1
|
Sullivan KA, Kainer D, Lane M, Cashman M, Miller JI, Garvin MR, Townsend A, Quach BC, Willis C, Kruse P, Gaddis NC, Mathur R, Corradin O, Maher BS, Scacheri PC, Sanchez-Roige S, Palmer AA, Troiani V, Chesler EJ, Kember RL, Kranzler HR, Justice AC, Xu K, Aouizerat BE, Hancock DB, Johnson EO, Jacobson DA. Multiomic Network Analysis Identifies Dysregulated Neurobiological Pathways in Opioid Addiction. Biol Psychiatry 2024:S0006-3223(24)01781-5. [PMID: 39615775 DOI: 10.1016/j.biopsych.2024.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 01/25/2025]
Abstract
BACKGROUND Opioid addiction is a worldwide public health crisis. In the United States, for example, opioids cause more drug overdose deaths than any other substance. However, opioid addiction treatments have limited efficacy, meaning that additional treatments are needed. METHODS To help address this problem, we used network-based machine learning techniques to integrate results from genome-wide association studies of opioid use disorder and problematic prescription opioid misuse with transcriptomic, proteomic, and epigenetic data from the dorsolateral prefrontal cortex of people who died of opioid overdose and control individuals. RESULTS We identified 211 highly interrelated genes identified by genome-wide association studies or dysregulation in the dorsolateral prefrontal cortex of people who died of opioid overdose that implicated the Akt, BDNF (brain-derived neurotrophic factor), and ERK (extracellular signal-regulated kinase) pathways, identifying 414 drugs targeting 48 of these opioid addiction-associated genes. Some of the identified drugs are approved to treat other substance use disorders or depression. CONCLUSIONS Our synthesis of multiomics using a systems biology approach revealed key gene targets that could contribute to drug repurposing, genetics-informed addiction treatment, and future discovery.
Collapse
Affiliation(s)
- Kyle A Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - David Kainer
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Matthew Lane
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - J Izaak Miller
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Michael R Garvin
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Alice Townsend
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee
| | - Bryan C Quach
- RTI International, Research Triangle Park, North Carolina
| | - Caryn Willis
- RTI International, Research Triangle Park, North Carolina
| | - Peter Kruse
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee-Knoxville, Knoxville, Tennessee
| | | | - Ravi Mathur
- RTI International, Research Triangle Park, North Carolina
| | - Olivia Corradin
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Brion S Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Sandra Sanchez-Roige
- Department of Psychiatry, University of California San Diego, La Jolla, California; Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California; Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Vanessa Troiani
- Geisinger College of Health Sciences, Scranton, Pennsylvania
| | | | - Rachel L Kember
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Henry R Kranzler
- Mental Illness Research, Education and Clinical Center, Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania; Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amy C Justice
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Health Policy and Management, Yale School of Public Health, New Haven, Connecticut
| | - Ke Xu
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut; Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, New York, New York
| | - Dana B Hancock
- RTI International, Research Triangle Park, North Carolina.
| | - Eric O Johnson
- RTI International, Research Triangle Park, North Carolina; Fellow Program, RTI International, Research Triangle Park, North Carolina.
| | - Daniel A Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee.
| |
Collapse
|
2
|
Johnson EO, Fisher HS, Sullivan KA, Corradin O, Sanchez-Roige S, Gaddis NC, Sami YN, Townsend A, Teixeira Prates E, Pavicic M, Kruse P, Chesler EJ, Palmer AA, Troiani V, Bubier JA, Jacobson DA, Maher BS. An emerging multi-omic understanding of the genetics of opioid addiction. J Clin Invest 2024; 134:e172886. [PMID: 39403933 PMCID: PMC11473141 DOI: 10.1172/jci172886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Opioid misuse, addiction, and associated overdose deaths remain global public health crises. Despite the tremendous need for pharmacological treatments, current options are limited in number, use, and effectiveness. Fundamental leaps forward in our understanding of the biology driving opioid addiction are needed to guide development of more effective medication-assisted therapies. This Review focuses on the omics-identified biological features associated with opioid addiction. Recent GWAS have begun to identify robust genetic associations, including variants in OPRM1, FURIN, and the gene cluster SCAI/PPP6C/RABEPK. An increasing number of omics studies of postmortem human brain tissue examining biological features (e.g., histone modification and gene expression) across different brain regions have identified broad gene dysregulation associated with overdose death among opioid misusers. Drawn together by meta-analysis and multi-omic systems biology, and informed by model organism studies, key biological pathways enriched for opioid addiction-associated genes are emerging, which include specific receptors (e.g., GABAB receptors, GPCR, and Trk) linked to signaling pathways (e.g., Trk, ERK/MAPK, orexin) that are associated with synaptic plasticity and neuronal signaling. Studies leveraging the agnostic discovery power of omics and placing it within the context of functional neurobiology will propel us toward much-needed, field-changing breakthroughs, including identification of actionable targets for drug development to treat this devastating brain disease.
Collapse
Affiliation(s)
- Eric O. Johnson
- GenOmics and Translational Research Center and
- Fellow Program, RTI International, Research Triangle Park, North Carolina, USA
| | | | - Kyle A. Sullivan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Olivia Corradin
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Sandra Sanchez-Roige
- Department of Psychiatry, UCSD, La Jolla, California, USA
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Yasmine N. Sami
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alice Townsend
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Mirko Pavicic
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Peter Kruse
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Abraham A. Palmer
- Department of Psychiatry, UCSD, La Jolla, California, USA
- Institute for Genomic Medicine, UCSD, La Jolla, CA, USA
| | - Vanessa Troiani
- Geisinger College of Health Sciences, Scranton, Pennsylvania, USA
| | | | - Daniel A. Jacobson
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
3
|
Zeine F, Jafari N, Baron D, Bowirrat A, Pinhasov A, Norling B, Martinez KC, Nami M, Manavi N, Sunder K, Rabin DM, Bagchi D, Khalsa J, Gold MS, Sipple D, Barzegar M, Bodhanapati J, Khader W, Carney P, Dennen CA, Gupta A, Elman I, Badgaiyan RD, Modestino EJ, Thanos PK, Hanna C, McLaughlin T, Cadet JL, Soni D, Braverman ER, Barh D, Giordano J, Edwards D, Ashford JW, Gondre-Lewis MC, Gilley E, Murphy KT, Lewandrowski KU, Sharafshah A, Makale M, Fuehrlein B, Blum K. Solving the Global Opioid Crisis: Incorporating Genetic Addiction Risk Assessment with Personalized Dopaminergic Homeostatic Therapy and Awareness Integration Therapy. JOURNAL OF ADDICTION PSYCHIATRY 2024; 8:50-95. [PMID: 39635461 PMCID: PMC11615735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Objectives The opioid crisis in the last few decades has mounted to a global level, impacting all areas of socioeconomic, demographic, geographic, and cultural boundaries. Traditional treatments have not been deemed to show the degree of efficacy necessary to address the crisis. The authors of this review paper have set forth an unprecedented and in-depth look into multi-factorial determinants that have contributed to the opioid crisis becoming global and multi-faceted. Methods For this narrative review/opinion article, we searched PsychINFO, PubMed, Google Scholar, and Web of Science databases to identify relevant articles on topics including the "opioid crisis," "opioid mechanisms," "genetics and epigenetics," "neuropharmacology," and "clinical aspects of opioid treatment and prevention." Since this was not a systematic review the articles selected could represent unitential bias. Results Despite some success achieved through Opioid Substitution Therapy (OST) in harm reduction, the annual mortality toll in the US alone surpasses 106,699 individuals, a figure expected to climb to 165,000 by 2025. Data from the Substance Abuse and Mental Health Services Administration's (SAMHSA) National Survey on Drug Abuse and Health (NSDUH) reveals that approximately 21.4% of individuals in the US engaged in illicit drug use in 2020, with 40.3 million individuals aged 12 or older experiencing a Substance Use Disorder (SUD). Provisional figures from the Centers for Disease Control and Prevention (CDC) indicate a troubling 15% increase in overdose deaths in 2021, rising from 93,655 in 2020 to 107,622, with opioids accounting for roughly 80,816 of these deaths. Conclusions We advocate reevaluating the "standard of care" and shifting towards inducing dopamine homeostasis by manipulating key neurotransmitter systems within the brain's reward cascade. We propose a paradigm shift towards a novel "standard of care" that begins with incorporating Genetic Addiction Risk Severity (GARS) testing to assess pre-addiction risk and vulnerability to opioid-induced addiction; emphasis should be placed on inducing dopamine homeostasis through safe and non-addictive alternatives like KB220, and comprehensive treatment approaches that address psychological, spiritual, and societal aspects of addiction through Awareness Integration Therapy (AIT).
Collapse
Affiliation(s)
- Foojan Zeine
- Awareness Integration Institute, San Clemente, USA
- Department of Health Science, California State University, Long Beach, USA
| | - Nicole Jafari
- Department of Applied Clinical Psychology, The Chicago School of Professional Psychology, Los Angeles, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, USA
| | - David Baron
- Center for Exercise and Sport Mental Health, Western University Health Sciences, Pomona, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Albert Pinhasov
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Brian Norling
- MEMS Precision Technology, Inc., Santa Barbara, USA
- Acies Biomedical, Inc. Santa Barbara, USA
| | - Kathleen Carter Martinez
- Division of General Education-Berkeley College, Paramus Campus, New Jersey, USA
- Chey-Wind Center for Trauma and Healing, Peru, USA
| | - Mohammad Nami
- Brain, Cognition, and Behavior Unit, Brain Hub Academy, Dubai, UAE
| | - Nima Manavi
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, USA
| | - Keerthy Sunder
- Department of Psychiatry, University of California, UC Riverside School of Medicine, Riverside, USA
- Division of Neuromodulation Research, Karma Doctors and Karma TMS, Palm Springs, USA
| | | | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, LLC, Bonita Springs, USA
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Texas Southern University, Houston, USA
| | - Jag Khalsa
- Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University, School of Medicine, St. Louis, USA
| | - Daniel Sipple
- Minnesota Institute for Pain Management, Minnesota, USA
| | - Mojtaba Barzegar
- Hamad Medical Corporation, National Center for Cancer Care and Research (NCCCR), Doha, Qatar
| | - Jothsna Bodhanapati
- Division of Neuromodulation Research, Karma Doctors and Karma TMS, Palm Springs, USA
| | - Waseem Khader
- Karma Doctors, Palm Springs, USA
- Global Medical Detox Center, Menifee, CA, USA
| | - Paul Carney
- Division of Pediatric Neurology, University of Missouri, School of Medicine, Columbia, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, USA
| | | | - Igor Elman
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Department of Psychiatry, Harvard School of Medicine, Cambridge, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, Case Western University School of Medicine, The Metro Health System, Cleveland, USA
- Department of Psychiatry, Mt. Sinai University, Ichan School of Medicine, New York, USA
| | | | - Panayotis K. Thanos
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University at Buffalo, Buffalo, USA
| | - Thomas McLaughlin
- Division of Primary Care Research, Reward Deficiency Syndrome Clinics of America, Inc. Austin, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Baltimore, USA
| | - Diwanshu Soni
- College of Osteopathic Medicine, Western University of Health Sciences, Pomona, USA
| | - Eric R. Braverman
- Division of Clinical Neurological Research, The Kenneth Blum Neurogenetic and Behavioral Institute, LLC., Austin, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
| | | | | | - J. Wesson Ashford
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, USA
| | | | | | - Kevin T. Murphy
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | - Kai-Uwe Lewandrowski
- Division of Personalized Pain Therapy Research, Center for Advanced Spine Care of Southern Arizona, Tucson, USA
- Department of Orthopaedics, Fundación Universitaria Sanitas, Bogotá, D.C., Colombia
- Department of Orthopedics, Hospital Universitário Gaffrée Guinle Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alireza Sharafshah
- Cellular and Molecular Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Milan Makale
- Department of Radiation Oncology, University of California, San Diego, La Jolla, USA
| | - Brian Fuehrlein
- Department of Psychiatry, School of Medicine, Yale University, New Haven, USA
| | - Kenneth Blum
- Center for Exercise and Sport Mental Health, Western University Health Sciences, Pomona, USA
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
- Division of Primary Care Research, Reward Deficiency Syndrome Clinics of America, Inc. Austin, USA
- Division of Clinical Neurological Research, The Kenneth Blum Neurogenetic and Behavioral Institute, LLC., Austin, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur, West Bengal, India
- JC’s Recovery and Counseling Center, Hollywood, USA
- Department of Psychiatry, University of Vermont, Burlington, USA
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Center for Advanced Spine Care of Southern Arizona, Tucson, USA
| |
Collapse
|
4
|
Carter JK, Quach BC, Willis C, Minto MS, Hancock DB, Montalvo-Ortiz J, Corradin O, Logan RW, Walss-Bass C, Maher BS, Johnson EO. Identifying novel gene dysregulation associated with opioid overdose death: A meta-analysis of differential gene expression in human prefrontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.12.24301153. [PMID: 38260365 PMCID: PMC10802752 DOI: 10.1101/2024.01.12.24301153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Only recently have human postmortem brain studies of differential gene expression (DGE) associated with opioid overdose death (OOD) been published; sample sizes from these studies have been modest (N = 40-153). To increase statistical power to identify OOD-associated genes, we leveraged human prefrontal cortex RNAseq data from four independent OOD studies and conducted a transcriptome-wide DGE meta-analysis (N = 285). Using a unified gene expression data processing and analysis framework across studies, we meta-analyzed 20 098 genes and found 335 significant differentially expressed genes (DEGs) by OOD status (false discovery rate < 0.05). Of these, 66 DEGs were among the list of 303 genes reported as OOD-associated in prior prefrontal cortex molecular studies, including genes/gene families (e.g., OPRK1, NPAS4, DUSP, EGR). The remaining 269 DEGs were not previously reported (e.g., NR4A2, SYT1, HCRTR2, BDNF). There was little evidence of genetic drivers for the observed differences in gene expression between opioid addiction cases and controls. Enrichment analyses for the DEGs across molecular pathway and biological process databases highlight an interconnected set of genes and pathways from orexin and tyrosine kinase receptors through MEK/ERK/MAPK signaling to affect neuronal plasticity.
Collapse
Affiliation(s)
- Javan K. Carter
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Bryan C. Quach
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Caryn Willis
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Melyssa S. Minto
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | | | - Dana B. Hancock
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
| | - Janitza Montalvo-Ortiz
- Department of Psychiatry, Division of Human Genetics, Yale School of Medicine, New Haven, Connecticut, USA
- Clinical Neurosciences Division, National Center of PTSD, VA CT Healthcare System, West Haven, Connecticut, USA
| | - Olivia Corradin
- Whitehead Institute Biomedical Research, Cambridge, Massachusetts, USA
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center University of Texas Health Science Center at Houston Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Brion S. Maher
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Eric Otto Johnson
- Omics, Epidemiology, and Analytics Program, RTI International, Research Triangle Park, North Carolina, USA
- Fellow Program, RTI International, Research Triangle Park, North Carolina, USA
| |
Collapse
|
5
|
Hoang AT, Corradin O. Epigenetic alterations identify a confluence of genetic vulnerabilities tied to opioid overdose. Neuropsychopharmacology 2024; 49:333-334. [PMID: 37587380 PMCID: PMC10700520 DOI: 10.1038/s41386-023-01701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Affiliation(s)
- An T Hoang
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Olivia Corradin
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Massachusetts Institute of Technology, Department of Biology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Kozlenkov A, Vadukapuram R, Zhou P, Fam P, Wegner M, Dracheva S. Novel method of isolating nuclei of human oligodendrocyte precursor cells reveals substantial developmental changes in gene expression and H3K27ac histone modification. Glia 2024; 72:69-89. [PMID: 37712493 PMCID: PMC10697634 DOI: 10.1002/glia.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 08/01/2023] [Accepted: 08/09/2023] [Indexed: 09/16/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) generate differentiated mature oligodendrocytes (MOs) during development. In adult brain, OPCs replenish MOs in adaptive plasticity, neurodegenerative disorders, and after trauma. The ability of OPCs to differentiate to MOs decreases with age and is compromised in disease. Here we explored the cell specific and age-dependent differences in gene expression and H3K27ac histone mark in these two cell types. H3K27ac is indicative of active promoters and enhancers. We developed a novel flow-cytometry-based approach to isolate OPC and MO nuclei from human postmortem brain and profiled gene expression and H3K27ac in adult and infant OPCs and MOs genome-wide. In adult brain, we detected extensive H3K27ac differences between the two cell types with high concordance between gene expression and epigenetic changes. Notably, the expression of genes that distinguish MOs from OPCs appears to be under a strong regulatory control by the H3K27ac modification in MOs but not in OPCs. Comparison of gene expression and H3K27ac between infants and adults uncovered numerous developmental changes in each cell type, which were linked to several biological processes, including cell proliferation and glutamate signaling. A striking example was a subset of histone genes that were highly active in infant samples but fully lost activity in adult brain. Our findings demonstrate a considerable rearrangement of the H3K27ac landscape that occurs during the differentiation of OPCs to MOs and during postnatal development of these cell types, which aligned with changes in gene expression. The uncovered regulatory changes justify further in-depth epigenetic studies of OPCs and MOs in development and disease.
Collapse
Affiliation(s)
- Alexey Kozlenkov
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramu Vadukapuram
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ping Zhou
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Fam
- James J. Peters VA Medical Center, Bronx, NY, USA
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Stella Dracheva
- James J. Peters VA Medical Center, Bronx, NY, USA
- Friedman Brain Institute and Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
7
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single nucleus transcriptomics of ventral midbrain identifies glial activation associated with chronic opioid use disorder. Nat Commun 2023; 14:5610. [PMID: 37699936 PMCID: PMC10497570 DOI: 10.1038/s41467-023-41455-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain mediate reward and addiction behavior. We studied gene expression in 212,713 ventral midbrain single nuclei from 95 individuals with history of opioid misuse, and individuals without drug exposure. Chronic exposure to opioids was not associated with change in proportions of glial and neuronal subtypes, however glial transcriptomes were broadly altered, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes. Genes associated with activation of the immune response including interferon, NFkB signaling, and cell motility pathways were upregulated, contrasting with down-regulated expression of synaptic signaling and plasticity genes in ventral midbrain non-dopaminergic neurons. Ventral midbrain transcriptomic reprogramming in the context of chronic opioid exposure included 325 genes that previous genome-wide studies had linked to risk of substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Tova Y Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Carl J Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, 48109, USA
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Deborah C Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
- Department of Biology, University of Tor Vergata, Rome, 00133, Italy
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, 48201, USA
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Dunn AD, Robinson SA, Nwokafor C, Estill M, Ferrante J, Shen L, Lemchi CO, Creus-Muncunill J, Ramirez A, Mengaziol J, Brynildsen JK, Leggas M, Horn J, Ehrlich ME, Blendy JA. Molecular and long-term behavioral consequences of neonatal opioid exposure and withdrawal in mice. Front Behav Neurosci 2023; 17:1202099. [PMID: 37424750 PMCID: PMC10324024 DOI: 10.3389/fnbeh.2023.1202099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Infants exposed to opioids in utero are at high risk of exhibiting Neonatal Opioid Withdrawal Syndrome (NOWS), a combination of somatic withdrawal symptoms including high pitched crying, sleeplessness, irritability, gastrointestinal distress, and in the worst cases, seizures. The heterogeneity of in utero opioid exposure, particularly exposure to polypharmacy, makes it difficult to investigate the underlying molecular mechanisms that could inform early diagnosis and treatment of NOWS, and challenging to investigate consequences later in life. Methods To address these issues, we developed a mouse model of NOWS that includes gestational and post-natal morphine exposure that encompasses the developmental equivalent of all three human trimesters and assessed both behavior and transcriptome alterations. Results Opioid exposure throughout all three human equivalent trimesters delayed developmental milestones and produced acute withdrawal phenotypes in mice reminiscent of those observed in infants. We also uncovered different patterns of gene expression depending on the duration and timing of opioid exposure (3-trimesters, in utero only, or the last trimester equivalent only). Opioid exposure and subsequent withdrawal affected social behavior and sleep in adulthood in a sex-dependent manner but did not affect adult behaviors related to anxiety, depression, or opioid response. Discussion Despite marked withdrawal and delays in development, long-term deficits in behaviors typically associated with substance use disorders were modest. Remarkably, transcriptomic analysis revealed an enrichment for genes with altered expression in published datasets for Autism Spectrum Disorders, which correlate well with the deficits in social affiliation seen in our model. The number of differentially expressed genes between the NOWS and saline groups varied markedly based on exposure protocol and sex, but common pathways included synapse development, the GABAergic and myelin systems, and mitochondrial function.
Collapse
Affiliation(s)
- Amelia D. Dunn
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Shivon A. Robinson
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Psychology, Williams College, Williamstown, MA, United States
| | - Chiso Nwokafor
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Molly Estill
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julia Ferrante
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Li Shen
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Crystal O. Lemchi
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Angie Ramirez
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juliet Mengaziol
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Julia K. Brynildsen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark Leggas
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Jamie Horn
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Michelle E. Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
9
|
Garbin C, Marques N, Marques O. Machine learning for predicting opioid use disorder from healthcare data: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 236:107573. [PMID: 37148670 DOI: 10.1016/j.cmpb.2023.107573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/16/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
INTRODUCTION The US opioid epidemic has been one of the leading causes of injury-related deaths according to the CDC Injury Center. The increasing availability of data and tools for machine learning (ML) resulted in more researchers creating datasets and models to help analyze and mitigate the crisis. This review investigates peer-reviewed journal papers that applied ML models to predict opioid use disorder (OUD). The review is split into two parts. The first part summarizes the current research in OUD prediction with ML. The second part evaluates how ML techniques and processes were used to achieve these results and suggests improvements to refine further attempts to use ML for OUD prediction. METHODS The review includes peer-reviewed journal papers published on or after 2012 that use healthcare data to predict OUD. We searched Google Scholar, Semantic Scholar, PubMed, IEEE Xplore, and Science.gov in September of 2022. Data extracted includes the study's goal, dataset used, cohort selected, types of ML models created, model evaluation metrics, and the details of the ML tools and techniques used to create the models. RESULTS The review analyzed 16 papers. Three papers created their dataset, five used a publicly available dataset, and the remaining eight used a private dataset. Cohort size ranged from the low hundreds to over half a million. Six papers used one type of ML model, and the remaining ten used up to five different ML models. The reported ROC AUC was higher than 0.8 for all but one of the papers. Five papers used only non-interpretable models, and the other 11 used interpretable models exclusively or in combination with non-interpretable ones. The interpretable models were the highest or second-highest ROC AUC values. Most papers did not sufficiently describe the ML techniques and tools used to produce their results. Only three papers published their source code. CONCLUSIONS We found that while there are indications that ML methods applied to OUD prediction may be valuable, the lack of details and transparency in creating the ML models limits their usefulness. We end the review with recommendations to improve studies on this critical healthcare subject.
Collapse
Affiliation(s)
- Christian Garbin
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Nicholas Marques
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Oge Marques
- Department of Electrical Engineering and Computer Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
10
|
Wei J, Lambert TY, Valada A, Patel N, Walker K, Lenders J, Schmidt CJ, Iskhakova M, Alazizi A, Mair-Meijers H, Mash DC, Luca F, Pique-Regi R, Bannon MJ, Akbarian S. Single Nucleus Transcriptomics Reveals Pervasive Glial Activation in Opioid Overdose Cases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531400. [PMID: 36945611 PMCID: PMC10028861 DOI: 10.1101/2023.03.07.531400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Dynamic interactions of neurons and glia in the ventral midbrain (VM) mediate reward and addiction behavior. We studied gene expression in 212,713 VM single nuclei from 95 human opioid overdose cases and drug-free controls. Chronic exposure to opioids left numerical proportions of VM glial and neuronal subtypes unaltered, while broadly affecting glial transcriptomes, involving 9.5 - 6.2% of expressed genes within microglia, oligodendrocytes, and astrocytes, with prominent activation of the immune response including interferon, NFkB signaling, and cell motility pathways, sharply contrasting with down-regulated expression of synaptic signaling and plasticity genes in VM non-dopaminergic neurons. VM transcriptomic reprogramming in the context of opioid exposure and overdose included 325 genes with genetic variation linked to substance use traits in the broader population, thereby pointing to heritable risk architectures in the genomic organization of the brain's reward circuitry.
Collapse
Affiliation(s)
- Julong Wei
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Tova Y. Lambert
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aditi Valada
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Nikhil Patel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Kellie Walker
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Jayna Lenders
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Carl J. Schmidt
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109
| | - Marina Iskhakova
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Adnan Alazizi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Henriette Mair-Meijers
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
| | - Deborah C. Mash
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Francesca Luca
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
- Department of Biology, University of Tor Vergata, Rome, Italy, 00133
| | - Roger Pique-Regi
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201
| | - Michael J Bannon
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Schahram Akbarian
- Department of Psychiatry, Department of Neuroscience and Department of Genetics and Genomic Sciences, Friedman Brain Institute Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|