, Odense 5000, Denmark
| | - Marta Murray
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Veronica M. Pravata
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sergio Galan Bartual
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Ignacy Czajewski
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Allan Bayat
- Department of Epilepsy Genetics, Filadelfia Danish Epilepsy Centre, Dianalund 4293, Denmark
| | - Andrew T. Ferenbach
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| | - Marios P. Stavridis
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Daan M. F. van Aalten
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark
| |
Collapse
|
9
|
Song Y, Seward CH, Chen CY, LeBlanc A, Leddy AM, Stubbs L. Isolated loss of the AUTS2 long isoform, brain-wide or targeted to Calbindin -lineage cells, generates a specific suite of brain, behavioral and molecular pathologies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539486. [PMID: 37205596 PMCID: PMC10187298 DOI: 10.1101/2023.05.04.539486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rearrangements within the AUTS2 region are associated with a rare syndromic disorder with intellectual disability, developmental delay and behavioral abnormalities as core features. In addition, smaller regional variants are linked to wide range of neuropsychiatric disorders, underscoring the gene's essential role in brain development. Like many essential neurodevelopmental genes, AUTS2 is large and complex, generating distinct long (AUTS2-l) and short (AUTS2-s) protein isoforms from alternative promoters. Although evidence suggests unique isoform functions, the contributions of each isoform to specific AUTS2- linked phenotypes have not been clearly resolved. Furthermore, Auts2 is widely expressed across the developing brain, but cell populations most central to disease presentation have not been determined. In this study, we focused on the specific roles of AUTS2-l in brain development, behavior, and postnatal brain gene expression, showing that brain-wide AUTS2-l ablation leads to specific subsets of the recessive pathologies associated with C-terminal mutations that disrupt both isoforms. We identify downstream genes that could explain expressed phenotypes including hundreds of putative direct AUTS2- l target genes. Furthermore, in contrast to C-terminal Auts2 mutations which lead to dominant hypoactivity, AUTS2-l loss-of-function is associated with dominant hyperactivity, a phenotype exhibited by many human patients. Finally, we show that AUTS2-l ablation in Calbindin 1 -expressing cell lineages is sufficient to yield learning/memory deficits and hyperactivity with abnormal dentate gyrus granule cell maturation, but not other phenotypic effects. These data provide new clues to in vivo AUTS2-l functions and novel information relevant to genotype-phenotype correlations in the human AUTS2 region.
Collapse
|
10
|
Thongkorn S, Kanlayaprasit S, Kasitipradit K, Lertpeerapan P, Panjabud P, Hu VW, Jindatip D, Sarachana T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol Sex Differ 2023; 14:8. [PMID: 36803626 PMCID: PMC9940328 DOI: 10.1186/s13293-023-00496-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to susceptibility to autism spectrum disorder (ASD). Our recent studies have shown that prenatal BPA exposure disrupted ASD-related gene expression in the hippocampus, neurological functions, and behaviors associated with ASD in a sex-specific pattern. However, the molecular mechanisms underlying the effects of BPA are still unclear. METHODS Transcriptome data mining and molecular docking analyses were performed to identify ASD-related transcription factors (TFs) and their target genes underlying the sex-specific effects of prenatal BPA exposure. Gene ontology analysis was conducted to predict biological functions associated with these genes. The expression levels of ASD-related TFs and targets in the hippocampus of rat pups prenatally exposed to BPA were measured using qRT-PCR analysis. The role of the androgen receptor (AR) in BPA-mediated regulation of ASD candidate genes was investigated using a human neuronal cell line stably transfected with AR-expression or control plasmid. Synaptogenesis, which is a function associated with genes transcriptionally regulated by ASD-related TFs, was assessed using primary hippocampal neurons isolated from male and female rat pups prenatally exposed to BPA. RESULTS We found that there was a sex difference in ASD-related TFs underlying the effects of prenatal BPA exposure on the transcriptome profiles of the offspring hippocampus. In addition to the known BPA targets AR and ESR1, BPA could directly interact with novel targets (i.e., KDM5B, SMAD4, and TCF7L2). The targets of these TFs were also associated with ASD. Prenatal BPA exposure disrupted the expression of ASD-related TFs and targets in the offspring hippocampus in a sex-dependent manner. Moreover, AR was involved in the BPA-mediated dysregulation of AUTS2, KMT2C, and SMARCC2. Prenatal BPA exposure altered synaptogenesis by increasing synaptic protein levels in males but not in females, but the number of excitatory synapses was increased in female primary neurons only. CONCLUSIONS Our findings suggest that AR and other ASD-related TFs are involved in sex differences in the effects of prenatal BPA exposure on transcriptome profiles and synaptogenesis in the offspring hippocampus. These TFs may play an essential role in an increased ASD susceptibility associated with endocrine-disrupting chemicals, particularly BPA, and the male bias of ASD.
Collapse
Affiliation(s)
- Surangrat Thongkorn
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Songphon Kanlayaprasit
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand
| | - Kasidit Kasitipradit
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pattanachat Lertpeerapan
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pawinee Panjabud
- grid.7922.e0000 0001 0244 7875Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Valerie W. Hu
- grid.253615.60000 0004 1936 9510Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, The George Washington University, Washington, DC USA
| | - Depicha Jindatip
- grid.7922.e0000 0001 0244 7875SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330 Thailand ,grid.7922.e0000 0001 0244 7875Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Tewarit Sarachana
- SYstems Neuroscience of Autism and PSychiatric Disorders (SYNAPS) Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, 154 Soi Chula 12, Rama 1 Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Pang W, Wang M, Bi Q, Li H, Zhou Q, Ye X, Xiang W, Xiao L. Activity-Dependent Differential Regulation of Auts2 Isoforms In Vitro and In Vivo. Mol Neurobiol 2023; 60:2973-2985. [PMID: 36754912 DOI: 10.1007/s12035-023-03241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder of unknown cause, although one hypothesis suggests a potential imbalance between excitation and inhibition that leads to changes in neuronal activity and a disturbance in the brain network. However, the mechanisms through which neuronal activity contributes to the development of ASD remain largely unexplained. In this study, we described that neuronal activity at the transcriptional and translational levels regulated the expression of Auts2 isoforms. The prolonged stimulation of cultured cortical neurons significantly reduced the auts2 transcripts, accompanied by the decrease of FL-Auts2 protein, as well as one of the short isoforms (S-Auts2 var.1). Blocking neuronal activity increased the number of auts2 transcripts but not protein levels. Furthermore, blocking the NMDA receptors during stimulation could partially restore the FL-Auts2 and S-Auts2 var.1 at protein level, but not at mRNA level. Finally, Auts2 expression in the hippocampus was reduced in mice exposed to an enriched environment, a behavior paradigm designed to increase the brain activity through abundant sensory and social stimulations. Thus, our study revealed a novel regulatory effect of neuronal activity on the transcription and translation of ASD-risk gene auts2.
Collapse
Affiliation(s)
- Wenbin Pang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Meijuan Wang
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Qingshang Bi
- School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Hongai Li
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Qionglin Zhou
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Xiaoshan Ye
- School of Pediatrics, Hainan Medical University, Haikou, China
| | - Wei Xiang
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China.
| | - Le Xiao
- Hainan Women and Children's Medical Center, Hainan Medical University, Haikou, China.
- School of Pediatrics, Hainan Medical University, Haikou, China.
| |
Collapse
|
12
|
Geng Z, Wang Q, Miao W, Wolf T, Chavez J, Giddings E, Hobbs R, DeGraff DJ, Wang Y, Stafford J, Gao Z. AUTS2 Controls Neuronal Lineage Choice Through a Novel PRC1-Independent Complex and BMP Inhibition. Stem Cell Rev Rep 2023; 19:531-549. [PMID: 36258139 PMCID: PMC9905272 DOI: 10.1007/s12015-022-10459-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 02/07/2023]
Abstract
Despite a prominent risk factor for Neurodevelopmental disorders (NDD), it remains unclear how Autism Susceptibility Candidate 2 (AUTS2) controls the neurodevelopmental program. Our studies investigated the role of AUTS2 in neuronal differentiation and discovered that AUTS2, together with WDR68 and SKI, forms a novel protein complex (AWS) specifically in neuronal progenitors and promotes neuronal differentiation through inhibiting BMP signaling. Genomic and biochemical analyses demonstrated that the AWS complex achieves this effect by recruiting the CUL4 E3 ubiquitin ligase complex to mediate poly-ubiquitination and subsequent proteasomal degradation of phosphorylated SMAD1/5/9. Furthermore, using primary cortical neurons, we observed aberrant BMP signaling and dysregulated expression of neuronal genes upon manipulating the AWS complex, indicating that the AWS-CUL4-BMP axis plays a role in regulating neuronal lineage specification in vivo. Thus, our findings uncover a sophisticated cellular signaling network mobilized by a prominent NDD risk factor, presenting multiple potential therapeutic targets for NDD.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Qiang Wang
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Weili Miao
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - Trevor Wolf
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Jessenia Chavez
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Emily Giddings
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Ryan Hobbs
- Department of Dermatology, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - David J DeGraff
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA, 17033, USA
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California at Riverside, Riverside, CA, 92521, USA
| | - James Stafford
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Penn State Hershey Cancer Institute, Hershey, PA, 17033, USA.
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA, 17033, USA.
| |
Collapse
|
13
|
Liang S, Guo Z, Luo D, Tang J, Ji Z, Xie M, Hou S. Two variants of AUTS2 gene are associated with high lean meat percentage in Pekin ducks. Gene X 2023; 848:146864. [DOI: 10.1016/j.gene.2022.146864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/15/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022] Open
|
14
|
Roles of Polycomb Complexes in the Reconstruction of 3D Genome Architecture during Preimplantation Embryonic Development. Genes (Basel) 2022; 13:genes13122382. [PMID: 36553649 PMCID: PMC9778514 DOI: 10.3390/genes13122382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The appropriate deployment of developmental programs depends on complex genetic information encoded by genomic DNA sequences and their positioning and contacts in the three-dimensional (3D) space within the nucleus. Current studies using novel techniques including, but not limited to, Hi-C, ChIA-PET, and Hi-ChIP reveal that regulatory elements (Res), such as enhancers and promoters, may participate in the precise regulation of expression of tissue-specific genes important for both embryogenesis and organogenesis by recruiting Polycomb Group (PcG) complexes. PcG complexes usually poise the transcription of developmental genes by forming Polycomb bodies to compact poised enhancers and promoters marked by H3K27me3 in the 3D space. Additionally, recent studies have also uncovered their roles in transcriptional activation. To better understand the full complexities in the mechanisms of how PcG complexes regulate transcription and long-range 3D contacts of enhancers and promoters during developmental programs, we outline novel insights regarding PcG-associated dramatic changes in the 3D chromatin conformation in developmental programs of early embryos and naïve-ground-state transitions of pluripotent embryonic stem cells (ESCs), and highlight the distinct roles of unique and common subunits of canonical and non-canonical PcG complexes in shaping genome architectures and transcriptional programs.
Collapse
|
15
|
RINGs, DUBs and Abnormal Brain Growth-Histone H2A Ubiquitination in Brain Development and Disease. EPIGENOMES 2022; 6:epigenomes6040042. [PMID: 36547251 PMCID: PMC9778336 DOI: 10.3390/epigenomes6040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
During mammalian neurodevelopment, signaling pathways converge upon transcription factors (TFs) to establish appropriate gene expression programmes leading to the production of distinct neural and glial cell types. This process is partially regulated by the dynamic modulation of chromatin states by epigenetic systems, including the polycomb group (PcG) family of co-repressors. PcG proteins form multi-subunit assemblies that sub-divide into distinct, yet functionally related families. Polycomb repressive complexes 1 and 2 (PRC1 and 2) modify the chemical properties of chromatin by covalently modifying histone tails via H2A ubiquitination (H2AK119ub1) and H3 methylation, respectively. In contrast to the PRCs, the Polycomb repressive deubiquitinase (PR-DUB) complex removes H2AK119ub1 from chromatin through the action of the C-terminal hydrolase BAP1. Genetic screening has identified several PcG mutations that are causally associated with a range of congenital neuropathologies associated with both localised and/or systemic growth abnormalities. As PRC1 and PR-DUB hold opposing functions to control H2AK119ub1 levels across the genome, it is plausible that such neurodevelopmental disorders arise through a common mechanism. In this review, we will focus on advancements regarding the composition and opposing molecular functions of mammalian PRC1 and PR-DUB, and explore how their dysfunction contributes to the emergence of neurodevelopmental disorders.
Collapse
|
16
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
17
|
Merdrignac C, Clément AE, Montfort J, Murat F, Bobe J. auts2 Features and Expression Are Highly Conserved during Evolution Despite Different Evolutionary Fates Following Whole Genome Duplication. Cells 2022; 11:2694. [PMID: 36078102 PMCID: PMC9454499 DOI: 10.3390/cells11172694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
The AUTS2 gene plays major roles during brain development and is associated with various neuropathologies including autism. Data in non-mammalian species are scarce, and the aim of our study was to provide a comprehensive analysis of auts2 evolution in teleost fish, which are widely used for in vivo functional analysis and biomedical purposes. Comparative genomics in 78 species showed that auts2a and auts2b originate from the teleost-specific whole genome duplication (TGD). auts2a, which is highly similar to human AUTS2, was almost systematically retained following TGD. In contrast, auts2b, which encodes for a shorter protein similar to a short human AUTS2 isoform, was lost more frequently and independently during evolution. RNA-seq analysis in 10 species revealed a highly conserved profile with predominant expression of both genes in the embryo, brain, and gonads. Based on protein length, conserved domains, and expression profiles, we speculate that the long human isoform functions were retained by auts2a, while the short isoform functions were retained by auts2a and/or auts2b, depending on the lineage/species. auts2a showed a burst in expression during medaka brain formation, where it was expressed in areas of the brain associated with neurodevelopmental disorders. Together, our data suggest a strong conservation of auts2 functions in vertebrates despite different evolutionary scenarios in teleosts.
Collapse
Affiliation(s)
| | | | | | | | - Julien Bobe
- INRAE, LPGP UR1037, Fish Physiology and Genomics, Campus de Beaulieu, F-35000 Rennes, France
| |
Collapse
|
18
|
Critical Roles of Polycomb Repressive Complexes in Transcription and Cancer. Int J Mol Sci 2022; 23:ijms23179574. [PMID: 36076977 PMCID: PMC9455514 DOI: 10.3390/ijms23179574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Polycomp group (PcG) proteins are members of highly conserved multiprotein complexes, recognized as gene transcriptional repressors during development and shown to play a role in various physiological and pathological processes. PcG proteins consist of two Polycomb repressive complexes (PRCs) with different enzymatic activities: Polycomb repressive complexes 1 (PRC1), a ubiquitin ligase, and Polycomb repressive complexes 2 (PRC2), a histone methyltransferase. Traditionally, PRCs have been described to be associated with transcriptional repression of homeotic genes, as well as gene transcription activating effects. Particularly in cancer, PRCs have been found to misregulate gene expression, not only depending on the function of the whole PRCs, but also through their separate subunits. In this review, we focused especially on the recent findings in the transcriptional regulation of PRCs, the oncogenic and tumor-suppressive roles of PcG proteins, and the research progress of inhibitors targeting PRCs.
Collapse
|
19
|
Peedicayil J. The relevance of polycomb group proteins to the development of psychiatric disorders. Front Cell Dev Biol 2022; 10:927833. [PMID: 35938156 PMCID: PMC9354779 DOI: 10.3389/fcell.2022.927833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022] Open
|
20
|
Fair SR, Schwind W, Julian DL, Biel A, Guo G, Rutherford R, Ramadesikan S, Westfall J, Miller KE, Kararoudi MN, Hickey SE, Mosher TM, McBride KL, Neinast R, Fitch J, Lee DA, White P, Wilson RK, Bedrosian TA, Koboldt DC, Hester ME. Cerebral organoids containing an AUTS2 missense variant model microcephaly. Brain 2022; 146:387-404. [PMID: 35802027 PMCID: PMC9825673 DOI: 10.1093/brain/awac244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 05/22/2022] [Accepted: 06/22/2022] [Indexed: 01/12/2023] Open
Abstract
Variants in the AUTS2 gene are associated with a broad spectrum of neurological conditions characterized by intellectual disability, microcephaly, and congenital brain malformations. Here, we use a human cerebral organoid model to investigate the pathophysiology of a heterozygous de novo missense AUTS2 variant identified in a patient with multiple neurological impairments including primary microcephaly and profound intellectual disability. Proband cerebral organoids exhibit reduced growth, deficits in neural progenitor cell (NPC) proliferation and disrupted NPC polarity within ventricular zone-like regions compared to control cerebral organoids. We used CRISPR-Cas9-mediated gene editing to correct this variant and demonstrate rescue of impaired organoid growth and NPC proliferative deficits. Single-cell RNA sequencing revealed a marked reduction of G1/S transition gene expression and alterations in WNT-β-catenin signalling within proband NPCs, uncovering a novel role for AUTS2 in NPCs during human cortical development. Collectively, these results underscore the value of cerebral organoids to investigate molecular mechanisms underlying AUTS2 syndrome.
Collapse
Affiliation(s)
- Summer R Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Wesley Schwind
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dominic L Julian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Gongbo Guo
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Swetha Ramadesikan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Jesse Westfall
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Katherine E Miller
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Theresa Mihalic Mosher
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Kim L McBride
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA,Division of Genetic and Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Reid Neinast
- Center for Cardiovascular Research, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - James Fitch
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Peter White
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Richard K Wilson
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Tracy A Bedrosian
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, USA,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Daniel C Koboldt
- Correspondence may also be addressed to: Daniel C. Koboldt, MS E-mail:
| | - Mark E Hester
- Correspondence to: Mark E. Hester, PhD 575 Children’s Crossroad Columbus OH 43205-2716, USA E-mail:
| |
Collapse
|
21
|
Highly diverse phenotypes of mucopolysaccharidosis type IIIB sibling patients: effects of an additional mutation in the AUTS2 gene. J Appl Genet 2022; 63:535-542. [PMID: 35525889 DOI: 10.1007/s13353-022-00702-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Mucopolysaccharidosis type IIIB (MPS IIIB or Sanfilippo syndrome type B) is an inherited metabolic disease caused by mutations in the NAGLU gene, encoding α-N-acetylglucosaminidase. Accumulation of undegraded heparan sulfate (one of glycosaminoglycans) arises from deficiency in this enzyme and leads to severe symptoms, especially related to dysfunctions of the central nervous system. Here, we describe a case of two siblings with highly diverse phenotypes, despite carrying the same mutations (c.1189 T > G/c.1211G > A (p.Phe397Val/p.Trp404Ter)) and similar residual activities of α-N-acetylglucosaminidase; the younger patient reveals more severe phenotype; thus, these differences cannot be explained by the age and progression of the disease. Surprisingly, the whole exome sequencing analysis indicated the presence of an additional mutation in one allele of the AUTS2 gene (c.157G > A (p.Ala53Thr)) in the younger patient but not in the older one. Since mutations in this gene are usually dominant and cause delayed development and intellectual disability, it is likely that the observed differences between the MPS IIIB siblings are due to the potentially pathogenic AUTS2 variant, present in one of them. This case confirms also that simultaneous occurrence of two ultra-rare diseases in one patient is actual, despite a low probability of such a combination. Moreover, it is worth noting that apart from the genotype-phenotype correlation and the importance of the residual activity of the deficient enzyme, efficiency of glycosaminoglycan synthesis and global secondary changes in expression of hundreds of genes may considerably modulate the course and severity of MPS, especially Sanfilippo disease.
Collapse
|
22
|
Biel A, Castanza AS, Rutherford R, Fair SR, Chifamba L, Wester JC, Hester ME, Hevner RF. AUTS2 Syndrome: Molecular Mechanisms and Model Systems. Front Mol Neurosci 2022; 15:858582. [PMID: 35431798 PMCID: PMC9008325 DOI: 10.3389/fnmol.2022.858582] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/01/2022] [Indexed: 01/16/2023] Open
Abstract
AUTS2 syndrome is a genetic disorder that causes intellectual disability, microcephaly, and other phenotypes. Syndrome severity is worse when mutations involve 3' regions (exons 9-19) of the AUTS2 gene. Human AUTS2 protein has two major isoforms, full-length (1259 aa) and C-terminal (711 aa), the latter produced from an alternative transcription start site in exon 9. Structurally, AUTS2 contains the putative "AUTS2 domain" (∼200 aa) conserved among AUTS2 and its ohnologs, fibrosin, and fibrosin-like-1. Also, AUTS2 contains extensive low-complexity sequences and intrinsically disordered regions, features typical of RNA-binding proteins. During development, AUTS2 is expressed by specific progenitor cell and neuron types, including pyramidal neurons and Purkinje cells. AUTS2 localizes mainly in cell nuclei, where it regulates transcription and RNA metabolism. Some studies have detected AUTS2 in neurites, where it may regulate cytoskeletal dynamics. Neurodevelopmental functions of AUTS2 have been studied in diverse model systems. In zebrafish, auts2a morphants displayed microcephaly. In mice, excision of different Auts2 exons (7, 8, or 15) caused distinct phenotypes, variously including neonatal breathing abnormalities, cerebellar hypoplasia, dentate gyrus hypoplasia, EEG abnormalities, and behavioral changes. In mouse embryonic stem cells, AUTS2 could promote or delay neuronal differentiation. Cerebral organoids, derived from an AUTS2 syndrome patient containing a pathogenic missense variant in exon 9, exhibited neocortical growth defects. Emerging technologies for analysis of human cerebral organoids will be increasingly useful for understanding mechanisms underlying AUTS2 syndrome. Questions for future research include whether AUTS2 binds RNA directly, how AUTS2 regulates neurogenesis, and how AUTS2 modulates neural circuit formation.
Collapse
Affiliation(s)
- Alecia Biel
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Anthony S. Castanza
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| | - Ryan Rutherford
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Summer R. Fair
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Lincoln Chifamba
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Jason C. Wester
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Mark E. Hester
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Robert F. Hevner
- Department of Pathology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
23
|
Collier AJ, Bendall A, Fabian C, Malcolm AA, Tilgner K, Semprich CI, Wojdyla K, Nisi PS, Kishore K, Roamio Franklin VN, Mirshekar-Syahkal B, D’Santos C, Plath K, Yusa K, Rugg-Gunn PJ. Genome-wide screening identifies Polycomb repressive complex 1.3 as an essential regulator of human naïve pluripotent cell reprogramming. SCIENCE ADVANCES 2022; 8:eabk0013. [PMID: 35333572 PMCID: PMC8956265 DOI: 10.1126/sciadv.abk0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Uncovering the mechanisms that establish naïve pluripotency in humans is crucial for the future applications of pluripotent stem cells including the production of human blastoids. However, the regulatory pathways that control the establishment of naïve pluripotency by reprogramming are largely unknown. Here, we use genome-wide screening to identify essential regulators as well as major impediments of human primed to naïve pluripotent stem cell reprogramming. We discover that factors essential for cell state change do not typically undergo changes at the level of gene expression but rather are repurposed with new functions. Mechanistically, we establish that the variant Polycomb complex PRC1.3 and PRDM14 jointly repress developmental and gene regulatory factors to ensure naïve cell reprogramming. In addition, small-molecule inhibitors of reprogramming impediments improve naïve cell reprogramming beyond current methods. Collectively, this work defines the principles controlling the establishment of human naïve pluripotency and also provides new insights into mechanisms that destabilize and reconfigure cell identity during cell state transitions.
Collapse
Affiliation(s)
- Amanda J. Collier
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Adam Bendall
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | | | - Andrew A. Malcolm
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Katarzyna Tilgner
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | | | - Kamal Kishore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Clive D’Santos
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Kosuke Yusa
- Stem Cell Genetics, Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Stem Cell Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Peter J. Rugg-Gunn
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- Wellcome–MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| |
Collapse
|
24
|
AUTS2 Gene: Keys to Understanding the Pathogenesis of Neurodevelopmental Disorders. Cells 2021; 11:cells11010011. [PMID: 35011572 PMCID: PMC8750789 DOI: 10.3390/cells11010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 01/01/2023] Open
Abstract
Neurodevelopmental disorders (NDDs), including autism spectrum disorders (ASD) and intellectual disability (ID), are a large group of neuropsychiatric illnesses that occur during early brain development, resulting in a broad spectrum of syndromes affecting cognition, sociability, and sensory and motor functions. Despite progress in the discovery of various genetic risk factors thanks to the development of novel genomics technologies, the precise pathological mechanisms underlying the onset of NDDs remain elusive owing to the profound genetic and phenotypic heterogeneity of these conditions. Autism susceptibility candidate 2 (AUTS2) has emerged as a crucial gene associated with a wide range of neuropsychological disorders, such as ASD, ID, schizophrenia, and epilepsy. AUTS2 has been shown to be involved in multiple neurodevelopmental processes; in cell nuclei, it acts as a key transcriptional regulator in neurodevelopment, whereas in the cytoplasm, it participates in cerebral corticogenesis, including neuronal migration and neuritogenesis, through the control of cytoskeletal rearrangements. Postnatally, AUTS2 regulates the number of excitatory synapses to maintain the balance between excitation and inhibition in neural circuits. In this review, we summarize the knowledge regarding AUTS2, including its molecular and cellular functions in neurodevelopment, its genetics, and its role in behaviors.
Collapse
|
25
|
Pauli S, Berger H, Ufartes R, Borchers A. Comparing a Novel Malformation Syndrome Caused by Pathogenic Variants in FBRSL1 to AUTS2 Syndrome. Front Cell Dev Biol 2021; 9:779009. [PMID: 34805182 PMCID: PMC8602103 DOI: 10.3389/fcell.2021.779009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Truncating variants in specific exons of Fibrosin-like protein 1 (FBRSL1) were recently reported to cause a novel malformation and intellectual disability syndrome. The clinical spectrum includes microcephaly, facial dysmorphism, cleft palate, skin creases, skeletal anomalies and contractures, postnatal growth retardation, global developmental delay as well as respiratory problems, hearing impairment and heart defects. The function of FBRSL1 is largely unknown, but pathogenic variants in the FBRSL1 paralog Autism Susceptibility Candidate 2 (AUTS2) are causative for an intellectual disability syndrome with microcephaly (AUTS2 syndrome). Some patients with AUTS2 syndrome also show additional symptoms like heart defects and contractures overlapping with the phenotype presented by patients with FBRSL1 mutations. For AUTS2, a dual function, depending on different isoforms, was described and suggested for FBRSL1. Both, nuclear FBRSL1 and AUTS2 are components of the Polycomb subcomplexes PRC1.3 and PRC1.5. These complexes have essential roles in developmental processes, cellular differentiation and proliferation by regulating gene expression via histone modification. In addition, cytoplasmic AUTS2 controls neural development, neuronal migration and neurite extension by regulating the cytoskeleton. Here, we review recent data on FBRSL1 in respect to previously published data on AUTS2 to gain further insights into its molecular function, its role in development as well as its impact on human genetics.
Collapse
Affiliation(s)
- Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Hanna Berger
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| | - Roser Ufartes
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps‐University Marburg, Marburg, Germany
| |
Collapse
|
26
|
Sanchez-Jimeno C, Blanco-Kelly F, López-Grondona F, Losada-Del Pozo R, Moreno B, Rodrigo-Moreno M, Martinez-Cayuelas E, Riveiro-Alvarez R, Fenollar-Cortés M, Ayuso C, Rodríguez de Alba M, Lorda-Sanchez I, Almoguera B. Attention Deficit Hyperactivity and Autism Spectrum Disorders as the Core Symptoms of AUTS2 Syndrome: Description of Five New Patients and Update of the Frequency of Manifestations and Genotype-Phenotype Correlation. Genes (Basel) 2021; 12:genes12091360. [PMID: 34573342 PMCID: PMC8471078 DOI: 10.3390/genes12091360] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
Haploinsufficiency of AUTS2 has been associated with a syndromic form of neurodevelopmental delay characterized by intellectual disability, autistic features, and microcephaly, also known as AUTS2 syndrome. While the phenotype associated with large deletions and duplications of AUTS2 is well established, clinical features of patients harboring AUTS2 sequence variants have not been extensively described. In this study, we describe the phenotype of five new patients with AUTS2 pathogenic variants, three of them harboring loss-of-function sequence variants. The phenotype of the patients was characterized by attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) or autistic features and mild global developmental delay (GDD) or intellectual disability (ID), all in 4/5 patients (80%), a frequency higher than previously reported for ADHD and autistic features. Microcephaly and short stature were found in 60% of the patients; and feeding difficulties, generalized hypotonia, and ptosis, were each found in 40%. We also provide the aggregated frequency of the 32 items included in the AUTS2 syndrome severity score (ASSS) in patients currently reported in the literature. The main characteristics of the syndrome are GDD/ID in 98% of patients, microcephaly in 65%, feeding difficulties in 62%, ADHD or hyperactivity in 54%, and autistic traits in 52%. Finally, using the location of 31 variants from the literature together with variants from the five patients, we found significantly higher ASSS values in patients with pathogenic variants affecting the 3′ end of the gene, confirming the genotype-phenotype correlation initially described.
Collapse
Affiliation(s)
- Carolina Sanchez-Jimeno
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Fermina López-Grondona
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Rebeca Losada-Del Pozo
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Beatriz Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - María Rodrigo-Moreno
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Elena Martinez-Cayuelas
- Department of Pediatrics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (R.L.-D.P.); (B.M.); (M.R.-M.); (E.M.-C.)
| | - Rosa Riveiro-Alvarez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - María Fenollar-Cortés
- Clinical Genetics Unit, Department of Clinical Analysis, Clínico San Carlos University Hospital, 28040 Madrid, Spain;
- IIS-Clínico San Carlos University Hospital (IsISSC), 28040 Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Marta Rodríguez de Alba
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Isabel Lorda-Sanchez
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
| | - Berta Almoguera
- Department of Genetics and Genomics, IIS–Fundación Jiménez Díaz University Hospital, 28040 Madrid, Spain; (C.S.-J.); (F.B.-K.); (F.L.-G.); (R.R.-A.); (C.A.); (M.R.d.A.); (I.L.-S.)
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 28040 Madrid, Spain
- Correspondence:
| |
Collapse
|
27
|
Erotomania and phenotypic continuum in a family frameshift variant of AUTS2: a case report and review. BMC Psychiatry 2021; 21:360. [PMID: 34273950 PMCID: PMC8285776 DOI: 10.1186/s12888-021-03342-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pathogenic variants of the AUTS2 (Autism Susceptibility candidate 2) gene predispose to intellectual disability, autism spectrum disorder, attention deficit hyperactivity disorder, facial dysmorphism and short stature. This phenotype is therefore associated with neurocognitive disturbances and social cognition, indicating potential functional maladjustment in the affected subjects, and a potentially significant impact on quality of life. Although many isolated cases have been reported in the literature, to date no families have been described. This case reports on a family (three generations) with a frameshift variant in the AUTS2 gene. CASE PRESENTATION The proband is 13 years old with short stature, dysmorphic features, moderate intellectual disability and autism spectrum disorder. His mother is 49 years old and also has short stature and similar dysmorphic features. She does not have autism disorder but presents an erotomaniac delusion. Her cognitive performance is heterogeneous. The two aunts are also of short stature. The 50-year-old aunt has isolated social cognition disorders. The 45-year-old aunt has severe cognitive impairment and autism spectrum disorder. The molecular analysis of the three sisters and the proband shows the same AUTS2 heterozygous duplication leading to a frame shift expected to produce a premature stop codon, p.(Met593Tyrfs*85). Previously reported isolated cases revealed phenotypic and cognitive impairment variability. In this case report, these variabilities are present within the same family, presenting the same variant. CONCLUSIONS The possibility of a phenotypic spectrum within the same family highlights the need for joint psychiatry and genetics research.
Collapse
|
28
|
Castanza AS, Ramirez S, Tripathi PP, Daza RAM, Kalume FK, Ramirez JM, Hevner RF. AUTS2 Regulates RNA Metabolism and Dentate Gyrus Development in Mice. Cereb Cortex 2021; 31:4808-4824. [PMID: 34013328 DOI: 10.1093/cercor/bhab124] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/23/2022] Open
Abstract
Human AUTS2 mutations are linked to a syndrome of intellectual disability, autistic features, epilepsy, and other neurological and somatic disorders. Although it is known that this unique gene is highly expressed in developing cerebral cortex, the molecular and developmental functions of AUTS2 protein remain unclear. Using proteomics methods to identify AUTS2 binding partners in neonatal mouse cerebral cortex, we found that AUTS2 associates with multiple proteins that regulate RNA transcription, splicing, localization, and stability. Furthermore, AUTS2-containing protein complexes isolated from cortical tissue bound specific RNA transcripts in RNA immunoprecipitation and sequencing assays. Deletion of all major functional isoforms of AUTS2 (full-length and C-terminal) by conditional excision of exon 15 caused breathing abnormalities and neonatal lethality when Auts2 was inactivated throughout the developing brain. Mice with limited inactivation of Auts2 in cerebral cortex survived but displayed abnormalities of cerebral cortex structure and function, including dentate gyrus hypoplasia with agenesis of hilar mossy neurons, and abnormal spiking activity on EEG. Also, RNA transcripts that normally associate with AUTS2 were dysregulated in mutant mice. Together, these findings indicate that AUTS2 regulates RNA metabolism and is essential for development of cerebral cortex, as well as subcortical breathing centers.
Collapse
Affiliation(s)
- Anthony S Castanza
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sanja Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Prem P Tripathi
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Ray A M Daza
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Franck K Kalume
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| | - Robert F Hevner
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.,Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA.,Department of Neurological Surgery, University of Washington, Seattle, WA 98014, USA
| |
Collapse
|
29
|
Pang W, Yi X, Li L, Liu L, Xiang W, Xiao L. Untangle the Multi-Facet Functions of Auts2 as an Entry Point to Understand Neurodevelopmental Disorders. Front Psychiatry 2021; 12:580433. [PMID: 33967843 PMCID: PMC8102784 DOI: 10.3389/fpsyt.2021.580433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Neurodevelopmental disorders are psychiatric diseases that are usually first diagnosed in infancy, childhood and adolescence. Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by core symptoms including impaired social communication, cognitive rigidity and repetitive behavior, accompanied by a wide range of comorbidities such as intellectual disability (ID) and dysmorphisms. While the cause remains largely unknown, genetic, epigenetic, and environmental factors are believed to contribute toward the onset of the disease. Autism Susceptibility Candidate 2 (Auts2) is a gene highly associated with ID and ASD. Therefore, understanding the function of Auts2 gene can provide a unique entry point to untangle the complex neuronal phenotypes of neurodevelpmental disorders. In this review, we discuss the recent discoveries regarding the molecular and cellular functions of Auts2. Auts2 was shown to be a key-regulator of transcriptional network and a mediator of epigenetic regulation in neurodevelopment, the latter potentially providing a link for the neuronal changes of ASD upon environmental risk-factor exposure. In addition, Auts2 could synchronize the balance between excitation and inhibition through regulating the number of excitatory synapses. Cytoplasmic Auts2 could join the fine-tuning of actin dynamics during neuronal migration and neuritogenesis. Furthermore, Auts2 was expressed in developing mouse and human brain regions such as the frontal cortex, dorsal thalamus, and hippocampus, which have been implicated in the impaired cognitive and social function of ASD. Taken together, a comprehensive understanding of Auts2 functions can give deep insights into the cause of the heterogenous manifestation of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Wenbin Pang
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Xinan Yi
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
| | - Ling Li
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Liyan Liu
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| | - Wei Xiang
- National Health Commission (NHC) Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, China
| | - Le Xiao
- Key Laboratory of Brain Science Research & Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, China
- Department of Pediatric Rehabilitation, Hainan Women and Children's Medical Center, Haikou, China
| |
Collapse
|
30
|
Xulu KR, Womersley JS, Sommer J, Hinsberger M, Elbert T, Weierstall R, Kaminer D, Malan-Müller S, Seedat S, Hemmings SMJ. DNA methylation and psychotherapy response in trauma-exposed men with appetitive aggression. Psychiatry Res 2021; 295:113608. [PMID: 33290938 DOI: 10.1016/j.psychres.2020.113608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022]
Abstract
Exposure to violence can lead to appetitive aggression (AA), the positive feeling and fascination associated with violence, and posttraumatic stress disorder (PTSD), characterised by hyperarousal, reexperience and feelings of ongoing threat. Psychotherapeutic interventions may act via DNA methylation, an environmentally sensitive epigenetic mechanism that can influence gene expression. We investigated epigenetic signatures of psychotherapy for PTSD and AA symptoms in South African men with chronic trauma exposure. Participants were assigned to one of three groups: narrative exposure therapy for forensic offender rehabilitation (FORNET), cognitive behavioural therapy or waiting list control (n = 9-10/group). Participants provided saliva and completed the Appetitive Aggression Scale and PTSD Symptom Severity Index at baseline, 8-month and 16-month follow-up. The relationship, over time, between methylation in 22 gene promoter region sites, symptom scores, and treatment was assessed using linear mixed models. Compared to baseline, PTSD and AA symptom severity were significantly reduced at 8 and 16 months, respectively, in the FORNET group. Increased methylation of genes implicated in dopaminergic neurotransmission (NR4A2) and synaptic plasticity (AUTS2) was associated with reduced PTSD symptom severity in participants receiving FORNET. Analyses across participants revealed a proportional relationship between AA and methylation of TFAM, a gene involved in mitochondrial biosynthesis.
Collapse
Affiliation(s)
- Khethelo R Xulu
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jacqueline S Womersley
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Jessica Sommer
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | | | - Thomas Elbert
- Department of Psychology, University of Konstanz, Konstanz, Germany.
| | - Roland Weierstall
- Department of Psychology, University of Konstanz, Konstanz, Germany; Clinical Psychology & Psychotherapy, Medical School Hamburg, Hamburg, Germany.
| | - Debbie Kaminer
- Department of Psychology, University of Cape Town, Cape Town, South Africa.
| | - Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sian M J Hemmings
- Department of Psychiatry, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
31
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Mu G, Xiang Q, Zhang Z, Liu C, Zhang H, Liu Z, Pang X, Jiang J, Xie Q, Zhou S, Wang Z, Hu K, Wang Z, Jiang S, Qin X, Cui Y. PNPT1 and PCGF3 variants associated with angiotensin-converting enzyme inhibitor-induced cough: a nested case–control genome-wide study. Pharmacogenomics 2020; 21:601-614. [PMID: 32397904 DOI: 10.2217/pgs-2019-0167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: We aimed to identify genetic variants associated with ACE inhibitor (ACEI)-induced cough. Materials & methods: A nested case–control study was performed among hypertensive Chinese patients receiving enalapril-only therapy. Whole-exome sequencing and genome-wide association analysis were performed. Results: We identified that PNPT1 rs13015243 (odds ratio [OR]: 0.47; 95% CI: 0.34–0.66; p = 7.45 × 10-6), PNPT1 rs13009649 (OR: 0.48; 95% CI: 0.35–0.67; p = 9.96 × 10-6) and PCGF3 rs1044147 (OR: 2.67; 95% CI: 1.71–4.17; p = 9.91 × 10-6) were significantly associated with ACEI-induced cough. Nearly genome-wide significant associations in previously reported candidate risk genes CLASP1, ACE, CES1, CPN1, XPNPEP1, PDE11A or SLC38A were detected in our dataset. Conclusion: Our results suggest that ACEI-induced cough is associated with noncoding SNPs of PNPT1 and PCGF3, all of which are independent of the bradykinin pathway. Study registration: NCT03259399.
Collapse
Affiliation(s)
- Guangyan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Chengzhang Liu
- Research Center, Shenzhen Evergreen Medical Institute, Shenzhen, 518057, China
| | - Hanxu Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhiyan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Xiaocong Pang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Qiufen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Shuang Zhou
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zining Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Shanqun Jiang
- School of Life Science, Anhui University, Hefei, 230601, China
| | - Xianhui Qin
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| |
Collapse
|
33
|
AUTS2 Regulation of Synapses for Proper Synaptic Inputs and Social Communication. iScience 2020; 23:101183. [PMID: 32498016 PMCID: PMC7267731 DOI: 10.1016/j.isci.2020.101183] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 01/11/2023] Open
Abstract
Impairments in synapse development are thought to cause numerous psychiatric disorders. Autism susceptibility candidate 2 (AUTS2) gene has been associated with various psychiatric disorders, such as autism and intellectual disabilities. Although roles for AUTS2 in neuronal migration and neuritogenesis have been reported, its involvement in synapse regulation remains unclear. In this study, we found that excitatory synapses were specifically increased in the Auts2-deficient primary cultured neurons as well as Auts2 mutant forebrains. Electrophysiological recordings and immunostaining showed increases in excitatory synaptic inputs as well as c-fos expression in Auts2 mutant brains, suggesting that an altered balance of excitatory and inhibitory inputs enhances brain excitability. Auts2 mutant mice exhibited autistic-like behaviors including impairments in social interaction and altered vocal communication. Together, these findings suggest that AUTS2 regulates excitatory synapse number to coordinate E/I balance in the brain, whose impairment may underlie the pathology of psychiatric disorders in individuals with AUTS2 mutations. AUTS2 regulates excitatory synapse number in forebrain pyramidal neurons Loss of Auts2 leads to increased spine formation in development and adulthood Loss of Auts2 alters the balance of excitatory and inhibitory synaptic inputs Auts2 mutant mice exhibit cognitive and sociobehavioral deficits
Collapse
|