1
|
Hommersom MP, Doorn N, Puvogel S, Lewerissa EI, Mordelt A, Ciptasari U, Kampshoff F, Dillen L, van Beusekom E, Oudakker A, Kogo N, Dolga AM, Frega M, Schubert D, van de Warrenburg BPC, Nadif Kasri N, van Bokhoven H. CACNA1A haploinsufficiency leads to reduced synaptic function and increased intrinsic excitability. Brain 2025; 148:1286-1301. [PMID: 39460936 PMCID: PMC11969466 DOI: 10.1093/brain/awae330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Haploinsufficiency of CACNA1A, encoding the pore-forming α1 subunit of P/Q-type voltage-gated calcium channels, is associated with a clinically variable phenotype ranging from cerebellar ataxia to neurodevelopmental syndromes with epilepsy and intellectual disability. To understand the pathological mechanisms of CACNA1A loss-of-function variants, we characterized a human neuronal model for CACNA1A haploinsufficiency by differentiating isogenic induced pluripotent stem cell lines into glutamatergic neurons and investigated the effect of CACNA1A haploinsufficiency on mature neuronal networks through a combination of electrophysiology, gene expression analysis and in silico modelling. We observed an altered network synchronization in CACNA1A+/- networks alongside synaptic deficits, notably marked by an augmented contribution of GluA2 subunit-lacking α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Intriguingly, these synaptic perturbations coexisted with increased non-synaptically driven activity, as characterized by inhibition of N-methyl-D-aspartate and AMPA receptors on micro-electrode arrays. Single-cell electrophysiology and gene expression analysis corroborated this increased intrinsic excitability through reduced potassium channel function and expression. Moreover, we observed partial mitigation of the CACNA1A+/- network phenotype by 4-aminopyridine, a therapeutic intervention for episodic ataxia type 2. Positive modulation of small conductance calcium-activated potassium channels could reverse the CACNA1A+/- network electrophysiological phenotype. In summary, our study pioneers the characterization of a human induced pluripotent stem cell-derived neuronal model for CACNA1A haploinsufficiency and has unveiled new mechanistic insights. Beyond showcasing synaptic deficits, this neuronal model exhibited increased intrinsic excitability mediated by diminished potassium channel function, underscoring its potential as a therapeutic discovery platform with predictive validity.
Collapse
Affiliation(s)
- Marina P Hommersom
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Sofía Puvogel
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Elly I Lewerissa
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Annika Mordelt
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Ummi Ciptasari
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Franziska Kampshoff
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Lieke Dillen
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Ellen van Beusekom
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Astrid Oudakker
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Naoki Kogo
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Amalia M Dolga
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen 9713 AV, The Netherlands
| | - Monica Frega
- Department of Clinical Neurophysiology, University of Twente, Enschede 7522 NB, The Netherlands
| | - Dirk Schubert
- Department of Cognitive Neurosciences, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Bart P C van de Warrenburg
- Department of Neurology, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Nael Nadif Kasri
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
- Department of Cognitive Neurosciences, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| | - Hans van Bokhoven
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
- Department of Cognitive Neurosciences, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
2
|
Eid L, Lokmane L, Raju PK, Tene Tadoum SB, Jiang X, Toulouse K, Lupien-Meilleur A, Charron-Ligez F, Toumi A, Backer S, Lachance M, Lavertu-Jolin M, Montseny M, Lacaille JC, Bloch-Gallego E, Rossignol E. Both GEF domains of the autism and developmental epileptic encephalopathy-associated Trio protein are required for proper tangential migration of GABAergic interneurons. Mol Psychiatry 2025; 30:1338-1358. [PMID: 39300136 PMCID: PMC11919732 DOI: 10.1038/s41380-024-02742-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Recessive and de novo mutations in the TRIO gene are associated with intellectual deficiency (ID), autism spectrum disorder (ASD) and developmental epileptic encephalopathies (DEE). TRIO is a dual guanine nucleotide exchange factor (GEF) that activates Rac1, Cdc42 and RhoA. Trio has been extensively studied in excitatory neurons, and has recently been found to regulate the switch from tangential to radial migration in GABAergic interneurons (INs) through GEFD1-Rac1-dependent SDF1α/CXCR4 signaling. Given the central role of Rho-GTPases during neuronal migration and the implication of IN pathologies in ASD and DEE, we investigated the relative roles of both Trio's GEF domains in regulating the dynamics of INs tangential migration. In Trio-/- mice, we observed reduced numbers of tangentially migrating INs, with intact progenitor proliferation. Further, we noted increased growth cone collapse in developing INs, suggesting altered cytoskeleton dynamics. To bypass the embryonic mortality of Trio-/- mice, we generated Dlx5/6Cre;Trioc/c conditional mutant mice (TriocKO), which develop spontaneous seizures and behavioral deficits reminiscent of ASD and ID. These phenotypes are associated with reduced cortical IN density and functional cortical inhibition. Mechanistically, this reduction of cortical IN numbers reflects a premature switch to radial migration, with an aberrant early entry in the cortical plate, as well as major deficits in cytoskeletal dynamics, including enhanced leading neurite branching and slower nucleokinesis reflecting reduced actin filament condensation and turnover as well as a loss of response to the motogenic effect of EphA4/ephrin A2 reverse signaling. Further, we show that both Trio GEFD1 and GEFD2 domains are required for proper IN migration, with a dominant role of the RhoA-activating GEFD2 domain. Altogether, our data show a critical role of the DEE/ASD-associated Trio gene in the establishment of cortical inhibition and the requirement of both GEF domains in regulating IN migration dynamics.
Collapse
Affiliation(s)
- Lara Eid
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Ludmilla Lokmane
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Praveen K Raju
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Samuel Boris Tene Tadoum
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Xiao Jiang
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Karolanne Toulouse
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Alexis Lupien-Meilleur
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
| | - François Charron-Ligez
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Asmaa Toumi
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Stéphanie Backer
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mathieu Lachance
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marisol Lavertu-Jolin
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada
| | - Marie Montseny
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Jean-Claude Lacaille
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada
- Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage, Groupe de recherche sur la signalisation neurale et la circuiterie, Université de Montréal, Montréal, QC, Canada
| | - Evelyne Bloch-Gallego
- Institut Cochin- INSERM, U1016-CNRS UMR 8104-Université Paris Cité -24, rue du Faubourg Saint-Jacques, 75014, Paris, France.
| | - Elsa Rossignol
- Centre de recherche du CHU Sainte-Justine, 3175 Côte Ste-Catherine, Montréal, QC, H3T 1C5, Canada.
- Département de neurosciences, Université de Montréal, Montréal, QC, Canada.
- Département de Pédiatrie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
3
|
Saldes EB, Erdmier A, Velpula J, Koeltzow TE, Zhu MX, Asuthkar S. Transcriptomic Profile Analysis of Brain Tissue in the Absence of Functional TRPM8 Calcium Channel. Biomedicines 2024; 13:75. [PMID: 39857659 PMCID: PMC11760472 DOI: 10.3390/biomedicines13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Transient Receptor Potential Melastatin 8 (TRPM8) is a non-selective, Ca2+-permeable cation channel involved in thermoregulation and other physiological processes, such as basal tear secretion, cell differentiation, and insulin homeostasis. The activation and deactivation of TRPM8 occur through genetic modifications, channel interactions, and signaling cascades. Recent evidence suggests a significant role of TRPM8 in the hypothalamus and amygdala related to pain sensation and sexual behavior. Notably, TRPM8 has been implicated in neuropathic pain, migraines, and neurodegenerative diseases such as Parkinson's disease. Our laboratory has identified testosterone as a high-affinity ligand of TRPM8. TRPM8 deficiency appears to influence behavioral traits in mice, like increased aggression and deficits in sexual satiety. Here, we aim to explore the pathways altered in brain tissues of TRPM8-deficient mice using the expression and methylation profiles of messenger RNA (mRNA) and long non-coding RNA (lncRNA). Specifically, we focused on brain regions integral to behavioral and hormonal control, including the olfactory bulb, hypothalamus, amygdala, and insula. Methods: RNA was isolated and purified for microarray analysis collected from male wild-type and TRPM8 knockout mice. Results: We identified various differentially expressed genes tied to multiple signaling pathways. Among them, the androgen-estrogen receptor (AR-ER) pathway, steroidogenesis pathway, sexual reward pathway, and cocaine reward pathway are particularly worth noting. Conclusions: These results should bridge the existing gaps in the knowledge regarding TRPM8 and inform potential targets for future studies to elucidate its role in the behavior changes and pathology of the diseases associated with TRPM8 activity.
Collapse
Affiliation(s)
- Erick B. Saldes
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (E.B.S.); (A.E.); (T.E.K.)
| | - Alexandra Erdmier
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (E.B.S.); (A.E.); (T.E.K.)
| | | | - Timothy E. Koeltzow
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (E.B.S.); (A.E.); (T.E.K.)
- Department of Psychology, Bradley University, Peoria, IL 61625, USA
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA; (E.B.S.); (A.E.); (T.E.K.)
- Department of Pediatrics, University of Illinois College of Medicine Peoria, Peoria, IL 61605, USA
| |
Collapse
|
4
|
Fox PM, Malepati S, Manaster L, Rossignol E, Noebels JL. Developing a pathway to clinical trials for CACNA1A-related epilepsies: A patient organization perspective. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241245725. [PMID: 38681799 PMCID: PMC11047245 DOI: 10.1177/26330040241245725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
CACNA1A-related disorders are rare neurodevelopmental disorders linked to variants in the CACNA1A gene. This gene encodes the α1 subunit of the P/Q-type calcium channel Cav2.1, which is globally expressed in the brain and crucial for fast synaptic neurotransmission. The broad spectrum of CACNA1A-related neurological disorders includes developmental and epileptic encephalopathies, familial hemiplegic migraine type 1, episodic ataxia type 2, spinocerebellar ataxia type 6, together with unclassified presentations with developmental delay, ataxia, intellectual disability, autism spectrum disorder, and language impairment. The severity of each disorder is also highly variable. The spectrum of CACNA1A-related seizures is broad across both loss-of-function and gain-of-function variants and includes absence seizures, focal seizures with altered consciousness, generalized tonic-clonic seizures, tonic seizures, status epilepticus, and infantile spasms. Furthermore, over half of CACNA1A-related epilepsies are refractory to current therapies. To date, almost 1700 CACNA1A variants have been reported in ClinVar, with over 400 listed as Pathogenic or Likely Pathogenic, but with limited-to-no clinical or functional data. Robust genotype-phenotype studies and impacts of variants on protein structure and function have also yet to be established. As a result, there are few definitive treatment options for CACNA1A-related epilepsies. The CACNA1A Foundation has set out to change the landscape of available and effective treatments and improve the quality of life for those living with CACNA1A-related disorders, including epilepsy. Established in March 2020, the Foundation has built a robust preclinical toolbox that includes patient-derived induced pluripotent stem cells and novel disease models, launched clinical trial readiness initiatives, and organized a global CACNA1A Research Network. This Research Network is currently composed of over 60 scientists and clinicians committed to collaborating to accelerate the path to CACNA1A-specific treatments and one day, a cure.
Collapse
Affiliation(s)
- Pangkong M. Fox
- CACNA1A Foundation, Inc., 31 Pt Road, Norwalk, CT 06854, USA
| | | | | | - Elsa Rossignol
- CACNA1A Foundation, Inc., Norwalk, CT, USA
- CHU Sainte-Justine Research Center, Departments of Neurosciences and Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Jeffrey L. Noebels
- CACNA1A Foundation, Inc., Norwalk, CT, USA
- Blue Bird Circle Developmental Neurogenetics Laboratory, Department of Neurology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| |
Collapse
|
5
|
Shao W, Zheng H, Zhu J, Li W, Li Y, Hu W, Zhang J, Jing L, Wang K, Jiang X. Deletions of Cacna2d3 in parvalbumin-expressing neurons leads to autistic-like phenotypes in mice. Neurochem Int 2023; 169:105569. [PMID: 37419212 DOI: 10.1016/j.neuint.2023.105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/23/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Autism spectrum disorder (ASD) is a series of highly inherited neurodevelopmental disorders. Loss-of-function (LOF) mutations in the CACNA2D3 gene are associated with ASD. However, the underlying mechanism is unknown. Dysfunction of cortical interneurons (INs) is strongly implicated in ASD. Parvalbumin-expressing (PV) INs and somatostatin-expressing (SOM) INs are the two most subtypes. Here, we characterized a mouse knockout of the Cacna2d3 gene in PV-expressing neurons (PVCre;Cacna2d3f/f mice) or in SOM-expressing neurons (SOMCre;Cacna2d3f/f mice), respectively. PVCre;Cacna2d3f/f mice showed deficits in the core ASD behavioral domains (including impaired sociability and increased repetitive behavior), as well as anxiety-like behavior and improved spatial memory. Furthermore, loss of Cacna2d3 from a subset of PV neurons results in a reduction of GAD67 and PV expression in the medial prefrontal cortex (mPFC). These may underlie the increased neuronal excitability in the mPFC, which contribute to the abnormal social behavior in PVCre;Cacna2d3f/f mice. Whereas, SOMCre;Cacna2d3f/f mice showed no obvious deficits in social, cognitive, or emotional phenotypes. Our findings provide the first evidence suggesting the causal role of Cacna2d3 insufficiency in PV neurons in autism.
Collapse
Affiliation(s)
- Wei Shao
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Hang Zheng
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Jingwen Zhu
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Wenhao Li
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
| | - Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wenjie Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| | - Kai Wang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China; Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, China; Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China.
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China.
| |
Collapse
|
6
|
Toudji I, Toumi A, Chamberland É, Rossignol E. Interneuron odyssey: molecular mechanisms of tangential migration. Front Neural Circuits 2023; 17:1256455. [PMID: 37779671 PMCID: PMC10538647 DOI: 10.3389/fncir.2023.1256455] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Cortical GABAergic interneurons are critical components of neural networks. They provide local and long-range inhibition and help coordinate network activities involved in various brain functions, including signal processing, learning, memory and adaptative responses. Disruption of cortical GABAergic interneuron migration thus induces profound deficits in neural network organization and function, and results in a variety of neurodevelopmental and neuropsychiatric disorders including epilepsy, intellectual disability, autism spectrum disorders and schizophrenia. It is thus of paramount importance to elucidate the specific mechanisms that govern the migration of interneurons to clarify some of the underlying disease mechanisms. GABAergic interneurons destined to populate the cortex arise from multipotent ventral progenitor cells located in the ganglionic eminences and pre-optic area. Post-mitotic interneurons exit their place of origin in the ventral forebrain and migrate dorsally using defined migratory streams to reach the cortical plate, which they enter through radial migration before dispersing to settle in their final laminar allocation. While migrating, cortical interneurons constantly change their morphology through the dynamic remodeling of actomyosin and microtubule cytoskeleton as they detect and integrate extracellular guidance cues generated by neuronal and non-neuronal sources distributed along their migratory routes. These processes ensure proper distribution of GABAergic interneurons across cortical areas and lamina, supporting the development of adequate network connectivity and brain function. This short review summarizes current knowledge on the cellular and molecular mechanisms controlling cortical GABAergic interneuron migration, with a focus on tangential migration, and addresses potential avenues for cell-based interneuron progenitor transplants in the treatment of neurodevelopmental disorders and epilepsy.
Collapse
Affiliation(s)
- Ikram Toudji
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Asmaa Toumi
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - Émile Chamberland
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Elsa Rossignol
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Inibhunu H, Moradi Chameh H, Skinner F, Rich S, Valiante TA. Hyperpolarization-Activated Cation Channels Shape the Spiking Frequency Preference of Human Cortical Layer 5 Pyramidal Neurons. eNeuro 2023; 10:ENEURO.0215-23.2023. [PMID: 37567768 PMCID: PMC10467019 DOI: 10.1523/eneuro.0215-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Discerning the contribution of specific ionic currents to complex neuronal dynamics is a difficult, but important, task. This challenge is exacerbated in the human setting, although the widely characterized uniqueness of the human brain compared with preclinical models necessitates the direct study of human neurons. Neuronal spiking frequency preference is of particular interest given its role in rhythm generation and signal transmission in cortical circuits. Here, we combine the frequency-dependent gain (FDG), a measure of spiking frequency preference, and novel in silico analyses to dissect the contributions of individual ionic currents to the suprathreshold features of human layer 5 (L5) neurons captured by the FDG. We confirm that a contemporary model of such a neuron, primarily constrained to capture subthreshold activity driven by the hyperpolarization-activated cyclic nucleotide gated (h-) current, replicates key features of the in vitro FDG both with and without h-current activity. With the model confirmed as a viable approximation of the biophysical features of interest, we applied new analysis techniques to quantify the activity of each modeled ionic current in the moments before spiking, revealing unique dynamics of the h-current. These findings motivated patch-clamp recordings in analogous rodent neurons to characterize their FDG, which confirmed that a biophysically detailed model of these neurons captures key interspecies differences in the FDG. These differences are correlated with distinct contributions of the h-current to neuronal activity. Together, this interdisciplinary and multispecies study provides new insights directly relating the dynamics of the h-current to suprathreshold spiking frequency preference in human L5 neurons.
Collapse
Affiliation(s)
- Happy Inibhunu
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Homeira Moradi Chameh
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Frances Skinner
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
- Departments of Medicine, Neurology and Physiology, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Scott Rich
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
| | - Taufik A Valiante
- Division of Clinical and Computational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, Ontario M5T 1M8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3E2, Canada
- Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| |
Collapse
|
8
|
Rousseau J, Tene Tadoum SB, Lavertu Jolin M, Nguyen TTM, Ajeawung NF, Flenniken AM, Nutter LMJ, Vukobradovic I, Rossignol E, Campeau PM. The ATP6V1B2 DDOD/DOORS-Associated p.Arg506* Variant Causes Hyperactivity and Seizures in Mice. Genes (Basel) 2023; 14:1538. [PMID: 37628590 PMCID: PMC10454733 DOI: 10.3390/genes14081538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The vacuolar H+-ATPase is a multisubunit enzyme which plays an essential role in the acidification and functions of lysosomes, endosomes, and synaptic vesicles. Many genes encoding subunits of V-ATPases, namely ATP6V0C, ATP6V1A, ATP6V0A1, and ATP6V1B2, have been associated with neurodevelopmental disorders and epilepsy. The autosomal dominant ATP6V1B2 p.Arg506* variant can cause both congenital deafness with onychodystrophy, autosomal dominant (DDOD) and deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures syndromes (DOORS). Some but not all individuals with this truncating variant have intellectual disability and/or epilepsy, suggesting incomplete penetrance and/or variable expressivity. To further explore the impact of the p.Arg506* variant in neurodevelopment and epilepsy, we generated Atp6v1b2emR506* mutant mice and performed standardized phenotyping using the International Mouse Phenotyping Consortium (IMPC) pipeline. In addition, we assessed the EEG profile and seizure susceptibility of Atp6v1b2emR506* mice. Behavioral tests revealed that the mice present locomotor hyperactivity and show less anxiety-associated behaviors. Moreover, EEG analyses indicate that Atp6v1b2emR506* mutant mice have interictal epileptic activity and that both heterozygous (like patients) and homozygous mice have reduced seizure thresholds to pentylenetetrazol. Our results confirm that variants in ATP6V1B2 can cause seizures and that the Atp6v1b2emR506* heterozygous mouse model is a valuable tool to further explore the pathophysiology and potential treatments for vacuolar ATPases-associated epilepsy and disorders.
Collapse
Affiliation(s)
- Justine Rousseau
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Samuel Boris Tene Tadoum
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Marisol Lavertu Jolin
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Thi Tuyet Mai Nguyen
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Norbert Fonya Ajeawung
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Ann M. Flenniken
- Lunenfeld-Tanenbaum Research Institute, The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada
| | - Lauryl M. J. Nutter
- The Hospital for Sick Children, The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada
| | - Igor Vukobradovic
- Lunenfeld-Tanenbaum Research Institute, The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada
| | - Elsa Rossignol
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| | - Philippe M. Campeau
- CHU Sainte-Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada (N.F.A.); (E.R.)
| |
Collapse
|
9
|
Chehrazi P, Lee KKY, Lavertu-Jolin M, Abbasnejad Z, Carreño-Muñoz MI, Chattopadhyaya B, Di Cristo G. p75 neurotrophin receptor in pre-adolescent prefrontal PV interneurons promotes cognitive flexibility in adult mice. Biol Psychiatry 2023:S0006-3223(23)01238-6. [PMID: 37120061 DOI: 10.1016/j.biopsych.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/31/2023] [Accepted: 04/16/2023] [Indexed: 05/01/2023]
Abstract
BACKGROUND Parvalbumin (PV)-positive GABAergic cells provide robust perisomatic inhibition to neighboring pyramidal neurons and regulate brain oscillations. Alterations in PV interneuron connectivity and function in the medial prefrontal cortex (mPFC) have been consistently reported in psychiatric disorders associated with cognitive rigidity, suggesting that PV cell deficits could be a core cellular phenotype in these disorders. p75 neurotrophin receptor (p75NTR) regulates the time course of PV cell maturation in a cell-autonomous fashion. Whether p75NTR expression during postnatal development affects adult prefrontal PV cell connectivity and cognitive function is unknown. METHODS We generated transgenic mice with conditional knockout (cKO) of p75NTR in postnatal PV cells. We analysed PV cell connectivity and recruitment following a tail pinch, by immunolabeling and confocal imaging, in naïve mice or following p75NTR re-expression in pre- or post-adolescent mice using Cre-dependent viral vectors. Cognitive flexibility was evaluated using behavioral tests. RESULTS PV cell-specific p75NTR deletion increased both PV cell synapse density and the proportion of PV cells surrounded by perineuronal nets, a marker of mature PV cells, in adult mPFC but not visual cortex. Both phenotypes were rescued by viral-mediated re-introduction of p75NTR in pre-adolescent but not post-adolescent mPFC. Prefrontal cortical PV cells failed to upregulate c-Fos following a tail-pinch stimulation in adult cKO mice. Finally, cKO mice showed impaired fear memory extinction learning as well as deficits in a attention set-shifting task. CONCLUSION These findings suggest that p75NTR expression in adolescent PV cells contributes to the fine tuning of their connectivity and promotes cognitive flexibility in adulthood.
Collapse
Affiliation(s)
- Pegah Chehrazi
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Karen Ka Yan Lee
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Marisol Lavertu-Jolin
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Zahra Abbasnejad
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | - Maria Isabel Carreño-Muñoz
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada
| | | | - Graziella Di Cristo
- Centre de Recherche, CHU Sainte-Justine (CHUSJ), Montréal, Canada; Department of Neurosciences, Université de Montréal, Montréal, Canada.
| |
Collapse
|
10
|
Singh M, Sapkota K, Sakimura K, Kano M, Cowell RM, Overstreet-Wadiche L, Hablitz JJ, Nakazawa K. Maturation of GABAergic Synaptic Transmission From Neocortical Parvalbumin Interneurons Involves N-methyl-D-aspartate Receptor Recruitment of Cav2.1 Channels. Neuroscience 2023; 513:38-53. [PMID: 36682446 DOI: 10.1016/j.neuroscience.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/02/2023] [Accepted: 01/08/2023] [Indexed: 01/21/2023]
Abstract
N-methyl-D-aspartate receptor (NMDAR) hypofunction during brain development is likely to contribute to the manifestation of schizophrenia (SCZ) in young adulthood. The cellular targets of NMDAR hypofunction appear to be at least in part corticolimbic fast-spiking (FS) interneurons. However, functional alterations in parvalbumin (PV)-positive FS interneurons following NMDAR hypofunction are poorly understood. Paired patch-clamp recordings from murine cortical PV interneurons and pyramidal neurons revealed that genetic deletion of NMDAR subunit Grin1 in prospective PV interneurons before the second postnatal week impaired evoked- and synchronized-GABA release. Whereas intrinsic excitability and spiking characteristics were also disturbed by Grin1 deletion, neither restoring their excitability by K+ channel blockade nor increasing extracellular Ca2+ rescued the GABA release. GABA release was also insensitive to the Cav2.1 channel antagonist ω-agatoxin IVA. Heterozygous deletion of Cacna1a gene (encoding Cav2.1) in PV interneurons produced a similar GABA release phenotype as the Grin1 mutants. Treatment with the Cav2.1/2.2 channel agonist GV-58 augmented somatic Ca2+ currents and GABA release in Cacna1a-haploinsufficient PV interneurons, but failed to enhance GABA release in the Grin1-deleted PV interneurons. Taken together, our results suggest that Grin1 deletion in prospective PV interneurons impairs proper maturation of membrane excitability and Cav2.1-recruited evoked GABA release. This may increase synaptic excitatory/inhibitory ratio in principal neurons, contributing to the emergence of SCZ-like phenotypes.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Kiran Sapkota
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Tokyo 113-0033, Japan
| | - Rita M Cowell
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | - John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kazu Nakazawa
- Department of Neuroscience, Scientific Platforms, Southern Research, Birmingham, AL 35205, USA; Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Abstract
The fundamental commonality across pharmacotherapies for the epilepsies
is the modulation of neuronal excitability. This poses a clear
challenge—patterned neuronal excitation is essential to normal
function, thus disrupting this activity leads to side effects.
Moreover, the efficacy of current pharmacotherapy remains incomplete
despite decades of drug development. Approaches that allow for the
selective targeting of critical populations of cells and particular
pathways in the brain have the potential to both avoid side effects
and improve efficacy. Chemogenetic methods, which combine the
selective expression of designer receptors with designer drugs, have
rapidly grown in use in the neurosciences, including in epilepsy. This
review will briefly highlight the history of chemogenetics, their
applications to date in epilepsy, and the potential (and potential
hurdles to overcome) for future translation.
Collapse
Affiliation(s)
- Patrick A. Forcelli
- Department of Pharmacology & Physiology, Georgetown University, Washington, DC, USA
- Department of Neuroscience, Georgetown University, Washington, DC, USA
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| |
Collapse
|
12
|
Nakao A, Hayashida K, Ogura H, Mori Y, Imoto K. Hippocampus-related cognitive disorders develop in the absence of epilepsy and ataxia in the heterozygous Cacna1a mutant mice tottering. Channels (Austin) 2022; 16:113-126. [PMID: 35548926 PMCID: PMC9103357 DOI: 10.1080/19336950.2022.2072449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CACNA1A-associated epilepsy and ataxia frequently accompany cognitive impairments as devastating co-morbidities. However, it is unclear whether the cognitive deficits are consequences secondary to the neurological symptoms elicited by CACNA1A mutations. To address this issue, Cacna1a mutant mice tottering (tg), and in particular tg/+ heterozygotes, serve as a suitable model system, given that tg/+ heterozygotes fail to display spontaneous absence epilepsy and ataxia typically observed in tg/tg homozygotes. Here, we examined hippocampus-dependent behaviors and hippocampal learning-related synaptic plasticity in tg mice. In behavioral analyses of tg/+ and tg/tg, acquisition and retention of spatial reference memory were characteristically impaired in the Morris water maze task, while working memory was intact in the eight-arm radial maze and T-maze tasks. tg/+ heterozygotes showed normal motor function in contrast to tg/tg homozygotes. In electrophysiological analyses, Schaffer collateral–CA1 synapses showed a deficit in the maintenance of long-term potentiation in tg/+ and tg/tg mice and an increased paired-pulse facilitation induced by paired pulses with 100 ms in tg/tg mice. Our results indicate that the tg mutation causes a dominant disorder of the hippocampus-related memory and synaptic plasticity, raising the possibility that in CACNA1A-associated human diseases, functionally aberrant CaV2.1 Ca2+ channels actively induce the observed cognitive deficits independently of the neurological symptoms.
Collapse
Affiliation(s)
- Akito Nakao
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Katsumi Hayashida
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Hiroo Ogura
- Product Creation Headquarters, Eisai Corporate, Limited, Tokyo, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Keiji Imoto
- Division of Neural Signaling, Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|