1
|
Li X, Turel O, He Q. Sex modulated the relationship between trait approach motivation and decision-making. Neuroimage 2024; 291:120598. [PMID: 38555995 DOI: 10.1016/j.neuroimage.2024.120598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
It has been observed that one's Behavioral Approach System (BAS) can have an effect on decision-making under uncertainty, although the results have been mixed. To discern the underlying neural substrates, we hypothesize that sex may explain the conflicting results. To test this idea, a large sample of participants was studied using resting state fMRI, utilizing fractional Amplitude of Low Frequency Fluctuations (fALFF) and Resting-State Functional Connectivity (rsFC) techniques. The results of the Iowa Gambling Task (IGT) revealed an interaction between sex and BAS, particularly in the last 60 trials (decision-making under risk). Males with high BAS showed poorer performance than those with low BAS. fALFF analysis showed a significant interaction between BAS group and sex in the left superior occipital gyrus, as well as the functional connectivity between this region and the left ventrolateral prefrontal cortex. Additionally, this functional connectivity was further positively correlated with male performance in the IGT, particularly in the decision-making under risk stage. Furthermore, it was found that the functional connectivity between left ventrolateral prefrontal cortex and left superior occipital gyrus could mediate the relationship between BAS and decision-making in males, particularly in the decision-making under risk stage. These results suggest possible sex-based differences in decision-making, providing an explanation for the inconsistent results found in prior research. Since the research was carried out exclusively with Chinese university students, it is essential to conduct further studies to investigate whether the findings can be generalized.
Collapse
Affiliation(s)
- Xiaoyi Li
- Faculty of Psychology, MOE Key Lab of Cognition and Personality, Southwest University, Chongqing , China
| | - Ofir Turel
- School of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia
| | - Qinghua He
- Faculty of Psychology, MOE Key Lab of Cognition and Personality, Southwest University, Chongqing , China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Collaborative Innovation Center of Assessment Toward Basic Education Quality, Southwest University Branch, Chongqing, China.
| |
Collapse
|
2
|
Hou L, Meng Y, Gao J, Li M, Zhou R. Women with more severe premenstrual syndrome have an enhanced anticipatory reward processing: a magnetoencephalography study. Arch Womens Ment Health 2023; 26:803-817. [PMID: 37730923 DOI: 10.1007/s00737-023-01368-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 09/22/2023]
Abstract
Laboratory studies reveal that young women with premenstrual syndrome (PMS) often exhibit decreased reward processing during the late luteal phase. However, studies based on the self-reports find opposite results (e.g., higher craving for high-sweet-fat food). These differences may lie in the difference between the stimulus used and measuring the different aspects of the reward. The present study was designed to expand previous work by using a classic monetary reward paradigm, simultaneously examining the motivational (i.e., reward anticipation, "wanting") and emotional (i.e., reward outcome, "liking") components of reward processing in women with high premenstrual symptoms (High PMS). College female students in their early twenties with High PMS (n = 20) and low premenstrual symptoms (Low PMS, n = 20) completed a monetary incentive delay task during their late luteal phase when the premenstrual symptoms typically peak. Brain activities in the reward anticipation phase and outcome phase were recorded using the magnetoencephalographic (MEG) imaging technique. No group differences were found in various behavioral measurements. For the MEG results, in the anticipation phase, when High PMS participants were presented with cues that predicted the upcoming monetary gains, they showed higher event-related magnetic fields (ERFs) than when they were presented with neutral non-reward cues. This pattern was reversed in Low PMS participants, as they showed lower reward cue-elicited ERFs than non-reward cue-elicited ones (cluster mass = 2560, cluster size = 891, p = .03, corrected for multiple comparisons), mainly in the right medial orbitofrontal and lateral orbitofrontal cortex (cluster mass = 375, cluster size = 140, p = .03, corrected for multiple comparisons). More importantly, women with High PMS had an overall significantly higher level of ERFs than women with Low PMS (cluster mass = 8039, cluster size = 2937, p = .0009, corrected for multiple comparisons) in the bilateral precentral gyrus, right postcentral gyrus, and left superior temporal gyrus (right: cluster mass = 410, cluster size = 128, p = .03; left: cluster mass = 352, cluster size = 98, p = .05; corrected for multiple comparisons). In the outcome phase, women with High PMS showed significantly lower theta power than the Low PMS ones for the expected non-reward feedback in the bilateral temporal-parietal regions (cluster mass = 47620, cluster size = 18308, p = .01, corrected for multiple comparisons). These findings reveal that the severity of PMS might alter reward anticipation. Specifically, women with High PMS displayed increased brain activities to reward-predicting cues and increased action preparation after the cues appear.
Collapse
Affiliation(s)
- Lulu Hou
- Department of Psychology, Nanjing University, Nanjing, 210023, China
- Department of Psychology, Shanghai Normal University, Shanghai, 200234, China
| | - Yao Meng
- Department of Psychology, Nanjing University, Nanjing, 210023, China
- School of Nursing, Nanjing Medical University, Nanjing, 211166, China
| | - Jiahong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, 100871, China
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | - Ming Li
- Department of Psychology, Nanjing University, Nanjing, 210023, China
| | - Renlai Zhou
- Department of Psychology, Nanjing University, Nanjing, 210023, China.
- Department of Radiology, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
- State Key Laboratory of Media Convergence Production Technology and Systems, Beijing, 100803, China.
| |
Collapse
|
3
|
Schumer MC, Chase HW, Rozovsky R, Eickhoff SB, Phillips ML. Prefrontal, parietal, and limbic condition-dependent differences in bipolar disorder: a large-scale meta-analysis of functional neuroimaging studies. Mol Psychiatry 2023; 28:2826-2838. [PMID: 36782061 PMCID: PMC10615766 DOI: 10.1038/s41380-023-01974-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Over the past few decades, neuroimaging research in Bipolar Disorder (BD) has identified neural differences underlying cognitive and emotional processing. However, substantial clinical and methodological heterogeneity present across neuroimaging experiments potentially hinders the identification of consistent neural biomarkers of BD. This meta-analysis aims to comprehensively reassess brain activation and connectivity in BD in order to identify replicable differences that converge across and within resting-state, cognitive, and emotional neuroimaging experiments. METHODS Neuroimaging experiments (using fMRI, PET, or arterial spin labeling) reporting whole-brain results in adults with BD and controls published from December 1999-June 18, 2019 were identified via PubMed search. Coordinates showing significant activation and/or connectivity differences between BD participants and controls during resting-state, emotional, or cognitive tasks were extracted. Four parallel, independent meta-analyses were calculated using the revised activation likelihood estimation algorithm: all experiment types, all resting-state experiments, all cognitive experiments, and all emotional experiments. To confirm reliability of identified clusters, two different meta-analytic significance tests were employed. RESULTS 205 published studies yielding 506 individual neuroimaging experiments (150 resting-state, 134 cognitive, 222 emotional) comprising 5745 BD and 8023 control participants were included. Five regions survived both significance tests. Individuals with BD showed functional differences in the right posterior cingulate cortex during resting-state experiments, the left amygdala during emotional experiments, including those using a mixed (positive/negative) valence manipulation, and the left superior and right inferior parietal lobules during cognitive experiments, while hyperactivating the left medial orbitofrontal cortex during cognitive experiments. Across all experiments, there was convergence in the right caudate extending to the ventral striatum, surviving only one significance test. CONCLUSIONS Our findings indicate reproducible localization of prefrontal, parietal, and limbic differences distinguishing BD from control participants that are condition-dependent, despite heterogeneity, and point towards a framework for identifying reproducible differences in BD that may guide diagnosis and treatment.
Collapse
Affiliation(s)
- Maya C Schumer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Casula A, Milazzo BM, Martino G, Sergi A, Lucifora C, Tomaiuolo F, Quartarone A, Nitsche MA, Vicario CM. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior-A Systematic Review of Randomized Sham-Controlled Studies. Life (Basel) 2023; 13:life13051220. [PMID: 37240865 DOI: 10.3390/life13051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
INTRO Aggressive behavior represents a significant public health issue, with relevant social, political, and security implications. Non-invasive brain stimulation (NIBS) techniques may modulate aggressive behavior through stimulation of the prefrontal cortex. AIMS To review research on the effectiveness of NIBS to alter aggression, discuss the main findings and potential limitations, consider the specifics of the techniques and protocols employed, and discuss clinical implications. METHODS A systematic review of the literature available in the PubMed database was carried out, and 17 randomized sham-controlled studies investigating the effectiveness of NIBS techniques on aggression were included. Exclusion criteria included reviews, meta-analyses, and articles not referring to the subject of interest or not addressing cognitive and emotional modulation aims. CONCLUSIONS The reviewed data provide promising evidence for the beneficial effects of tDCS, conventional rTMS, and cTBS on aggression in healthy adults, forensic, and clinical samples. The specific stimulation target is a key factor for the success of stimulation on aggression modulation. rTMS and cTBS showed opposite effects on aggression compared with tDCS. However, due to the heterogeneity of stimulation protocols, experimental designs, and samples, we cannot exclude other factors that may play a confounding role.
Collapse
Affiliation(s)
- Antony Casula
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Bianca M Milazzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Gabriella Martino
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Chiara Lucifora
- Dipartimento di Filosofia e Comunicazione, Università di Bologna, 40131 Bologna, Italy
| | - Francesco Tomaiuolo
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | | | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| |
Collapse
|
5
|
Edmiston EK, Fournier JC, Chase HW, Aslam HA, Lockovich J, Graur S, Bebko G, Bertocci M, Rozovsky R, Mak K, Forbes EE, Stiffler R, Phillips ML. Left ventrolateral prefrontal cortical activity during reward expectancy predicts mania risk up to one year post scan. J Affect Disord 2022; 319:325-328. [PMID: 36087789 PMCID: PMC11488591 DOI: 10.1016/j.jad.2022.08.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Identification of neural markers associated with risk for manic symptoms is an important challenge for neuropsychiatric research. Previous work has highlighted the association between predisposition for mania/hypomania and elevated reward sensitivity. Elevated activity in the left ventrolateral prefrontal cortex (L vlPFC) during reward expectancy (RE) is associated with measures predictive of risk for manic/hypomanic symptoms. However, no studies have examined this relationship longitudinally. The goal of this study was to identify a neural marker associated with longitudinal risk for manic/hypomanic symptoms. METHODS We used a card guessing functional magnetic resonance imaging (fMRI) paradigm to examine RE-related L vlPFC activity. One hundred and three young adults who were either healthy or experiencing psychological distress completed a single baseline fMRI scan and self-report measures of manic/hypomanic symptoms. Self-report measures were repeated up to two follow up visits over one year. RESULTS We identified a significant positive relationship between baseline RE-related L vlPFC activity and MOODS Manic Domain scores up to one-year post scan. This relationship was specific to manic symptoms and was not present for MOODS depression-related domains. LIMITATIONS This study was not designed to predict conversion to bipolar disorder, but rather the more proximal construct of lifetime risk for mania/hypomania. CONCLUSIONS RE-related L vlPFC activity may serve as an important marker of risk for future manic/hypomanic symptoms and may also be a potential target for intervention.
Collapse
Affiliation(s)
- E K Edmiston
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - J C Fournier
- Department of Psychiatry, The Ohio State University College of Medicine, Columbus, OH, USA
| | - H W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - H A Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Lockovich
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - S Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - G Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - K Mak
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - E E Forbes
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - R Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - M L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
6
|
Xu LX, Geng XM, Zhang JL, Guo XY, Potenza MN, Zhang JT. Neuromodulation treatments of problematic use of the Internet. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Forecasting Unplanned Purchase Behavior under Buy-One Get-One-Free Promotions Using Functional Near-Infrared Spectroscopy. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:1034983. [PMID: 36387766 PMCID: PMC9663223 DOI: 10.1155/2022/1034983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/09/2022]
Abstract
It is very important for consumers to recognize their wrong shopping habits such as unplanned purchase behavior (UPB). The traditional methods used for measuring the UPB in qualitative and quantitative studies have some drawbacks because of human perception and memory. We proposed a UPB identification methodology applied with the brain-computer interface technique using a support vector machine (SVM) along with a functional near-infrared spectroscopy (fNIRS). Hemodynamic signals and behavioral data were collected from 33 subjects by performing Task 1 which included the Buy-One-Get-One-Free (BOGOF) and Task 2 which excluded the BOGOF condition. The acquired data were calculated with 6 time-domain features and then classified them using SVM with 10-cross validations. Thereafter, we evaluated whether the results were reliable using the area under the receiver operating characteristic curve (AUC). As a result, we achieved average accuracy greater than 94%, which is reliable because of the AUC values above 0.97. We found that the UPB brain activity was more relevant to Task 1 with the BOGOF condition than with Task 2 in the prefrontal cortex. UPBs were sufficiently derived from self-reported measurement, indicating that the subjects perceived increased impulsivity in the BOGOF condition. Therefore, this study improves the detection and understanding of UPB as a path for a computer-aided detection perspective for rating the severity of UPBs.
Collapse
|
8
|
Bak S, Jeong Y, Yeu M, Jeong J. Brain-computer interface to predict impulse buying behavior using functional near-infrared spectroscopy. Sci Rep 2022; 12:18024. [PMID: 36289356 PMCID: PMC9606125 DOI: 10.1038/s41598-022-22653-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
As the rate of vaccination against COVID-19 is increasing, demand for overseas travel is also increasing. Despite people's preference for duty-free shopping, previous studies reported that duty-free shopping increases impulse buying behavior. There are also self-reported tools to measure their impulse buying behavior, but it has the disadvantage of relying on the human memory and perception. Therefore, we propose a Brain-Computer Interface (BCI)-based brain signal processing methodology to supplement these limitations and to reduce ambiguity and conjecture of data. To achieve this goal, we focused on the brain's prefrontal cortex (PFC) activity, which supervises human decision-making and is closely related to impulse buying behavior. The PFC activation is observed by recording signals using a functional near-infrared spectroscopy (fNIRS) while inducing impulse buying behavior in virtual computing environments. We found that impulse buying behaviors were not only higher in online duty-free shops than in online regular stores, but the fNIRS signals were also different on the two sites. We also achieved an average accuracy of 93.78% in detecting impulse buying patterns using a support vector machine. These results were identical to the people's self-reported responses. This study provides evidence as a potential biomarker for detecting impulse buying behavior with fNIRS.
Collapse
Affiliation(s)
- SuJin Bak
- grid.222754.40000 0001 0840 2678Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841 South Korea
| | - Yunjoo Jeong
- grid.222754.40000 0001 0840 2678Center for Research in Marketing in School of Business at Korea University, Seoul, 02841 South Korea
| | - Minsun Yeu
- grid.267370.70000 0004 0533 4667College of Business Administration, University of Ulsan, Ulsan, 44610 South Korea
| | - Jichai Jeong
- grid.222754.40000 0001 0840 2678Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841 South Korea
| |
Collapse
|
9
|
Coffman BA, Torrence N, Murphy T, Bebko G, Graur S, Chase HW, Salisbury DF, Phillips ML. Trait sensation seeking is associated with heightened beta-band oscillatory dynamics over left ventrolateral prefrontal cortex during reward expectancy. J Affect Disord 2021; 292:67-74. [PMID: 34102550 DOI: 10.1016/j.jad.2021.05.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Sensation Seeking, the proclivity toward novel and stimulating experiences, is associated with greater left ventrolateral prefrontal cortex (vlPFC) activity during uncertain reward expectancy. Here, we examined relationships between sensation seeking and vlPFC oscillatory dynamics using electroencephalography (EEG). METHODS In 26 adolescents/young adults (16 female; 22.3 ± 1.7yrs), EEG was measured during uncertain reward expectancy. Event-related spectral perturbations (ERSP) from 15-80 Hz (beta/gamma bands) were compared as a function of uncertain reward expected value and assessed for relationships with feedback-related negativity (FRN) response to outcome feedback and response tendency measures of risk for BD. RESULTS Event-related synchronization (ERS) between 15-25 Hz (beta) over left vlPFC was sensitive to the expected value of uncertain reward (rho=0.46; p = 0.048), and correlated with sensation seeking (r = 0.49, p < 0.01) and feedback-related negativity (FRN), where greater beta ERS was related to larger FRN (r = -0.39, p = 0.047). FRN was also related to behavioral inhibition (r = 0.49, p < 0.01). LIMITATIONS It is unknown whether results may extrapolate to clinical populations, given the healthy sample used here. Further, although we have confidence that the beta-band signal we measure in this study arises from left prefrontal cortex, we largely infer a left vlPFC source. CONCLUSIONS These findings highlight the role of left vlPFC in evaluation of immediate rewards. We now provide a link between reward expectancy-related left vlPFC activity and the well-characterized FRN, with a known role in attentive processing. These findings can guide treatment development for mania/hypomania at-risk individuals, including transcranial alternating current stimulation.
Collapse
Affiliation(s)
- Brian A Coffman
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States.
| | - Natasha Torrence
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Timothy Murphy
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Dean F Salisbury
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Zhuo C, Ji F, Lin X, Tian H, Wang L, Xu Y, Wang W, Jiang D. Global functional connectivity density alterations in patients with bipolar disorder with auditory verbal hallucinations and modest short-term effects of transcranial direct current stimulation augmentation treatment-Baseline and follow-up study. Brain Behav 2020; 10:e01637. [PMID: 32304288 PMCID: PMC7303392 DOI: 10.1002/brb3.1637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To investigate the neuroimaging characteristics of auditory verbal hallucinations (AVHs) in patients with bipolar disorder (BP) experiencing depressive episodes with and without AVHs, and alterations in those characteristics after transcranial direct current stimulation (tDCS). METHODS For a baseline pilot study, we recruited 80 patients with BP and depressive status (40 with and 40 without AVHs), and 40 healthy controls (HCs). Their global functional connectivity density (gFCD) was screened by functional magnetic resonance imaging (fMRI). Voxel-wise one-way analysis of covariance (ANCOVA) was conducted to detect intergroup differences in gFCD. In a follow-up study, the effects of 5 weeks of tDCS augmentation treatment on clinical symptoms and gFCD were assessed in the 40 BP patients with AVHs. RESULTS Compared to HCs, BP patients with and without AVHs exhibited increased gFCD in the central parietal lobe, insular lobe, and middle cingulate cortex, with decreased gFCD in the posterior parietal cortex, lateral prefrontal cortex, and occipital lobe (all bilateral). Only patients with AVHs showed increased gFCD in the Broca and Wernicke regions, and decreased gFCD in the hippocampus (all bilateral). After 5 weeks of tDCS, AVHs were slightly alleviated and gFCD abnormalities in the hippocampus were mildly attenuated. CONCLUSIONS Patients with BP and AVHs showed disturbances in the brain's communication capacity mainly in the left frontoparietal network, control network, and memory circuitry. Five weeks of tDCS alleviated AVHs slightly, without improving depressive symptoms, and attenuated hippocampal gFCD alterations in these patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- School of Mental Health, Jining Medical University, Jining, China.,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China.,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China.,Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|