1
|
Estrada-Reyes Y, Cervantes-Alfaro JM, López-Vázquez MÁ, Olvera-Cortés ME. Prefrontal serotonin depletion delays reversal learning and increases theta synchronization of the infralimbic-prelimbic-orbitofrontal prefrontal cortex circuit. Front Pharmacol 2024; 15:1501896. [PMID: 39691394 PMCID: PMC11649410 DOI: 10.3389/fphar.2024.1501896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/07/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Prefrontal serotonin plays a role in the expression of flexible behavior during reversal learning tasks as its depletion delays reversal learning. However, the mechanisms by which serotonin modulates the prefrontal cortex functions during reversal learning remain unclear. Nevertheless, serotonin has been shown to modulate theta activity during spatial learning and memory. Methods We evaluated the effects of prefrontal serotonin depletion on theta activity in the prefrontal infralimbic, prelimbic, and orbitofrontal (IL, PL, and OFC) subregions of male rats during a spatial reversal learning task in an aquatic T-maze. Results Prefrontal serotonin depletion delayed spatial reversal learning and increased theta activity power in the PL and OFC. Furthermore, animals with serotonin depletion had increased functional coupling between the OFC and the IL and PL cortices compared with the control group. Discussion These results indicate that serotonin regulates reversal learning through modulation of prefrontal theta activity by tuning both the power and functional synchronization of the prefrontal subregions.
Collapse
Affiliation(s)
- Yoana Estrada-Reyes
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - José Miguel Cervantes-Alfaro
- Laboratorio de Neurociencias, Departamento de Posgrado, Facultad de Ciencias Médicas Y biológicas Dr. Ignacio Chávez, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Miguel Ángel López-Vázquez
- Laboratorio de Neuroplasticidad de los Procesos Cognitivos, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| | - María Esther Olvera-Cortés
- Laboratorio de Neurofisiología Clínica y Experimental, Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, Mexico
| |
Collapse
|
2
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
3
|
Colwell MJ, Tagomori H, Shang F, Cheng HI, Wigg CE, Browning M, Cowen PJ, Murphy SE, Harmer CJ. Direct serotonin release in humans shapes aversive learning and inhibition. Nat Commun 2024; 15:6617. [PMID: 39122687 PMCID: PMC11315928 DOI: 10.1038/s41467-024-50394-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
The role of serotonin in human behaviour is informed by approaches which allow in vivo modification of synaptic serotonin. However, characterising the effects of increased serotonin signalling in human models of behaviour is challenging given the limitations of available experimental probes, notably selective serotonin reuptake inhibitors. Here we use a now-accessible approach to directly increase synaptic serotonin in humans (a selective serotonin releasing agent) and examine its influence on domains of behaviour historically considered core functions of serotonin. Computational techniques, including reinforcement learning and drift diffusion modelling, explain participant behaviour at baseline and after week-long intervention. Reinforcement learning models reveal that increasing synaptic serotonin reduces sensitivity for outcomes in aversive contexts. Furthermore, increasing synaptic serotonin enhances behavioural inhibition, and shifts bias towards impulse control during exposure to aversive emotional probes. These effects are seen in the context of overall improvements in memory for neutral verbal information. Our findings highlight the direct effects of increasing synaptic serotonin on human behaviour, underlining its role in guiding decision-making within aversive and more neutral contexts, and offering implications for longstanding theories of central serotonin function.
Collapse
Affiliation(s)
- Michael J Colwell
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| | - Hosana Tagomori
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Fei Shang
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Hoi Iao Cheng
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Chloe E Wigg
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Michael Browning
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Philip J Cowen
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Susannah E Murphy
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Catherine J Harmer
- University Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK.
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK.
| |
Collapse
|
4
|
Hervig MES, Zühlsdorff K, Olesen SF, Phillips B, Božič T, Dalley JW, Cardinal RN, Alsiö J, Robbins TW. 5-HT 2A and 5-HT 2C receptor antagonism differentially modulate reinforcement learning and cognitive flexibility: behavioural and computational evidence. Psychopharmacology (Berl) 2024; 241:1631-1644. [PMID: 38594515 PMCID: PMC11269483 DOI: 10.1007/s00213-024-06586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
RATIONALE Cognitive flexibility, the ability to adapt behaviour in response to a changing environment, is disrupted in several neuropsychiatric disorders, including obsessive-compulsive disorder and major depressive disorder. Evidence suggests that flexibility, which can be operationalised using reversal learning tasks, is modulated by serotonergic transmission. However, how exactly flexible behaviour and associated reinforcement learning (RL) processes are modulated by 5-HT action on specific receptors is unknown. OBJECTIVES We investigated the effects of 5-HT2A receptor (5-HT2AR) and 5-HT2C receptor (5-HT2CR) antagonism on flexibility and underlying RL mechanisms. METHODS Thirty-six male Lister hooded rats were trained on a touchscreen visual discrimination and reversal task. We evaluated the effects of systemic treatments with the 5-HT2AR and 5-HT2CR antagonists M100907 and SB-242084, respectively, on reversal learning and performance on probe trials where correct and incorrect stimuli were presented with a third, probabilistically rewarded, stimulus. Computational models were fitted to task choice data to extract RL parameters, including a novel model designed specifically for this task. RESULTS 5-HT2AR antagonism impaired reversal learning only after an initial perseverative phase, during a period of random choice and then new learning. 5-HT2CR antagonism, on the other hand, impaired learning from positive feedback. RL models further differentiated these effects. 5-HT2AR antagonism decreased punishment learning rate (i.e. negative feedback) at high and low doses. The low dose also decreased reinforcement sensitivity (beta) and increased stimulus and side stickiness (i.e., the tendency to repeat a choice regardless of outcome). 5-HT2CR antagonism also decreased beta, but reduced side stickiness. CONCLUSIONS These data indicate that 5-HT2A and 5-HT2CRs both modulate different aspects of flexibility, with 5-HT2ARs modulating learning from negative feedback as measured using RL parameters and 5-HT2CRs for learning from positive feedback assessed through conventional measures.
Collapse
Affiliation(s)
- Mona El-Sayed Hervig
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Neuroscience, University of Copenhagen, Copenhagen, DK-2200, Denmark
| | - Katharina Zühlsdorff
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
- The Alan Turing Institute, British Library, London, NW1 2DVB, UK.
| | - Sarah F Olesen
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Benjamin Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Tadej Božič
- UCL Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, W1T 4JG, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, Herchel Smith Building, Cambridge, CB2 0SZ, UK
- Liaison Psychiatry Service, Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge Biomedical Campus, Box 190, Cambridge, CB2 0QQ, UK
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- School of Physiology, Pharmacology & Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Trevor W Robbins
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
5
|
Desmercieres S, Lardeux V, Longueville JE, Dugast E, Thiriet N, Solinas M. Effects of Highly Palatable Diet on motivation for food and resistance to punishment in rats: Role of sex and age of exposure. Appetite 2024; 198:107340. [PMID: 38582135 DOI: 10.1016/j.appet.2024.107340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/05/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Exposure to highly palatable food is believed to induce behavioral and neurobiological changes that may produce addiction-like behavior and increase the risks of obesity and overweight. Studies in rodents have led to conflicting results suggesting that several factors such as sex and age of exposure contribute to the development of maladaptive behaviors towards food. In addition, it is not clear whether effects of exposure to highly palatable diets (HPD) persist after their discontinuation, which would indicate long-term risks to develop addiction-like behavior. In this study, we investigated the persistent effects of an intermittent 8-week exposure to HPD in male and female rats as a function of age of exposure (adult and adolescent). We found that intermittent exposure to HPD did not alter body weight, but it affected consumption of standard food during the time of exposure in all groups. In addition, in adults, HPD produced a decrease in the initial baseline responding in FR1 schedules, an effect that persisted for 4 weeks in males but not in female rats. However, we found that exposure to HPD did not affect resistance to punishment measured by progressive shock strength break points or motivation for food as measured by progressive-ratio break points regardless of sex or age of exposure. Altogether, these results do not provide support for the hypothesis that intermittent exposure to HPD produce persistent increases in the vulnerability to develop addiction-like behaviors towards palatable food.
Collapse
Affiliation(s)
- Stevenson Desmercieres
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Jean-Emmanuel Longueville
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France; CHU de Poitiers, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
6
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
7
|
Nist AN, Walsh SJ, Shahan TA. Ketamine produces no detectable long-term positive or negative effects on cognitive flexibility or reinforcement learning of male rats. Psychopharmacology (Berl) 2024; 241:849-863. [PMID: 38062167 DOI: 10.1007/s00213-023-06514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/25/2023] [Indexed: 03/13/2024]
Abstract
RATIONALE Patients with major depressive disorder (MDD) often experience abnormalities in behavioral adaptation following environmental changes (i.e., cognitive flexibility) and tend to undervalue positive outcomes but overvalue negative outcomes. The probabilistic reversal learning task (PRL) is used to study these deficits across species and to explore drugs that may have therapeutic value. Selective serotonin-reuptake inhibitors (SSRIs) have limited effectiveness in treating MDD and produce inconsistent effects in non-human versions of the PRL. As such, ketamine, a novel and potentially rapid-acting therapeutic, has begun to be examined using the PRL. Two previous studies examining the effects of ketamine in the PRL have shown conflicting results and only examined short-term effects of ketamine. OBJECTIVE This experiment examined PRL performance across a 2-week period following a single exposure to a ketamine dose that varied across groups. METHODS After five sessions of PRL training, groups of rats received an injection of either 0, 10, 20 or 30 mg/kg ketamine. One-hour post-injection, rats engaged in the PRL, and subsequently sessions continued daily for 2 weeks. Traditional behavioral and computational reinforcement learning-derived measures were examined. RESULTS Results showed that ketamine had acute effects 1-h post-injection, including a significant decrease in the value of the punishment learning rate. Beyond 1 h, ketamine produced no detectable improvements nor decrements in performance across 2 weeks. CONCLUSION Overall, the present results suggest that the range of ketamine doses examined do not have long-term positive or negative effects on cognitive flexibility or reward processing in healthy rats as measured by the PRL.
Collapse
Affiliation(s)
- Anthony N Nist
- Department of Psychology, Utah State University, Logan, USA.
| | - Stephen J Walsh
- Department of Mathematics and Statistics, Utah State University, Logan, USA
| | | |
Collapse
|
8
|
Solinas M, Lardeux V, Leblanc PM, Longueville JE, Thiriet N, Vandaele Y, Panlilio LV, Jaafari N. Delay of punishment highlights differential vulnerability to developing addiction-like behavior toward sweet food. Transl Psychiatry 2024; 14:155. [PMID: 38509086 PMCID: PMC10954751 DOI: 10.1038/s41398-024-02863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/22/2024] Open
Abstract
Resistance to punishment is commonly used to measure the difficulty in refraining from rewarding activities when negative consequences ensue, which is a hallmark of addictive behavior. We recently developed a progressive shock strength (PSS) procedure in which individual rats can titrate the amount of punishment that they are willing to tolerate to obtain food rewards. Here, we investigated the effects of a range of delays (0-12 s) on resistance to punishment measured by PSS break points. As expected from delay discounting principles, we found that delayed shock was less effective as a punisher, as revealed by higher PSS breakpoints. However, this discounting effect was not equally distributed in the population of rats, and the introduction of a delay highlighted the existence of two populations: rats that were sensitive to immediate punishment were also sensitive to delayed shock, whereas rats that were resistant to immediate punishment showed strong temporal discounting of delayed punishment. Importantly, shock-sensitive rats suppressed responding even in subsequent non-punishment sessions, and they differed from shock-resistant rats in anxiety-like behavior, but not in sensitivity to pain. These results show that manipulation of temporal contingencies of punishment in the PSS procedure provides a valuable tool to identify individuals with a double vulnerability to addiction: low sensitivity to aversion and excessive discounting of negative future consequences. Conversely, the shock-sensitive population may provide a model of humans who are vulnerable to opportunity loss due to excessive anxiety.
Collapse
Affiliation(s)
- Marcello Solinas
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France.
- Unité de Recherche Clinique Intersectorielle en Psychiatrie, Centre Hospitalier Henri-Laborit, Poitiers, France.
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pierre-Marie Leblanc
- Unité de Recherche Clinique Intersectorielle en Psychiatrie, Centre Hospitalier Henri-Laborit, Poitiers, France
| | - Jean-Emmanuel Longueville
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Youna Vandaele
- Université de Poitiers, INSERM, U1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Leigh V Panlilio
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Nematollah Jaafari
- Unité de Recherche Clinique Intersectorielle en Psychiatrie, Centre Hospitalier Henri-Laborit, Poitiers, France
- Université de Poitiers, CNRS, UMR 7295, Centre de Recherche sur la Cognition et l'apprentissage, Poitiers, France
| |
Collapse
|
9
|
Luo Q, Kanen JW, Bari A, Skandali N, Langley C, Knudsen GM, Alsiö J, Phillips BU, Sahakian BJ, Cardinal RN, Robbins TW. Comparable roles for serotonin in rats and humans for computations underlying flexible decision-making. Neuropsychopharmacology 2024; 49:600-608. [PMID: 37914893 PMCID: PMC10789782 DOI: 10.1038/s41386-023-01762-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023]
Abstract
Serotonin is critical for adapting behavior flexibly to meet changing environmental demands. Cognitive flexibility is important for successful attainment of goals, as well as for social interactions, and is frequently impaired in neuropsychiatric disorders, including obsessive-compulsive disorder. However, a unifying mechanistic framework accounting for the role of serotonin in behavioral flexibility has remained elusive. Here, we demonstrate common effects of manipulating serotonin function across two species (rats and humans) on latent processes supporting choice behavior during probabilistic reversal learning, using computational modelling. The findings support a role of serotonin in behavioral flexibility and plasticity, indicated, respectively, by increases or decreases in choice repetition ('stickiness') or reinforcement learning rates following manipulations intended to increase or decrease serotonin function. More specifically, the rate at which expected value increased following reward and decreased following punishment (reward and punishment 'learning rates') was greatest after sub-chronic administration of the selective serotonin reuptake inhibitor (SSRI) citalopram (5 mg/kg for 7 days followed by 10 mg/kg twice a day for 5 days) in rats. Conversely, humans given a single dose of an SSRI (20 mg escitalopram), which can decrease post-synaptic serotonin signalling, and rats that received the neurotoxin 5,7-dihydroxytryptamine (5,7-DHT), which destroys forebrain serotonergic neurons, exhibited decreased reward learning rates. A basic perseverative tendency ('stickiness'), or choice repetition irrespective of the outcome produced, was likewise increased in rats after the 12-day SSRI regimen and decreased after single dose SSRI in humans and 5,7-DHT in rats. These common effects of serotonergic manipulations on rats and humans-identified via computational modelling-suggest an evolutionarily conserved role for serotonin in plasticity and behavioral flexibility and have clinical relevance transdiagnostically for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Center for Computational Psychiatry, Ministry of Education Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200433, China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - Jonathan W Kanen
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | - Nikolina Skandali
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
- NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Christelle Langley
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, the Neuroscience Centre, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Johan Alsiö
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Benjamin U Phillips
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Barbara J Sahakian
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Rudolf N Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ, UK
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, CB21 5EF, UK
| | - Trevor W Robbins
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science and Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, P. R. China.
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK.
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| |
Collapse
|
10
|
Apergis-Schoute AM, van der Flier FE, Ip SH, Kanen JW, Vaghi MM, Fineberg NA, Sahakian BJ, Cardinal RN, Robbins TW. Perseveration and Shifting in Obsessive-Compulsive Disorder as a Function of Uncertainty, Punishment, and Serotonergic Medication. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:326-335. [PMID: 38298803 PMCID: PMC10829647 DOI: 10.1016/j.bpsgos.2023.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/01/2023] [Accepted: 06/26/2023] [Indexed: 02/02/2024] Open
Abstract
Background The nature of cognitive flexibility deficits in obsessive-compulsive disorder (OCD), which historically have been tested with probabilistic reversal learning tasks, remains elusive. Here, a novel deterministic reversal task and inclusion of unmedicated patients in the study sample illuminated the role of fixed versus uncertain rules/contingencies and of serotonergic medication. Additionally, our understanding of probabilistic reversal was enhanced through theoretical computational modeling of cognitive flexibility in OCD. Methods We recruited 49 patients with OCD, 21 of whom were unmedicated, and 43 healthy control participants matched for age, IQ, and gender. Participants were tested on 2 tasks: a novel visuomotor deterministic reversal learning task with 3 reversals (feedback rewarding/punishing/neutral) measuring accuracy/perseveration and a 2-choice visual probabilistic reversal learning task with uncertain feedback and a single reversal measuring win-stay and lose-shift. Bayesian computational modeling provided measures of learning rate, reinforcement sensitivity, and stimulus stickiness. Results Unmedicated patients with OCD were impaired on the deterministic reversal task under punishment only at the first and third reversals compared with both control participants and medicated patients with OCD, who had no deficit. Perseverative errors were correlated with OCD severity. On the probabilistic reversal task, unmedicated patients were only impaired at reversal, whereas medicated patients were impaired at both the learning and reversal stages. Computational modeling showed that the overall change was reduced feedback sensitivity in both OCD groups. Conclusions Both perseveration and increased shifting can be observed in OCD, depending on test conditions including the predictability of reinforcement. Perseveration was related to clinical severity and remediated by serotonergic medication.
Collapse
Affiliation(s)
- Annemieke M. Apergis-Schoute
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Febe E. van der Flier
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
| | - Samantha H.Y. Ip
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jonathan W. Kanen
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Matilde M. Vaghi
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- School of Psychology, University of East Anglia, Norwich, United Kingdom
| | - Naomi A. Fineberg
- Hertfordshire Partnership University NHS Foundation Trust, National Health Service, University of Hertfordshire, Hatfield, United Kingdom
| | - Barbara J. Sahakian
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Rudolf N. Cardinal
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, United Kingdom
| | - Trevor W. Robbins
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Liu C, Li K, Fu M, Zhang Y, Sindermann C, Montag C, Zheng X, Zhang H, Yao S, Wang Z, Zhou B, Kendrick KM, Becker B. A central serotonin regulating gene polymorphism (TPH2) determines vulnerability to acute tryptophan depletion-induced anxiety and ventromedial prefrontal threat reactivity in healthy young men. Eur Neuropsychopharmacol 2023; 77:24-34. [PMID: 37666184 DOI: 10.1016/j.euroneuro.2023.08.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Serotonin (5-HT) has long been implicated in adaptive emotion regulation as well as the development and treatment of emotional dysregulations in mental disorders. Accumulating evidence suggests a genetic vulnerability may render some individuals at a greater risk for the detrimental effects of transient variations in 5-HT signaling. The present study aimed to investigate whether individual variations in the Tryptophan hydroxylase 2 (TPH2) genetics influence susceptibility for behavioral and neural threat reactivity dysregulations during transiently decreased 5-HT signaling. To this end, interactive effects between TPH2 (rs4570625) genotype and acute tryptophan depletion (ATD) on threat reactivity were examined in a within-subject placebo-controlled pharmacological fMRI trial (n = 51). A priori genotype stratification of extreme groups (GG vs. TT) allowed balanced sampling. While no main effects of ATD on neural reactivity to threat-related stimuli and mood state were observed in the entire sample, accounting for TPH2 genotype revealed an ATD-induced increase in subjective anxious arousal in the GG but not the TT carriers. The effects were mirrored on the neural level, such that ATD specifically reduced ventromedial prefrontal cortex reactivity towards threat-related stimuli in the GG carriers. Furthermore, the ATD-induced increase in subjective anxiety positively associated with the extent of ATD-induced changes in ventromedial prefrontal cortex activity in response to threat-related stimuli in GG carriers. Together the present findings suggest for the first time that individual variations in TPH2 genetics render individuals susceptible to the anxiogenic and neural effects of a transient decrease in 5-HT signaling.
Collapse
Affiliation(s)
- Congcong Liu
- School of Psychology, Xinxiang Medical University, Xinxiang, PR China; The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
| | - Meina Fu
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yingying Zhang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Cornelia Sindermann
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany; Interchange Forum for Reflecting on Intelligent Systems, University of Stuttgart, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Xiaoxiao Zheng
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, PR China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking. Tsinghua Center for Life Sciences, Peking University, Beijing, PR China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China; Department of Psychology, The University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
12
|
Bîlc MI, Iacob A, Szekely-Copîndean RD, Kiss B, Ștefan MG, Mureșan RC, Pop CF, Pițur S, Szentágotai-Tătar A, Vulturar R, MacLeod C, Miu AC. Serotonin and emotion regulation: the impact of tryptophan depletion on emotional experience, neural and autonomic activity. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023; 23:1414-1427. [PMID: 37430145 DOI: 10.3758/s13415-023-01116-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/12/2023]
Abstract
The involvement of serotonin in emotion and psychopathology has been extensively examined. Studies using acute tryptophan depletion (ATD) have found limited effects on mood and aggression, and one of the explanations suggests that serotonin may be involved in higher-order functions, such as emotion regulation. However, there is very limited evidence for this hypothesis. The present study investigated the impact of ATD on emotion regulation in a double-blind, placebo-controlled, crossover design. A sample of psychiatrically healthy men (N = 28) completed a cognitive task assessing reappraisal ability (i.e., the success of using reappraisal, an emotion regulation strategy, to modulate emotional responses), following ATD and placebo. EEG frontal activity and asymmetry, as well as heart-rate variability (HRV), also were assessed in the reappraisal task. Both frequentist and Bayesian methods were employed for statistical analysis. Results indicated that ATD reduced plasma tryptophan, and reappraisal was effective in modulating emotional experience in the emotion regulation task. However, ATD had no significant effect on reappraisal ability, frontal activity, and HRV. These results offer direct and compelling evidence that decreasing serotonin synthesis through ATD does not alter an emotion regulation ability that is considered crucial in mood and aggression and has been linked with transdiagnostic risk of psychopathology.
Collapse
Affiliation(s)
- Mirela I Bîlc
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Institute of Medical Psychology, Medical Faculty, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - Alexandra Iacob
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Raluca D Szekely-Copîndean
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Department of Social and Human Research, Romanian Academy, Cluj-Napoca, Romania
| | - Béla Kiss
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Maria-Georgia Ștefan
- Department of Toxicology, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Raul C Mureșan
- Department of Experimental and Theoretical Neuroscience, Transylvanian Institute of Neuroscience, Cluj-Napoca, Romania
- STAR-UBB Institute, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Claudia Felicia Pop
- Nursing Discipline, Department Mother and Child, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simina Pițur
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
| | - Aurora Szentágotai-Tătar
- Department of Clinical Psychology and Psychotherapy, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Romana Vulturar
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
- Department of Molecular Sciences, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Pasteur Street, 400349, Cluj-Napoca, Romania.
| | - Colin MacLeod
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania
- Centre for the Advancement of Research on Emotion, School of Psychological Science, The University of Western Australia, Crawley, Australia
| | - Andrei C Miu
- Cognitive Neuroscience Laboratory, Department of Psychology, Babeș-Bolyai University, 37 Republicii Street, Cluj-Napoca, 400015, Cluj-Napoca, Romania.
| |
Collapse
|
13
|
Shitova AD, Zharikova TS, Kovaleva ON, Luchina AM, Aktemirov AS, Olsufieva AV, Sinelnikov MY, Pontes-Silva A, Zharikov YO. Tourette syndrome and obsessive-compulsive disorder: A comprehensive review of structural alterations and neurological mechanisms. Behav Brain Res 2023; 453:114606. [PMID: 37524204 DOI: 10.1016/j.bbr.2023.114606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/02/2023]
Abstract
Currently, it is possible to study the pathogenesis of Tourette's syndrome (TS) in more detail, due to more advanced methods of neuroimaging. However, medical and surgical treatment options are limited by a lack of understanding of the nature of the disorder and its relationship to some psychiatric disorders, the most common of which is obsessive-compulsive disorder (OCD). It is believed that the origin of chronic tic disorders is based on an imbalance of excitatory and inhibitory influences in the Cortico-Striato-Thalamo-Cortical circuits (CSTC). The main CSTCs involved in the pathological process have been identified by studying structural and neurotransmitter disturbances in the interaction between the cortex and the basal ganglia. A neurotransmitter deficiency in CSTC has been demonstrated by immunohistochemical and genetic methods, but it is still not known whether it arises as a consequence of genetically determined disturbances of neuronal migration during ontogenesis or as a consequence of altered production of proteins involved in neurotransmitter production. The aim of this review is to describe current ideas about the comorbidity of TS with OCD, the involvement of CSTC in the pathogenesis of both disorders and the background of structural and neurotransmitter changes in CSTC that may serve as targets for drug and neuromodulatory treatments.
Collapse
Affiliation(s)
| | - Tatyana S Zharikova
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Olga N Kovaleva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anastasia M Luchina
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Arthur S Aktemirov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| | - Anna V Olsufieva
- Moscow University for Industry and Finance "Synergy", Moscow 125315, Russia
| | - Mikhail Y Sinelnikov
- Department of Oncology and Radiotherapy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; Russian National Centre of Surgery, Avtsyn Research Institute of Human Morphology, Moscow 117418, Russia
| | - André Pontes-Silva
- Postgraduate Program in Physical Therapy, Department of Physical Therapy, Universidade Federal de São Carlos, São Carlos, SP, Brazil.
| | - Yury O Zharikov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 125009, Russia
| |
Collapse
|
14
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
15
|
Chronic escitalopram in healthy volunteers has specific effects on reinforcement sensitivity: a double-blind, placebo-controlled semi-randomised study. Neuropsychopharmacology 2023; 48:664-670. [PMID: 36683090 PMCID: PMC9938113 DOI: 10.1038/s41386-022-01523-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/24/2023]
Abstract
Several studies of the effects on cognition of selective serotonin reuptake inhibitors (SSRI), administered either acutely or sub-chronically in healthy volunteers, have found changes in learning and reinforcement outcomes. In contrast, to our knowledge, there have been no studies of chronic effects of escitalopram on cognition in healthy volunteers. This is important in view of its clinical use in major depressive disorder (MDD) and obsessive-compulsive disorder (OCD). Consequently, we aimed to investigate the chronic effect of the SSRI, escitalopram, on measures of 'cold' cognition (including inhibition, cognitive flexibility, memory) and 'hot cognition' including decision-making and particularly reinforcement learning. The study, conducted at the University of Copenhagen between May 2020 and October 2021, used a double-blind placebo-controlled design with 66 healthy volunteers, semi-randomised to receive either 20 mg of escitalopram (n = 32) or placebo (n = 34), balanced for age, sex and intelligence quotient (IQ) for at least 21 days. Questionnaires, neuropsychological tests and serum escitalopram measures were taken. We analysed group differences on the cognitive measures using linear regression models as well as innovative hierarchical Bayesian modelling of the Probabilistic Reversal Learning (PRL) task. The novel and important finding was that escitalopram reduced reinforcement sensitivity compared to placebo on both the Sequential Model-Based/Model-Free task and the PRL task. We found no other significant group differences on 'cold' or 'hot' cognition. These findings demonstrate that serotonin reuptake inhibition is involved in reinforcement learning in healthy individuals. Lower reinforcement sensitivity in response to chronic SSRI administration may reflect the 'blunting' effect often reported by patients with MDD treated with SSRIs. Trial Registration: NCT04239339 .
Collapse
|
16
|
Desmercieres S, Lardeux V, Longueville JE, Hanna M, Panlilio LV, Thiriet N, Solinas M. A self-adjusting, progressive shock strength procedure to investigate resistance to punishment: Characterization in male and female rats. Neuropharmacology 2022; 220:109261. [PMID: 36152690 DOI: 10.1016/j.neuropharm.2022.109261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 10/14/2022]
Abstract
Indifference to harmful consequences is one of the main characteristics of compulsive behaviors and addiction. Animal models that provide a rapid and effective measure of resistance to punishment could be critical for the investigation of mechanisms underlying these maladaptive behaviors. Here, analogous to the progressive ratio (PR) procedure widely used to evaluate appetitive motivation as the response requirement is increased, we developed a self-adjusting, progressive shock strength (PSS) procedure. The PSS provides, within a single session, a break point that quantifies the propensity to work for a reward in spite of receiving electric footshock that progressively increases in duration. In both male and female rats, the PSS break point was sensitive to 1) hunger; and 2) changes in the qualitative, but not quantitative, incentive value of the reward. In systematic comparisons between PSS and PR procedures in the same rats, we found that both measures are sensitive to manipulations of motivational states, but they are not intercorrelated, suggesting that they measure overlapping but partially distinct processes. Importantly, the PSS procedure represents a refinement in the 3Rs principles of animal research because animals can control the strength of shock that they are willing to tolerate. This self-adjusting PSS procedure may represent a useful tool to investigate mechanisms underlying maladaptive behavior that persists in certain individuals despite harmful consequences.
Collapse
Affiliation(s)
- Stevenson Desmercieres
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Jean-Emmanuel Longueville
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Myriam Hanna
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Leigh V Panlilio
- Real-world Assessment, Prediction, and Treatment Unit, Translational Addiction Medicine Branch, Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Nathalie Thiriet
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France.
| |
Collapse
|
17
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
18
|
Kanen JW, Robbins TW, Trofimova IN. Harnessing temperament to elucidate the complexities of serotonin function. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Roberts C, Apergis-Schoute AM, Bruhl A, Nowak M, Baldwin DS, Sahakian BJ, Robbins TW. Threat reversal learning and avoidance habits in generalised anxiety disorder. Transl Psychiatry 2022; 12:216. [PMID: 35641488 PMCID: PMC9156703 DOI: 10.1038/s41398-022-01981-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 04/26/2022] [Accepted: 05/20/2022] [Indexed: 11/30/2022] Open
Abstract
Avoidance and heightened responses to perceived threats are key features of anxiety disorders. These disorders are characterised by inflexibility in dynamically updating behavioural and physiological responses to aversively conditioned cues or environmental contexts which are no longer objectively threatening, often manifesting in perseverative avoidance. However, less is known about how anxiety disorders might differ in adjusting to threat and safety shifts in the environment or how idiosyncratic avoidance responses are learned and persist. Twenty-eight patients with generalised anxiety disorder (GAD), without DSM co-morbidities, and 27 matched healthy controls were administered two previously established paradigms: Pavlovian threat reversal and shock avoidance habits through overtraining (assessed following devaluation with measures of perseverative responding). For both tasks we used subjective report scales and skin conductance responses (SCR). In the Pavlovian threat reversal task, patients with GAD showed a significantly overall higher SCR as well as a reduced differential SCR response compared to controls in the early but not late reversal phase. During the test of habitual avoidance responding, GAD patients did not differ from controls in task performance, habitual active avoidance responses during devaluation, or corresponding SCR during trials, but showed a trend toward more abstract confirmatory subjective justifications for continued avoidance following the task. GAD patients exhibited significantly greater skin conductance responses to signals of threat than controls, but did not exhibit the major deficits in reversal and safety signal learning shown previously by patients with OCD. Moreover, this patient group, again unlike OCD patients, did not show evidence of altered active avoidance learning or enhanced instrumental avoidance habits. Overall, these findings indicate no deficits in instrumental active avoidance or persistent avoidance habits, despite enhanced responses to Pavlovian threat cues in GAD. They suggest that GAD is characterised by passive, and not excessively rigid, avoidance styles.
Collapse
Affiliation(s)
- Clark Roberts
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Annemieke M. Apergis-Schoute
- grid.5335.00000000121885934Department of Psychology, University of Cambridge, Cambridge, UK ,grid.9918.90000 0004 1936 8411Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Annette Bruhl
- grid.412004.30000 0004 0478 9977University Hospital of Zurich, Zurich, Switzerland
| | - Magda Nowak
- grid.5491.90000 0004 1936 9297Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK
| | - David S. Baldwin
- grid.5491.90000 0004 1936 9297Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, UK ,grid.7836.a0000 0004 1937 1151University Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Barbara J. Sahakian
- grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| | - Trevor W. Robbins
- grid.5335.00000000121885934Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
20
|
Desrochers SS, Spring MG, Nautiyal KM. A Role for Serotonin in Modulating Opposing Drive and Brake Circuits of Impulsivity. Front Behav Neurosci 2022; 16:791749. [PMID: 35250501 PMCID: PMC8892181 DOI: 10.3389/fnbeh.2022.791749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Impulsivity generally refers to a deficit in inhibition, with a focus on understanding the neural circuits which constitute the "brake" on actions and gratification. It is likely that increased impulsivity can arise not only from reduced inhibition, but also from a heightened or exaggerated excitatory "drive." For example, an action which has more vigor, or is fueled by either increased incentive salience or a stronger action-outcome association, may be harder to inhibit. From this perspective, this review focuses on impulse control as a competition over behavioral output between an initially learned response-reward outcome association, and a subsequently acquired opposing inhibitory association. Our goal is to present a synthesis of research from humans and animal models that supports this dual-systems approach to understanding the behavioral and neural substrates that contribute to impulsivity, with a focus on the neuromodulatory role of serotonin. We review evidence for the role of serotonin signaling in mediating the balance of the "drive" and "brake" circuits. Additionally, we consider parallels of these competing instrumental systems in impulsivity within classical conditioning processes (e.g., extinction) in order to point us to potential behavioral and neural mechanisms that may modulate the competing instrumental associations. Finally, we consider how the balance of these competing associations might contribute to, or be extracted from, our experimental assessments of impulsivity. A careful understanding of the underlying behavioral and circuit level contributions to impulsivity is important for understanding the pathogenesis of increased impulsivity present in a number of psychiatric disorders. Pathological levels of impulsivity in such disorders are likely subserved by deficits in the balance of motivational and inhibitory processes.
Collapse
Affiliation(s)
| | | | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
21
|
Rodríguez Arce JM, Winkelman MJ. Psychedelics, Sociality, and Human Evolution. Front Psychol 2021; 12:729425. [PMID: 34659037 PMCID: PMC8514078 DOI: 10.3389/fpsyg.2021.729425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 12/20/2022] Open
Abstract
Our hominin ancestors inevitably encountered and likely ingested psychedelic mushrooms throughout their evolutionary history. This assertion is supported by current understanding of: early hominins' paleodiet and paleoecology; primate phylogeny of mycophagical and self-medicative behaviors; and the biogeography of psilocybin-containing fungi. These lines of evidence indicate mushrooms (including bioactive species) have been a relevant resource since the Pliocene, when hominins intensified exploitation of forest floor foods. Psilocybin and similar psychedelics that primarily target the serotonin 2A receptor subtype stimulate an active coping strategy response that may provide an enhanced capacity for adaptive changes through a flexible and associative mode of cognition. Such psychedelics also alter emotional processing, self-regulation, and social behavior, often having enduring effects on individual and group well-being and sociality. A homeostatic and drug instrumentalization perspective suggests that incidental inclusion of psychedelics in the diet of hominins, and their eventual addition to rituals and institutions of early humans could have conferred selective advantages. Hominin evolution occurred in an ever-changing, and at times quickly changing, environmental landscape and entailed advancement into a socio-cognitive niche, i.e., the development of a socially interdependent lifeway based on reasoning, cooperative communication, and social learning. In this context, psychedelics' effects in enhancing sociality, imagination, eloquence, and suggestibility may have increased adaptability and fitness. We present interdisciplinary evidence for a model of psychedelic instrumentalization focused on four interrelated instrumentalization goals: management of psychological distress and treatment of health problems; enhanced social interaction and interpersonal relations; facilitation of collective ritual and religious activities; and enhanced group decision-making. The socio-cognitive niche was simultaneously a selection pressure and an adaptive response, and was partially constructed by hominins through their activities and their choices. Therefore, the evolutionary scenario put forward suggests that integration of psilocybin into ancient diet, communal practice, and proto-religious activity may have enhanced hominin response to the socio-cognitive niche, while also aiding in its creation. In particular, the interpersonal and prosocial effects of psilocybin may have mediated the expansion of social bonding mechanisms such as laughter, music, storytelling, and religion, imposing a systematic bias on the selective environment that favored selection for prosociality in our lineage.
Collapse
Affiliation(s)
| | - Michael James Winkelman
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, United States
| |
Collapse
|