1
|
Duda M, Faghiri A, Belger A, Bustillo JR, Ford JM, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Sui J, Van Erp TGM, Calhoun VD. Alterations in Gray Matter Structure Linked to Frequency-Specific Cortico-Subcortical Connectivity in Schizophrenia via Multimodal Data Fusion. Neuroinformatics 2025; 23:31. [PMID: 40285903 DOI: 10.1007/s12021-025-09728-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2025] [Indexed: 04/29/2025]
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively), between SZ and controls. The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between gray matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.
Collapse
Affiliation(s)
- Marlena Duda
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA.
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, CA, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Theo G M Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
2
|
de Almeida Queiroz S, de Novais Junior LR, de Carvalho ABP, da Silva TV, de Souza Ramos S, Meneguzzo V, Mathias K, Tiscoski ADB, Piacentini N, de Souza Goldim MP, Iser BPM, Petronilho F, Inserra A, de Bitencourt RM. Cannabidiol reverses myeloperoxidase hyperactivity in the prefrontal cortex and striatum, and reduces protein carbonyls in the hippocampus in a ketamine-induced schizophrenia rat model. Schizophr Res 2025; 278:82-95. [PMID: 40132281 DOI: 10.1016/j.schres.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/28/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Schizophrenia (SCZ) has limited treatment options, often with significant side effects. Cannabidiol (CBD), a non-euphoric phytocannabinoid, has shown potential as a novel therapeutic option in SCZ due to antipsychotic-like, anti-inflammatory, and antioxidant properties. We compared the therapeutic effects of CBD and risperidone (RISP) in a rat model of SCZ induced by sub-chronic ketamine (KET), focusing on inflammatory and oxidative stress, and behavioral phenotypes. METHODS Rats were pre-treated with KET or saline (SAL) for 10 days followed by CBD or RISP for 8 days. Locomotion, anxiety- and anhedonia-like behavior, and recognition memory were assessed. Oxidative damage as measured by protein carbonyls, thiobarbituric acid reactive substances, and catalase activity, and the inflammation markers myeloperoxidase (MPO) activity and nitrite/nitrate (N/N) concentration ratio were assessed in the prefrontal cortex (PFC), hypothalamus (HYP), hippocampus (HPC), and striatum, brain areas relevant to SCZ. RESULTS CBD restored the KET-induced decreased rearing behavior in the OFT, while RISP further decreased rearing. RISP treatment in control rats decreased rearing and elicited an anhedonic-like phenotype, while CBD did not. CBD, but not RISP restored the KET-induced increased levels of MPO activity in the PFC and the striatum, and protein carbonyls in the HPC. Post-KET treatment with RISP but not CBD decreased protein carbonyls in the PFC, and decreased the N/N concentration ratio in the HYP. CONCLUSION CBD restored the KET-induced decrease in rearing behavior without inducing an anhedonic-like phenotype as observed with RISP. CBD, and to a lesser extent RISP restored the oxidative stress and neuroinflammation elicited by KET in the striatum, HPC, and PFC. These findings support the possibility that the antipsychotic effects of CBD might be mediated by its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Sofia de Almeida Queiroz
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Linério Ribeiro de Novais Junior
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Anita Beatriz Pacheco de Carvalho
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Tiago Vicente da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Suelen de Souza Ramos
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Vicente Meneguzzo
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Khiany Mathias
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Anita Dal Bó Tiscoski
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Natália Piacentini
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Mariana Pereira de Souza Goldim
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Betine Pinto Moehlecke Iser
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabricia Petronilho
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Brazil
| | - Antonio Inserra
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina (UNISUL), Tubarão, Brazil.
| |
Collapse
|
3
|
Keane BP, Abrham YT, Cole MW, Johnson BA, Hu B, Cocuzza CV. Functional dysconnectivity of visual and somatomotor networks yields a simple and robust biomarker for psychosis. Mol Psychiatry 2025; 30:1539-1547. [PMID: 39367056 DOI: 10.1038/s41380-024-02767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/06/2024]
Abstract
People with psychosis exhibit thalamo-cortical hyperconnectivity and cortico-cortical hypoconnectivity with sensory networks, however, it remains unclear if this applies to all sensory networks, whether it arises from other illness factors, or whether such differences could form the basis of a viable biomarker. To address the foregoing, we harnessed data from the Human Connectome Early Psychosis Project and computed resting-state functional connectivity (RSFC) matrices for 54 healthy controls and 105 psychosis patients. Primary visual, secondary visual ("visual2"), auditory, and somatomotor networks were defined via a recent brain network partition. RSFC was determined for 718 regions via regularized partial correlation. Psychosis patients-both affective and non-affective-exhibited cortico-cortical hypoconnectivity and thalamo-cortical hyperconnectivity in somatomotor and visual2 networks but not in auditory or primary visual networks. When we averaged and normalized the visual2 and somatomotor network connections, and subtracted the thalamo-cortical and cortico-cortical connectivity values, a robust psychosis biomarker emerged (p = 2e-10, Hedges' g = 1.05). This "somato-visual" biomarker was present in antipsychotic-naive patients and did not depend on confounds such as psychiatric comorbidities, substance/nicotine use, stress, anxiety, or demographics. It had moderate test-retest reliability (ICC = 0.62) and could be recovered in five-minute scans. The marker could discriminate groups in leave-one-site-out cross-validation (AUC = 0.79) and improve group classification upon being added to a well-known neurocognition task. Finally, it could differentiate later-stage psychosis patients from healthy or ADHD controls in two independent data sets. These results introduce a simple and robust RSFC biomarker that can distinguish psychosis patients from controls by the early illness stages.
Collapse
Affiliation(s)
- Brian P Keane
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, 430 Elmwood Ave, Rochester, NY, 14642, USA.
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, P.O. Box 319, Rochester, NY, 14642, USA.
- Department of Brain & Cognitive Science, University of Rochester, 358 Meliora Hall, P.O. Box 270268, Rochester, NY, 14627-0268, USA.
| | - Yonatan T Abrham
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, P.O. Box 319, Rochester, NY, 14642, USA
- Department of Brain & Cognitive Science, University of Rochester, 358 Meliora Hall, P.O. Box 270268, Rochester, NY, 14627-0268, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave, Newark, NJ, 07102, USA
| | - Brent A Johnson
- Department of Biostatistics, University of Rochester Medical Center, 601 Elmwood Ave, P.O. Box 630, Rochester, NY, USA
| | - Boyang Hu
- Department of Brain & Cognitive Science, University of Rochester, 358 Meliora Hall, P.O. Box 270268, Rochester, NY, 14627-0268, USA
| | - Carrisa V Cocuzza
- Department of Psychology, Yale University, 100 College St, New Haven, CT, 06510, USA
| |
Collapse
|
4
|
Aziziha H, Hassanpour S, Zendehdel M. Lutein Exerts Antioxidant and Neuroprotective Role on Schizophrenia-Like Behaviours in Mice. Int J Dev Neurosci 2025; 85:e10407. [PMID: 39723598 DOI: 10.1002/jdn.10407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Schizophrenia is an esteemed neuropsychiatric condition delineated by the manifestation which role of the N-methyl-D-aspartate receptor (NMDAR) is important. Lutein administration exhibits protective effects via NMDA receptors. Thus, the main goal of this research was to investigate how lutein can possibly act as an antioxidant and provide protection for the brain against schizophrenia-like behaviours in mice. In total, 24 male mice were divided into four experimental groups: control, ketamine (20 mg/kg, i.p), lutein (10 mg/kg, i.p) and a mix of ketamine (20 mg/kg, i.p) and lutein (10 mg/kg, i.p). Lutein was given to the mice for 30 days, while ketamine was given from Days 16 to 30 to create a model of schizophrenia in the animals. After giving drugs, schizophrenia-like behaviours were evaluated with novel object recognition test (NORT), tail suspension test (TST), forced swimming test (FST) and open field tests. Furthermore, the amounts of brain malondialdehyde (MDA), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) were assessed. The findings showed a noteworthy decrease in the crossings during the open field test and increase in immobility duration in the TST and FST as a result of ketamine administration (p < 0.05). Prior administration of lutein showed a decrease in the detrimental effects of ketamine on the open field assay, along with a reduction in immobility duration in the TST and FST experiments (p < 0.05). Administration of ketamine caused a notable reduction in the discrimination index, while pretreatment with lutein was associated with a rise in the discrimination index (p < 0.05). Furthermore, the administration of ketamine significantly increased the levels of MDA in both cortical and subcortical regions, which were then reduced by lutein pretreatment (p < 0.05). Moreover, ketamine use led to a significant decrease in tissue SOD, GPx and CAT levels in both cortical and subcortical brain regions in mice (p < 0.05). Nonetheless, lutein pretreatment significantly enhanced SOD, GPx and CAT levels in cortical and subcortical regions (p < 0.05). These results indicate that lutein may have protective effects on the brain to improve behavioural problems.
Collapse
Affiliation(s)
- Helia Aziziha
- Graduate Student, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Pentz AB, Mäki-Marttunen V, van Jole O, Nerland S, Melle I, Steen NE, Agartz I, Westlye LT, Haukvik UK, Moberget T, Jönsson EG, Andreassen OA, Elvsåshagen T. Auditory MMN is associated with the volume of thalamic higher order nuclei in individuals with psychotic disorders and healthy controls. Schizophr Res 2025; 276:222-233. [PMID: 39922063 DOI: 10.1016/j.schres.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
OBJECTIVE Predictive coding is a theoretical framework that integrates models of brain dysconnectivity and psychopathology in psychosis. Thalamocortical dysconnectivity as well as reduced thalamic volumes have been reported in psychotic disorders. However, the role of the thalamus in predictive coding is not clear. We examined the relationship between magnetic resonance imaging (MRI)- based thalamic nuclei volumes and mismatch negativity (MMN), a purported index of prediction error signaling known to be impaired in psychosis. METHODS We obtained MRI and MMN using a roving paradigm from individuals with SCZ spectrum disorder (SSD, n = 60) or bipolar disorder (BD, n = 69) and HC (n = 252). We segmented volumes of 25 thalamic nuclei bilaterally and tested their associations with MMN amplitude using linear models while covarying for age, sex, diagnosis, and intracranial volumes (ICV). RESULTS We did not find group differences in thalamic volumes that could account for differences in MMN, neither did we find significant volume × diagnosis interactions on MMN for any of the 25 nuclei examined. Across the whole sample, significant positive associations were found between MMN amplitude and the volumes of several higher-order thalamic nuclei, including the mediodorsal medial and lateral nuclei, anterior and medial pulvinar, nucleus reuniens, as well as the lateral geniculate nucleus. CONCLUSION The results demonstrate a positive association between MMN amplitude and volumes of thalamic association nuclei in patients with psychotic disorders and HC. These findings may suggest a modulatory role of the thalamus in prediction error signaling.
Collapse
Affiliation(s)
- Atle Bråthen Pentz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway.
| | - Veronica Mäki-Marttunen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway
| | - Oda van Jole
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Stener Nerland
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Ingrid Melle
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Unn K Haukvik
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway; Department of Forensic Psychiatry Research, Oslo University Hospital, Norway
| | - Torgeir Moberget
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Behavioral Sciences, Faculty of Health- Sciences, Oslo Metropolitan University - OsloMet, Oslo, Norway
| | - Erik G Jönsson
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Sciences, Stockholm Region, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Adult Psychiatry, Institute of Clinical Medicine, University of Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital, Institute of Clinical Medicine, University of Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway; Department of Behavioral Medicine, Institute of Basic Medical Sciences, University of Oslo, Norway.
| |
Collapse
|
6
|
Olivares-Berjaga D, Martínez-Pinteño A, Rodríguez N, Mas S, Morén C, Parellada E, Gassó P. Effectiveness of positive allosteric modulators of metabotropic glutamate receptor 2/3 (mGluR2/3) in animal models of schizophrenia. Transl Psychiatry 2025; 15:11. [PMID: 39809758 PMCID: PMC11733226 DOI: 10.1038/s41398-024-03194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 11/21/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
Schizophrenia (SZ) is a deleterious brain disorder characterised by its heterogeneity and complex symptomatology consisting of positive, negative and cognitive deficits. Current antipsychotic drugs ameliorate the positive symptomatology, but are inefficient in treating the negative symptomatology and cognitive deficits. The neurodevelopmental glutamate hypothesis of SZ has opened new avenues in the development of drugs targeting the glutamatergic system. One of these new therapies involves the positive allosteric modulators (PAMs) of metabotropic glutamate receptors, mainly types 2/3 (mGluR2/3). mGluR2/3 PAMs are selective for the receptor, present high tolerability and can modulate the activity of the receptor for long periods. There is not much research in clinical trials regarding mGluR2/3 PAMs. However, several lines of evidence from animal models have indicated the efficiency of mGluR2/3 PAMs. In this review, focusing on in vivo animal studies, we will specifically discuss the utilization of SZ animal models and the various methods employed to assess animal behaviour before summarising the evidence obtained to date in the field of mGluR2/3 PAMs. By doing so, we aim to deepen our understanding of the underlying mechanisms and the potential efficiency of mGluR2/3 PAMs in treating SZ. Overall, mGluR2/3 PAMs have demonstrated efficiency in attenuating SZ-like behavioural and molecular deficits in animal models and could be useful for the early management of the disorder or to treat specific subsets of patients.
Collapse
Affiliation(s)
- David Olivares-Berjaga
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Martínez-Pinteño
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Natalia Rodríguez
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sergi Mas
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Constanza Morén
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain
- Department of Fundamental and Clinical Nursing, Faculty of Nursing, University of Barcelona, Barcelona, Spain
| | - Eduard Parellada
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
- Barcelona Clínic Schizophrenia Unit (BCSU), Department of Psychiatry, Institute of Neuroscience, Hospital Clínic of Barcelona, University of Barcelona, Barcelona, Spain.
| | - Patricia Gassó
- Department of Basic Clinical Practice, University of Barcelona, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain.
| |
Collapse
|
7
|
Brakatselos C, Polissidis A, Ntoulas G, Asprogerakas MZ, Tsarna O, Vamvaka-Iakovou A, Nakas G, Delis A, Tzimas P, Skaltsounis L, Silva J, Delis F, Oliveira JF, Sotiropoulos I, Antoniou K. Multi-level therapeutic actions of cannabidiol in ketamine-induced schizophrenia psychopathology in male rats. Neuropsychopharmacology 2024; 50:388-400. [PMID: 39242923 PMCID: PMC11631973 DOI: 10.1038/s41386-024-01977-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Repeated administration of ketamine (KET) has been used to model schizophrenia-like symptomatology in rodents, but the psychotomimetic neurobiological and neuroanatomical underpinnings remain elusive. In parallel, the unmet need for a better treatment of schizophrenia requires the development of novel therapeutic strategies. Cannabidiol (CBD), a major non-addictive phytocannabinoid has been linked to antipsychotic effects with unclear mechanistic basis. Therefore, this study aims to clarify the neurobiological substrate of repeated KET administration model and to evaluate CBD's antipsychotic potential and neurobiological basis. CBD-treated male rats with and without prior repeated KET administration underwent behavioral analyses, followed by multilevel analysis of different brain areas including dopaminergic and glutamatergic activity, synaptic signaling, as well as electrophysiological recordings for the assessment of corticohippocampal and corticostriatal network activity. Repeated KET model is characterized by schizophrenia-like symptomatology and alterations in glutamatergic and dopaminergic activity mainly in the PFC and the dorsomedial striatum (DMS), through a bi-directional pattern. These observations are accompanied by glutamatergic/GABAergic deviations paralleled to impaired function of parvalbumin- and cholecystokinin-positive interneurons, indicative of excitation/inhibition (E/I) imbalance. Moreover, CBD counteracted the schizophrenia-like behavioral phenotype as well as reverted prefrontal abnormalities and ventral hippocampal E/I deficits, while partially modulated dorsostriatal dysregulations. This study adds novel insights to our understanding of the KET-induced schizophrenia-related brain pathology, as well as the CBD antipsychotic action through a region-specific set of modulations in the corticohippocampal and costicostrtiatal circuitry of KET-induced profile contributing to the development of novel therapeutic strategies focused on the ECS and E/I imbalance restoration.
Collapse
Affiliation(s)
- Charalampos Brakatselos
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Alexia Polissidis
- Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
- Department of Science and Mathematics, ACG-Research Center, Deree - American College of Greece, 15342, Athens, Greece
| | - George Ntoulas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Michail-Zois Asprogerakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Olga Tsarna
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasia Vamvaka-Iakovou
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gerasimos Nakas
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Anastasios Delis
- Center of Basic Research, Biological Imaging Unit, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
| | - Petros Tzimas
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Leandros Skaltsounis
- Department of Pharmacognosy and Natural Product Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Joana Silva
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Foteini Delis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece
| | - Joao Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, Barcelos, Portugal
| | - Ioannis Sotiropoulos
- Institute of Biosciences & Applications, NCSR Demokritos, Athens, Greece
- Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Katerina Antoniou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
8
|
Wang Z, Xue K, Kang Y, Liu Z, Cheng J, Zhang Y, Wei Y. Altered intrinsic neural activity and its molecular analyses in first-episode schizophrenia with auditory verbal hallucinations. Front Neurosci 2024; 18:1478963. [PMID: 39534020 PMCID: PMC11554611 DOI: 10.3389/fnins.2024.1478963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Background Auditory verbal hallucinations (AVHs) are one of the signature positive symptoms of schizophrenia, affecting a substantial portion of patients with schizophrenia. These hallucinations seriously impact the lives of patients, resulting in a substantial social burden. Recent studies have shown a significant correlation between abnormal local brain activity and the neurobiological mechanisms of AVHs. However, it is not fully clear whether altered intrinsic brain activity in schizophrenia patients with AVHs is correlated with specific neurotransmitter systems. Methods We included 50 first-episode, drug-naïve schizophrenia patients with AVHs, 50 patients without AVHs (NAVHs), and 50 age- and sex-matched healthy controls (HCs). The amplitude of low-frequency fluctuation (ALFF) was utilized to explore the altered intrinsic brain activity in the AVH group. Subsequently, we spatially correlated the altered ALFF with neurotransmitter maps using JuSpace. Results In our study, compared to HCs, the AVH group exhibited significantly reduced ALFF in multiple brain regions, mainly including the left precuneus, bilateral supplementary motor areas, bilateral paracentral lobules, bilateral precentral gyri, and bilateral postcentral gyri. The NAVH group showed significantly reduced ALFF in the left inferior occipital gyrus, left calcarine gyrus, and left lingual gyrus compared to HCs. Furthermore, the AVH group showed higher ALFF in the right inferior frontal gyrus compared to the NAVH group. Additionally, these ALFF alterations in the AVH group were closely related to three neurotransmitters, including dopamine, serotonin and norepinephrine. Conclusion We link neurotransmitters to abnormal intrinsic brain activity in first-episode, drug-naïve schizophrenia patients with AVHs, contributing to a comprehensive understanding of the pathophysiological processes and treatment pathways underlying AVHs.
Collapse
Affiliation(s)
- Ziyu Wang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yimeng Kang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Zijun Liu
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yan Zhang
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
| |
Collapse
|
9
|
Preller KH, Scholpp J, Wunder A, Rosenbrock H. Neuroimaging Biomarkers for Drug Discovery and Development in Schizophrenia. Biol Psychiatry 2024; 96:666-673. [PMID: 38272287 DOI: 10.1016/j.biopsych.2024.01.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
Schizophrenia is a chronic mental illness that affects up to 1% of the population. While efficacious therapies are available for positive symptoms, effective treatment of cognitive and negative symptoms remains an unmet need after decades of research. New developments in the field of neuroimaging are accelerating our knowledge gain regarding the underlying pathophysiology of symptoms in schizophrenia and psychosis spectrum disorders, inspiring new targets for drug development. However, no validated and qualified biomarkers are currently available to support the development of new therapeutics. This review summarizes the current use of neuroimaging technology in clinical drug development for psychotic disorders. As exemplified by drug development programs that target NMDA receptor hypofunction, neuroimaging results play a critical role in target discovery and establishing target engagement and dose selection. Furthermore, pharmacological neuroimaging may provide response biomarkers that allow for early decision making in proof-of-concept studies that leverage pharmacological challenge models in healthy volunteers. That said, while response and predictive biomarkers are starting to be evaluated in patient populations, they continue to play a limited role. Novel approaches to neuroimaging data acquisition and analysis may aid the establishment of biomarkers that are predictive at the individual level in the future. Nevertheless, various gaps in knowledge need to be addressed and biomarkers need to be validated to establish them as "fit for purpose" in drug development.
Collapse
Affiliation(s)
- Katrin H Preller
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany; Boehringer Ingelheim (Schweiz) GmbH, Basel, Switzerland.
| | - Joachim Scholpp
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Andreas Wunder
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Holger Rosenbrock
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| |
Collapse
|
10
|
Meiering MS, Weigner D, Gärtner M, Carstens L, Keicher C, Hertrampf R, Beckmann CF, Mennes M, Wunder A, Weigand A, Grimm S. Functional activity and connectivity signatures of ketamine and lamotrigine during negative emotional processing: a double-blind randomized controlled fMRI study. Transl Psychiatry 2024; 14:436. [PMID: 39402015 PMCID: PMC11479267 DOI: 10.1038/s41398-024-03120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
Ketamine is a highly effective antidepressant (AD) that targets the glutamatergic system and exerts profound effects on brain circuits during negative emotional processing. Interestingly, the effects of ketamine on brain measures are sensitive to modulation by pretreatment with lamotrigine, which inhibits glutamate release. Examining the antagonistic effects of ketamine and lamotrigine on glutamate transmission holds promise to identify effects of ketamine that are mediated through changes in the glutamatergic system. Investigating this modulation in relation to both the acute and sustained effects of ketamine on functional activity and connectivity during negative emotional processing should therefore provide novel insights. 75 healthy subjects were investigated in a double-blind, single-dose, randomized, placebo-controlled, parallel-group study with three treatment conditions (ketamine, lamotrigine pre-treatment, placebo). Participants completed an emotional face viewing task during ketamine infusion and 24 h later. Acute ketamine administration decreased hippocampal and Default Mode Network (DMN) activity and increased fronto-limbic coupling during negative emotional processing. Furthermore, while lamotrigine abolished the ketamine-induced increase in functional connectivity, it had no acute effect on activity. Sustained (24 h later) effects of ketamine were only found for functional activity, with a significant reduction in the posterior DMN. This effect was blocked by pretreatment with lamotrigine. Our results suggest that both the acute increases in fronto-limbic coupling and the delayed decrease in posterior DMN activity, but not the attenuated limbic and DMN recruitment after ketamine, are mediated by altered glutamatergic transmission.
Collapse
Affiliation(s)
- Marvin S Meiering
- Medical School Berlin, Berlin, Germany.
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany.
| | - David Weigner
- Medical School Berlin, Berlin, Germany
- Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | | | | - Andreas Wunder
- Translational Medicine and Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | - Simone Grimm
- Medical School Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universitiät Zu Berlin, Berlin, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Kaldewaij R, Salamone PC, Enmalm A, Östman L, Pietrzak M, Karlsson H, Löfberg A, Gauffin E, Samuelsson M, Gustavson S, Capusan AJ, Olausson H, Heilig M, Boehme R. Ketamine reduces the neural distinction between self- and other-produced affective touch: a randomized double-blind placebo-controlled study. Neuropsychopharmacology 2024; 49:1767-1774. [PMID: 38918578 PMCID: PMC11399133 DOI: 10.1038/s41386-024-01906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
A coherent sense of self is crucial for social functioning and mental health. The N-methyl-D-aspartate antagonist ketamine induces short-term dissociative experiences and has therefore been used to model an altered state of self-perception. This randomized double-blind placebo-controlled cross-over study investigated the mechanisms for ketamine's effects on the bodily sense of self in the context of affective touch. Thirty healthy participants (15 females/15 males, age 19-39) received intravenous ketamine or placebo while performing self-touch and receiving touch by someone else during functional MRI - a previously established neural measure of tactile self-other-differentiation. Afterwards, tactile detection thresholds during self- and other-touch were assessed, as well as dissociative states, interoceptive awareness, and social touch attitudes. Compared to placebo, ketamine administration elicited dissociation and reduced neural activity associated with self-other-differentiation in the right temporoparietal cortex, which was most pronounced during other-touch. This reduction correlated with ketamine-induced reductions in interoceptive awareness. The temporoparietal cortex showed higher connectivity to somatosensory cortex and insula during other- compared to self-touch. This difference was augmented by ketamine, and correlated with dissociation strength for somatosensory cortex. These results demonstrate that disrupting the self-experience through ketamine administration affects neural activity associated with self-other-differentiation in a region involved in touch perception and social cognition, especially with regard to social touch by someone else. This process may be driven by ketamine-induced effects on top-down signaling, rendering the processing of predictable self-generated and unpredictable other-generated touch more similar. These findings provide further evidence for the intricate relationship of the bodily self with the tactile sense.
Collapse
Affiliation(s)
- Reinoud Kaldewaij
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden.
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Paula C Salamone
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Adam Enmalm
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Lars Östman
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Michal Pietrzak
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Hanna Karlsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andreas Löfberg
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Emelie Gauffin
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Martin Samuelsson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Sarah Gustavson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Andrea J Capusan
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Håkan Olausson
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Rebecca Boehme
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Keane BP, Abrham Y, Cole MW, Johnson BA, Hu B, Cocuzza CV. Functional dysconnectivity of visual and somatomotor networks yields a simple and robust biomarker for psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.14.24308836. [PMID: 38946974 PMCID: PMC11213076 DOI: 10.1101/2024.06.14.24308836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
People with psychosis exhibit thalamo-cortical hyperconnectivity and cortico-cortical hypoconnectivity with sensory networks, however, it remains unclear if this applies to all sensory networks, whether it arises from other illness factors, or whether such differences could form the basis of a viable biomarker. To address the foregoing, we harnessed data from the Human Connectome Early Psychosis Project and computed resting-state functional connectivity (RSFC) matrices for 54 healthy controls and 105 psychosis patients. Primary visual, secondary visual ("visual2"), auditory, and somatomotor networks were defined via a recent brain network partition. RSFC was determined for 718 regions via regularized partial correlation. Psychosis patients- both affective and non-affective-exhibited cortico-cortical hypoconnectivity and thalamo-cortical hyperconnectivity in somatomotor and visual2 networks but not in auditory or primary visual networks. When we averaged and normalized the visual2 and somatomotor network connections, and subtracted the thalamo-cortical and cortico-cortical connectivity values, a robust psychosis biomarker emerged (p=2e-10, Hedges' g=1.05). This "somato-visual" biomarker was present in antipsychotic-naive patients and did not depend on confounds such as psychiatric comorbidities, substance/nicotine use, stress, anxiety, or demographics. It had moderate test-retest reliability (ICC=.61) and could be recovered in five-minute scans. The marker could discriminate groups in leave-one-site-out cross-validation (AUC=.79) and improve group classification upon being added to a well-known neurocognition task. Finally, it could differentiate later-stage psychosis patients from healthy or ADHD controls in two independent data sets. These results introduce a simple and robust RSFC biomarker that can distinguish psychosis patients from controls by the early illness stages.
Collapse
Affiliation(s)
- Brian P Keane
- Departments of Psychiatry and Neuroscience, University of Rochester Medical Center, 430 Elmwood Ave, Rochester, NY 14642, USA
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, P.O. Box 319, Rochester, NY 14642, USA
- Department of Brain & Cognitive Science, University of Rochester, 358 Meliora Hall P.O. Box 270268, Rochester, NY 14627-0268, USA
| | - Yonatan Abrham
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, P.O. Box 319, Rochester, NY 14642, USA
- Department of Brain & Cognitive Science, University of Rochester, 358 Meliora Hall P.O. Box 270268, Rochester, NY 14627-0268, USA
| | - Michael W Cole
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Ave, 07102, USA
| | - Brent A Johnson
- Department of Biostatistics, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Boyang Hu
- Department of Brain & Cognitive Science, University of Rochester, 358 Meliora Hall P.O. Box 270268, Rochester, NY 14627-0268, USA
| | - Carrisa V Cocuzza
- Department of Psychology, Yale University, 100 College St, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Ben-Azu B, Adebayo OG, Fokoua AR, Oritsemuelebi B, Chidebe EO, Nwogueze CB, Kumanwee L, Uyere GE, Emuakpeje MT. Antipsychotic effect of diosgenin in ketamine-induced murine model of schizophrenia: Involvement of oxidative stress and cholinergic transmission. IBRO Neurosci Rep 2024; 16:86-97. [PMID: 38282757 PMCID: PMC10818187 DOI: 10.1016/j.ibneur.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/17/2023] [Accepted: 12/29/2023] [Indexed: 01/30/2024] Open
Abstract
A decrease in the levels of antioxidant arsenals exacerbate generation of reactive oxygen/nitrogen species, leading to neurochemical dysfunction, with significant impact on the pathogenesis of psychotic disorders such as schizophrenia. This study examined the preventive and reversal effects of diosgenin, a phyto-steroidal saponin with antioxidant functions in mice treated with ketamine which closely replicates schizophrenia-like symptoms in human and laboratory animals. In the preventive phase, adult mice cohorts were clustered into 5 groups (n = 9). Groups 1 and 2 received saline (10 mL/kg, i.p.), groups 3 and 4 were pretreated with diosgenin (25 and 50 mg/kg), and group 5 received risperidone (0.5 mg/kg) orally for 14 days. Mice in groups 2-5 additionally received a daily dose of ketamine (20 mg/kg, i.p.) or saline (10 mL/kg/day, i.p.). In the reversal phase, mice received intraperitoneal injection of ketamine or saline for 14 consecutive days prior to diosgenin (25 and 50 mg/kg/p.o./day) and risperidone (0.5 mg/kg/p.o./day) treatment from days 8-14. Mice were assessed for behavioral changes. Oxidative, nitrergic markers, and cholinergic (acetylcholinesterase activity) transmission were examined in the striatum, prefrontal-cortex and hippocampus. Diosgenin prevented and reversed hyperlocomotion, cognitive and social deficits in mice treated with ketamine relative to ketamine groups. The increased acetylcholinesterase, malondialdehyde and nitrite levels produced by ketamine were reduced by diosgenin in the striatum, prefrontal-cortex and hippocampus, but did not reverse striatal nitrite level. Diosgenin increased glutathione, and catalase levels, except for hippocampal catalase activity when compared with ketamine controls. Conclusively, these biochemical changes might be related to the behavioral deficits in ketamine-treated mice, which were prevented and reversed by diosgenin.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Olusegun G. Adebayo
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Aliance Romain Fokoua
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
- Research unit of Neuroinflammatory and Cardiovascular Pharmacology, Department of Animal Biology, Faculty of Sciences, University of Dschang, Cameroon
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel O. Chidebe
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chukwuebuka B. Nwogueze
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Lenatababari Kumanwee
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - God'swill E. Uyere
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Micheal T. Emuakpeje
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
14
|
Liebe T, Danyeli LV, Sen ZD, Li M, Kaufmann J, Walter M. Subanesthetic Ketamine Suppresses Locus Coeruleus-Mediated Alertness Effects: A 7T fMRI Study. Int J Neuropsychopharmacol 2024; 27:pyae022. [PMID: 38833581 PMCID: PMC11187989 DOI: 10.1093/ijnp/pyae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The NMDA antagonist S-ketamine is gaining increasing use as a rapid-acting antidepressant, although its exact mechanisms of action are still unknown. In this study, we investigated ketamine in respect to its properties toward central noradrenergic mechanisms and how they influence alertness behavior. METHODS We investigated the influence of S-ketamine on the locus coeruleus (LC) brain network in a placebo-controlled, cross-over, 7T functional, pharmacological MRI study in 35 healthy male participants (25.1 ± 4.2 years) in conjunction with the attention network task to measure LC-related alertness behavioral changes. RESULTS We could show that acute disruption of the LC alertness network to the thalamus by ketamine is related to a behavioral alertness reduction. CONCLUSION The results shed new light on the neural correlates of ketamine beyond the glutamatergic system and underpin a new concept of how it may unfold its antidepressant effects.
Collapse
Affiliation(s)
- Thomas Liebe
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- University Clinic for Dermatology, Magdeburg, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner site Halle-Jena-Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Jörn Kaufmann
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Department of Neurology, University of Magdeburg, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Jena, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner site Halle-Jena-Magdeburg, Germany
| |
Collapse
|
15
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
16
|
Ledesma-Corvi S, Jornet-Plaza J, Gálvez-Melero L, García-Fuster MJ. Novel rapid treatment options for adolescent depression. Pharmacol Res 2024; 201:107085. [PMID: 38309382 DOI: 10.1016/j.phrs.2024.107085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/13/2023] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
There is an urgent need for novel fast-acting antidepressants for adolescent treatment-resistant depression and/or suicidal risk, since the selective serotonin reuptake inhibitors that are clinically approved for that age (i.e., fluoxetine or escitalopram) take weeks to work. In this context, one of the main research lines of our group is to characterize at the preclinical level novel approaches for rapid-acting antidepressants for adolescence. The present review summarizes the potential use in adolescence of non-pharmacological options, such as neuromodulators (electroconvulsive therapy and other innovative types of brain stimulation), as well as pharmacological options, including consciousness-altering drugs (mainly ketamine but also classical psychedelics) and cannabinoids (i.e., cannabidiol), with promising fast-acting responses. Following a brief analytical explanation of adolescent depression, we present a general introduction for each therapeutical approach together with the clinical evidence supporting its potential beneficial use in adolescence (mainly extrapolated from prior successful examples for adults), to then report recent and/or ongoing preclinical studies that will aid in improving the inclusion of these therapies in the clinic, by considering potential sex-, age-, and dose-related differences, and/or other factors that might affect efficacy or long-term safety. Finally, we conclude the review by providing future avenues to maximize treatment response, including the need for more clinical studies and the importance of designing and/or testing novel treatment options that are safe and fast-acting for adolescent depression.
Collapse
Affiliation(s)
- Sandra Ledesma-Corvi
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Jordi Jornet-Plaza
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Laura Gálvez-Melero
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - M Julia García-Fuster
- Neuropharmacology Research Group, IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| |
Collapse
|
17
|
Catalan A, McCutcheon RA, Aymerich C, Pedruzo B, Radua J, Rodríguez V, Salazar de Pablo G, Pacho M, Pérez JL, Solmi M, McGuire P, Giuliano AJ, Stone WS, Murray RM, Gonzalez-Torres MA, Fusar-Poli P. The magnitude and variability of neurocognitive performance in first-episode psychosis: a systematic review and meta-analysis of longitudinal studies. Transl Psychiatry 2024; 14:15. [PMID: 38191534 PMCID: PMC10774360 DOI: 10.1038/s41398-023-02718-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/10/2024] Open
Abstract
Neurocognitive deficits are a core feature of psychotic disorders, but it is unclear whether they affect all individuals uniformly. The aim of this systematic review and meta-analysis was to synthesize the evidence on the magnitude, progression, and variability of neurocognitive functioning in individuals with first-episode psychosis (FEP). A multistep literature search was conducted in several databases up to November 1, 2022. Original studies reporting on neurocognitive functioning in FEP were included. The researchers extracted the data and clustered the neurocognitive tasks according to the seven Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) domains and six additional domains. Random-effect model meta-analyses, assessment of publication biases and study quality, and meta-regressions were conducted. The primary effect size reported was Hedges g of (1) neurocognitive functioning in individuals at FEP measuring differences with healthy control (HC) individuals or (2) evolution of neurocognitive impairment across study follow-up intervals. Of 30,384 studies screened, 54 were included, comprising 3,925 FEP individuals and 1,285 HC individuals. Variability analyses indicated greater variability in FEP compared to HC at baseline and follow-up. We found better neurocognitive performance in the HC group at baseline and follow-up but no differences in longitudinal neurocognitive changes between groups. Across the 13 domains, individuals with FEP showed improvement from baseline in all studied domains, except for visual memory. Metaregressions showed some differences in several of the studied domains. The findings suggest that individuals with FEP have marked cognitive impairment, but there is greater variability in cognitive functioning in patients than in HC. This suggests that subgroups of individuals suffer severe disease-related cognitive impairments, whereas others may be much less affected. While these impairments seem stable in the medium term, certain indicators may suggest potential further decline in the long term for a specific subgroup of individuals, although more research is needed to clarify this. Overall, this study highlights the need for tailored neurocognitive interventions for individuals with FEP based on their specific deficits and progression.
Collapse
Affiliation(s)
- Ana Catalan
- Department of Neuroscience, University of the Basque Country UPV/EHU; Psychiatry Department. Basurto University Hospital; Biobizkaia Health Research Institute; Centro de Investigación en Red de Salud Mental. (CIBERSAM) Instituto de Salud Carlos III , OSI Bilbao-Basurto, Av. Montevideo 18, 48013, Bilbao, Spain.
- Early Psychosis Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert A McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry. University of Oxford, Warneford Hospital, Headington, OX3 7JX, UK
- Oxford Health NHS foundation trust, Oxford, UK
| | - Claudia Aymerich
- Department of Neuroscience, University of the Basque CountryUPV/EHU. Psychiatry Department. Basurto University Hospital. BiBiobizkaia Health Research Institute. Centro de Investigaciónen Red de Salud Mental. (CIBERSAM), Instituto de Salud Carlos III, Avenida de Montevideo 18, 48013, Bilbao, Spain
| | - Borja Pedruzo
- Psychiatry Department. Basurto University Hospital, OSI Bilbao-Basurto, Bizkaia, Spain
| | - Joaquim Radua
- Imaging of Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain
| | - Victoria Rodríguez
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gonzalo Salazar de Pablo
- Early Psychosis Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Child and Adolescent Mental Health Services, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health. Hospital General Universitario Gregorio Marañón School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Malein Pacho
- Psychiatry Department. Basurto University Hospital, OSI Bilbao-Basurto, Bizkaia, Spain
| | - Jose Luis Pérez
- Psychiatry Department. Basurto University Hospital, OSI Bilbao-Basurto, Bizkaia, Spain
| | - Marco Solmi
- Charité Universitätsmedizin Berlin, Department of Child and Adolescent Psychiatry, Berlin, Germany
- SCIENCES lab, Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
- On Track: The Champlain First Episode Psychosis Program, Department of Mental Health, The Ottawa Hospital, Ottawa, ON, Canada
- Ottawa Hospital Research Institute (OHRI) Clinical Epidemiology Program University of Ottawa, Ottawa, ON, Canada
- School of Epidemiology and Public Health, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Psychiatry. University of Oxford, Warneford Hospital, Headington, OX3 7JX, UK
| | - Anthony J Giuliano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - William S Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Robin M Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Miguel Angel Gonzalez-Torres
- Department of Neuroscience, University of the Basque Country UPV/EHU; Psychiatry Department. Basurto University Hospital; Biobizkaia Health Research Institute; Centro de Investigación en Red de Salud Mental. (CIBERSAM) Instituto de Salud Carlos III , OSI Bilbao-Basurto, Av. Montevideo 18, 48013, Bilbao, Spain
| | - Paolo Fusar-Poli
- Early Psychosis Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Brain and Behavioral Sciences, University of Pavia, , Pavia, Italy
- Outreach and Support in South London (OASIS) service, South London and Maudsley NHS Foundation Trust, London, UK
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilian-University Munich, Munich, Germany
| |
Collapse
|
18
|
Roell L, Keeser D, Papazov B, Lembeck M, Papazova I, Greska D, Muenz S, Schneider-Axmann T, Sykorova EB, Thieme CE, Vogel BO, Mohnke S, Huppertz C, Roeh A, Keller-Varady K, Malchow B, Stoecklein S, Ertl-Wagner B, Henkel K, Wolfarth B, Tantchik W, Walter H, Hirjak D, Schmitt A, Hasan A, Meyer-Lindenberg A, Falkai P, Maurus I. Effects of Exercise on Structural and Functional Brain Patterns in Schizophrenia-Data From a Multicenter Randomized-Controlled Study. Schizophr Bull 2024; 50:145-156. [PMID: 37597507 PMCID: PMC10754172 DOI: 10.1093/schbul/sbad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
BACKGROUND AND HYPOTHESIS Aerobic exercise interventions in people with schizophrenia have been demonstrated to improve clinical outcomes, but findings regarding the underlying neural mechanisms are limited and mainly focus on the hippocampal formation. Therefore, we conducted a global exploratory analysis of structural and functional neural adaptations after exercise and explored their clinical implications. STUDY DESIGN In this randomized controlled trial, structural and functional MRI data were available for 91 patients with schizophrenia who performed either aerobic exercise on a bicycle ergometer or underwent a flexibility, strengthening, and balance training as control group. We analyzed clinical and neuroimaging data before and after 6 months of regular exercise. Bayesian linear mixed models and Bayesian logistic regressions were calculated to evaluate effects of exercise on multiple neural outcomes and their potential clinical relevance. STUDY RESULTS Our results indicated that aerobic exercise in people with schizophrenia led to structural and functional adaptations mainly within the default-mode network, the cortico-striato-pallido-thalamo-cortical loop, and the cerebello-thalamo-cortical pathway. We further observed that volume increases in the right posterior cingulate gyrus as a central node of the default-mode network were linked to improvements in disorder severity. CONCLUSIONS These exploratory findings suggest a positive impact of aerobic exercise on 3 cerebral networks that are involved in the pathophysiology of schizophrenia. CLINICAL TRIALS REGISTRATION The underlying study of this manuscript was registered in the International Clinical Trials Database, ClinicalTrials.gov (NCT number: NCT03466112, https://clinicaltrials.gov/ct2/show/NCT03466112?term=NCT03466112&draw=2&rank=1) and in the German Clinical Trials Register (DRKS-ID: DRKS00009804).
Collapse
Affiliation(s)
- Lukas Roell
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Keeser
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Neuroimaging Core Unit Munich (NICUM), University Hospital, LMU Munich, Munich, Germany
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Boris Papazov
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Moritz Lembeck
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - David Greska
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Susanne Muenz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Schneider-Axmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Eliska B Sykorova
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Christina E Thieme
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Bob O Vogel
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Sebastian Mohnke
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Charlotte Huppertz
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Astrid Roeh
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Katriona Keller-Varady
- Hannover Medical School, Department of Rehabilitation and Sports Medicine, Hannover, Germany
| | - Berend Malchow
- Department of Psychiatry and Psychotherapy, University Hospital Göttingen, Göttingen, Germany
| | - Sophia Stoecklein
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Birgit Ertl-Wagner
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Division of Neuroradiology, Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Karsten Henkel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Bernd Wolfarth
- Department of Sports Medicine, University Hospital Charité Berlin, Berlin, Germany
| | - Wladimir Tantchik
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, University Hospital Charité Berlin, Berlin, Germany
| | - Dusan Hirjak
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Germany
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, São Paulo, Brazil
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy and Psychosomatics of the University Augsburg, Medical Faculty, University of Augsburg, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | | | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Isabel Maurus
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Zhang Y, Ma S, Liu Y, Kong F, Zhen Z. Functional integration of anterior insula related to meaning in life and loneliness. J Affect Disord 2023; 338:10-16. [PMID: 37244540 DOI: 10.1016/j.jad.2023.05.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
BACKGROUND Meaning in life (MIL), defined as people's feelings of life's meaningfulness, plays a vital role in buffering loneliness - an important indicator of depression and other psychological disorders. Considerable evidence shows that MIL arises from widely distributed brain activity; however, how such activity is functionally integrated and how it influences loneliness is still understudied. METHODS We here examined how the functional integration of brain regions is related to individual MIL based on resting-state functional magnetic resonance imaging data from the Human Connectome Project (N = 970). RESULTS We found that the global brain connectivity (GBC) of the right anterior insula (rAI) can significantly predict individual MIL. Moreover, mediation analyses were conducted to investigate how the brain influences loneliness with MIL's mediation, which revealed that MIL fully mediates the effect of this hub on loneliness. CONCLUSIONS These findings suggest that the rAI is a key hub for MIL and loneliness. Its functional integration can be used as a biomarker to predict individual MIL and loneliness.
Collapse
Affiliation(s)
- Yajie Zhang
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Sai Ma
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Youyi Liu
- Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Feng Kong
- Department of Psychology, Shaanxi Normal University, Xi'an, China.
| | - Zonglei Zhen
- Faculty of Psychology, Beijing Normal University, Beijing, China.
| |
Collapse
|
20
|
Wang R, Peterson Z, Balasubramanian N, Khan KM, Chimenti MS, Thedens D, Nickl-Jockschat T, Marcinkiewcz CA. Lateral Septal Circuits Govern Schizophrenia-Like Effects of Ketamine on Social Behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552372. [PMID: 37609170 PMCID: PMC10441349 DOI: 10.1101/2023.08.08.552372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Schizophrenia is marked by poor social functioning that can have a severe impact on quality of life and independence, but the underlying neural circuity is not well understood. Here we used a translational model of subanesthetic ketamine in mice to delineate neural pathways in the brain linked to social deficits in schizophrenia. Mice treated with chronic ketamine (30 mg/kg/day for 10 days) exhibit profound social and sensorimotor deficits as previously reported. Using three- dimensional c-Fos immunolabeling and volume imaging (iDISCO), we show that ketamine treatment resulted in hypoactivation of the lateral septum (LS) in response to social stimuli. Chemogenetic activation of the LS rescued social deficits after ketamine treatment, while chemogenetic inhibition of previously active populations in the LS (i.e. social engram neurons) recapitulated social deficits in ketamine-naïve mice. We then examined the translatome of LS social engram neurons and found that ketamine treatment dysregulated genes implicated in neuronal excitability and apoptosis, which may contribute to LS hypoactivation. We also identified 38 differentially expressed genes (DEGs) in common with human schizophrenia, including those involved in mitochondrial function, apoptosis, and neuroinflammatory pathways. Chemogenetic activation of LS social engram neurons induced downstream activity in the ventral part of the basolateral amygdala, subparafascicular nucleus of the thalamus, intercalated amygdalar nucleus, olfactory areas, and dentate gyrus, and it also reduces connectivity of the LS with the piriform cortex and caudate-putamen. In sum, schizophrenia-like social deficits may emerge via changes in the intrinsic excitability of a discrete subpopulation of LS neurons that serve as a central hub to coordinate social behavior via downstream projections to reward, fear extinction, motor and sensory processing regions of the brain.
Collapse
|
21
|
Farkhakfar A, Hassanpour S, Zendehdel M. Resveratrol plays neuroprotective role on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Neurosci Lett 2023; 813:137436. [PMID: 37586559 DOI: 10.1016/j.neulet.2023.137436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
This study aimed to determine effects of the resveratrol on ketamine-induced schizophrenia-like behaviors and oxidative damage in mice. Twenty-four male mice were allocated into four experimental groups as control, ketamine (20 mg/kg), resveratrol (80 mg/kg) and co-administration of the ketamine (20 mg/kg) + resveratrol (80 mg/kg). Mice were received resveratrol for 30 days and ketamine was used for an animal model of schizophrenia and was injected from days 16 to 30 of the study. After the drug administration was finished, schizophrenia-like behaviors were evaluated using object recognition test, tail suspension test, forced swimming test and open field test and brain malondialdehyde, glutathione peroxidase, superoxide dismutase and catalase levels were determined. According to the results, ketamine treatment significantly decreased body weight and pretreatment with resveratrol elevated body weight compared to ketamine group (P < 0.05). Ketamine treatment significantly decreased number of the cross in open field test and pretreatment with resveratrol improved i (P < 0.05). Immobility time in tail suspension and forced swimming tests increased in mice treated with ketamine (P < 0.05). Pretreatment with resveratrol diminished immobility time compared to ketamine group (P < 0.05). Ketamine significantly decreased memory deficits while pretreatment with resveratrol significantly reduced the memory deficits induced by ketamine (P < 0.05). Brain MDA increased in both cortical and sub-cortical area in ketamine treated mice while pretreatment with resveratrol decreased ketamine-induced elevation in MDA (P < 0.05). Ketamine significantly decreased brain SOD, GPx and CAT levels while pretreatment with resveratrol improved SOD, GPx and CAT levels (P < 0.05). Findings suggested resveratrol has neuroprotective effects against ketamine-induced behavioral deficits and oxidative damages.
Collapse
Affiliation(s)
- Alireza Farkhakfar
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453 Tehran, Iran
| |
Collapse
|
22
|
Ramsay IS, Mueller B, Ma Y, Shen C, Sponheim SR. Thalamocortical connectivity and its relationship with symptoms and cognition across the psychosis continuum. Psychol Med 2023; 53:5582-5591. [PMID: 36047043 DOI: 10.1017/s0033291722002793] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Coordination between the thalamus and cortex is necessary for efficient processing of sensory information and appears disrupted in schizophrenia. The significance of this disrupted coordination (i.e. thalamocortical dysconnectivity) to the symptoms and cognitive deficits of schizophrenia is unclear. It is also unknown whether similar dysconnectivity is observed in other forms of psychotic psychopathology and associated with familial risk for psychosis. Here we examine the relevance of thalamocortical connectivity to the clinical symptoms and cognition of patients with psychotic psychopathology, their first-degree biological relatives, and a group of healthy controls. METHOD Patients with a schizophrenia-spectrum diagnosis (N = 100) or bipolar disorder with a history of psychosis (N = 33), their first-degree relatives (N = 73), and a group of healthy controls (N = 43) underwent resting functional MRI in addition to clinical and cognitive assessments as part of the Psychosis Human Connectome Project. A bilateral mediodorsal thalamus seed-based analysis was used to measure thalamocortical connectivity and test for group differences, as well as associations with symptomatology and cognition. RESULTS Reduced connectivity from mediodorsal thalamus to insular, orbitofrontal, and cerebellar regions was seen in schizophrenia. Across groups, greater symptomatology was related to less thalamocortical connectivity to the left middle frontal gyrus, anterior cingulate, right insula, and cerebellum. Poorer cognition was related to less thalamocortical connectivity to bilateral insula. Analyses revealed similar patterns of dysconnectivity across patient groups and their relatives. CONCLUSIONS Reduced thalamo-prefrontal-cerebellar and thalamo-insular connectivity may contribute to clinical symptomatology and cognitive deficits in patients with psychosis as well as individuals with familial risk for psychotic psychopathology.
Collapse
Affiliation(s)
- Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Bryon Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Yizhou Ma
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
- Maryland Psychiatric Research Center, University of Maryland School of Medicine, Catonsville, MD, USA
| | - Chen Shen
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Minneapolis Veterans Affairs Healthcare System, Minneapolis, MN, USA
| |
Collapse
|
23
|
Duda M, Faghiri A, Belger A, Bustillo JR, Ford JM, Mathalon DH, Mueller BA, Pearlson GD, Potkin SG, Preda A, Sui J, Van Erp TGM, Calhoun VD. Alterations in grey matter structure linked to frequency-specific cortico-subcortical connectivity in schizophrenia via multimodal data fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547840. [PMID: 37461731 PMCID: PMC10350020 DOI: 10.1101/2023.07.05.547840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Schizophrenia (SZ) is a complex psychiatric disorder that is currently defined by symptomatic and behavioral, rather than biological, criteria. Neuroimaging is an appealing avenue for SZ biomarker development, as several neuroimaging-based studies comparing individuals with SZ to healthy controls (HC) have shown measurable group differences in brain structure, as well as functional brain alterations in both static and dynamic functional network connectivity (sFNC and dFNC, respectively). The recently proposed filter-banked connectivity (FBC) method extends the standard dFNC sliding-window approach to estimate FNC within an arbitrary number of distinct frequency bands. The initial implementation used a set of filters spanning the full connectivity spectral range, providing a unified approach to examine both sFNC and dFNC in a single analysis. Initial FBC results found that individuals with SZ spend more time in a less structured, more disconnected low-frequency (i.e., static) FNC state than HC, as well as preferential SZ occupancy in high-frequency connectivity states, suggesting a frequency-specific component underpinning the functional dysconnectivity observed in SZ. Building on these findings, we sought to link such frequency-specific patterns of FNC to covarying data-driven structural brain networks in the context of SZ. Specifically, we employ a multi-set canonical correlation analysis + joint independent components analysis (mCCA + jICA) data fusion framework to study the connection between grey matter volume (GMV) maps and FBC states across the full connectivity frequency spectrum. Our multimodal analysis identified two joint sources that captured co-varying patterns of frequency-specific functional connectivity and alterations in GMV with significant group differences in loading parameters between the SZ group and HC. The first joint source linked frequency-modulated connections between the subcortical and sensorimotor networks and GMV alterations in the frontal and temporal lobes, while the second joint source identified a relationship between low-frequency cerebellar-sensorimotor connectivity and structural changes in both the cerebellum and motor cortex. Together, these results show a strong connection between cortico-subcortical functional connectivity at both high and low frequencies and alterations in cortical GMV that may be relevant to the pathogenesis and pathophysiology of SZ.
Collapse
Affiliation(s)
- Marlena Duda
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Juan R Bustillo
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, NM, USA
| | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Healthcare System, San Francisco, California, USA
- Department of Psychiatry and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
| | - Bryon A Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Godfrey D Pearlson
- Departments of Psychiatry and Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Adrian Preda
- Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, California, USA
| | - Jing Sui
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
- IDG/McGovern Institute for Brain Research, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Theo G M Van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, CA, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| |
Collapse
|
24
|
Functional connectivity signatures of NMDAR dysfunction in schizophrenia-integrating findings from imaging genetics and pharmaco-fMRI. Transl Psychiatry 2023; 13:59. [PMID: 36797233 PMCID: PMC9935542 DOI: 10.1038/s41398-023-02344-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Both, pharmacological and genome-wide association studies suggest N-methyl-D-aspartate receptor (NMDAR) dysfunction and excitatory/inhibitory (E/I)-imbalance as a major pathophysiological mechanism of schizophrenia. The identification of shared fMRI brain signatures of genetically and pharmacologically induced NMDAR dysfunction may help to define biomarkers for patient stratification. NMDAR-related genetic and pharmacological effects on functional connectivity were investigated by integrating three different datasets: (A) resting state fMRI data from 146 patients with schizophrenia genotyped for the disease-associated genetic variant rs7191183 of GRIN2A (encoding the NMDAR 2 A subunit) as well as 142 healthy controls. (B) Pharmacological effects of the NMDAR antagonist ketamine and the GABA-A receptor agonist midazolam were obtained from a double-blind, crossover pharmaco-fMRI study in 28 healthy participants. (C) Regional gene expression profiles were estimated using a postmortem whole-brain microarray dataset from six healthy donors. A strong resemblance was observed between the effect of the genetic variant in schizophrenia and the ketamine versus midazolam contrast of connectivity suggestive for an associated E/I-imbalance. This similarity became more pronounced for regions with high density of NMDARs, glutamatergic neurons, and parvalbumin-positive interneurons. From a functional perspective, increased connectivity emerged between striato-pallido-thalamic regions and cortical regions of the auditory-sensory-motor network, while decreased connectivity was observed between auditory (superior temporal gyrus) and visual processing regions (lateral occipital cortex, fusiform gyrus, cuneus). Importantly, these imaging phenotypes were associated with the genetic variant, the differential effect of ketamine versus midazolam and schizophrenia (as compared to healthy controls). Moreover, the genetic variant was associated with language-related negative symptomatology which correlated with disturbed connectivity between the left posterior superior temporal gyrus and the superior lateral occipital cortex. Shared genetic and pharmacological functional connectivity profiles were suggestive of E/I-imbalance and associated with schizophrenia. The identified brain signatures may help to stratify patients with a common molecular disease pathway providing a basis for personalized psychiatry.
Collapse
|
25
|
Hajigholam Saryazdi H, Honarmand A, Nazemroaya B, Naderi Afshar P. A Comparative Study of the Effect of Low-Dose Epinephrine and Ketamine on Rapid-Sequence Endotracheal Intubation by the Priming Dose Method of Cisatracurium in Patients under General Anesthesia. Adv Biomed Res 2023; 12:13. [PMID: 36926434 PMCID: PMC10012019 DOI: 10.4103/abr.abr_398_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 02/05/2023] Open
Abstract
Background Low-dose ephedrine and ketamine may accelerate the onset time of action of neuromuscular blocking agents. We studied the effect of ephedrine and ketamine and cisatracurium priming on endotracheal intubation conditions and the onset time of action of cisatracurium. Materials and Methods The study was a double-blind clinical trial performed on American Society of Anesthesiologists (ASA) class 1 and 2 patients, who were candidates for general anesthesia. In total, 120 patients were entered into the study and were divided into 4 groups, E, K, E + K, and N. The first group was given 70 mcg/kg ephedrine (E group), the second group was given 0.5 ml/kg ketamine (K group), the third group was given the same amount of ketamine plus ephedrine (E + K group), and the fourth group was given the same volume of normal saline (control group); a single dose of 0.1 mg/kg cisatracurium was given, and intubating conditions were evaluated at 60 seconds after cisatracurium administration. Results The mean Cooper score based on the response to laryngoscopy, the position of the vocal cords, and the movement of the diaphragm of patients in the control group with a mean of 2.53 ± 1.07 was significantly lower than in the three groups of E, K, and E + K with the means of 4.47. 1.17, 4.53 ± 1.14, and 7.63 ± 1.42, respectively (P value < 0.001). In the (E + K) group, it was significantly higher than in the two other drugs alone (P value < 0.001). The two groups of E and K alone were not significantly different from each other (P value = 0.997). The means of hemodynamic parameters were not significantly different in any of the groups (P value > 0.05). Conclusion According to the results of the present study, the use of low-dose ephedrine and ketamine alone can improve intubation conditions. In addition, the combined use of these drugs not only had any Positive effect on patients' hemodynamic parameters but also greatly improved intubation conditions.
Collapse
Affiliation(s)
- Hamid Hajigholam Saryazdi
- Department of Anesthesiology, School of Medicine, Anesthesiology and Critical Care Research Center, Kashani Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azim Honarmand
- Department of Anesthesiology, School of Medicine, Anesthesiology and Critical Care Research Center, Al-Zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behzad Nazemroaya
- Department of Anesthesiology, School of Medicine, Anesthesiology and Critical Care Research Center, Al-Zahra Hospital, Feiz Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouyan Naderi Afshar
- Department of Anesthesiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Anticevic A, Halassa MM. The thalamus in psychosis spectrum disorder. Front Neurosci 2023; 17:1163600. [PMID: 37123374 PMCID: PMC10133512 DOI: 10.3389/fnins.2023.1163600] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Psychosis spectrum disorder (PSD) affects 1% of the world population and results in a lifetime of chronic disability, causing devastating personal and economic consequences. Developing new treatments for PSD remains a challenge, particularly those that target its core cognitive deficits. A key barrier to progress is the tenuous link between the basic neurobiological understanding of PSD and its clinical phenomenology. In this perspective, we focus on a key opportunity that combines innovations in non-invasive human neuroimaging with basic insights into thalamic regulation of functional cortical connectivity. The thalamus is an evolutionary conserved region that forms forebrain-wide functional loops critical for the transmission of external inputs as well as the construction and update of internal models. We discuss our perspective across four lines of evidence: First, we articulate how PSD symptomatology may arise from a faulty network organization at the macroscopic circuit level with the thalamus playing a central coordinating role. Second, we discuss how recent animal work has mechanistically clarified the properties of thalamic circuits relevant to regulating cortical dynamics and cognitive function more generally. Third, we present human neuroimaging evidence in support of thalamic alterations in PSD, and propose that a similar "thalamocortical dysconnectivity" seen in pharmacological imaging (under ketamine, LSD and THC) in healthy individuals may link this circuit phenotype to the common set of symptoms in idiopathic and drug-induced psychosis. Lastly, we synthesize animal and human work, and lay out a translational path for biomarker and therapeutic development.
Collapse
Affiliation(s)
- Alan Anticevic
- School of Medicine, Yale University, New Haven, CT, United States
- *Correspondence: Alan Anticevic,
| | - Michael M. Halassa
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
- Michael M. Halassa,
| |
Collapse
|
27
|
Abram SV, Hua JPY, Ford JM. Consider the pons: bridging the gap on sensory prediction abnormalities in schizophrenia. Trends Neurosci 2022; 45:798-808. [PMID: 36123224 PMCID: PMC9588719 DOI: 10.1016/j.tins.2022.08.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
A shared mechanism across species heralds the arrival of self-generated sensations, helping the brain to anticipate, and therefore distinguish, self-generated from externally generated sensations. In mammals, this sensory prediction mechanism is supported by communication within a cortico-ponto-cerebellar-thalamo-cortical loop. Schizophrenia is associated with impaired sensory prediction as well as abnormal structural and functional connections between nodes in this circuit. Despite the pons' principal role in relaying and processing sensory information passed from the cortex to cerebellum, few studies have examined pons connectivity in schizophrenia. Here, we first briefly describe how the pons contributes to sensory prediction. We then summarize schizophrenia-related abnormalities in the cortico-ponto-cerebellar-thalamo-cortical loop, emphasizing the dearth of research on the pons relative to thalamic and cerebellar connections. We conclude with recommendations for advancing our understanding of how the pons relates to sensory prediction failures in schizophrenia.
Collapse
Affiliation(s)
- Samantha V Abram
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA
| | - Jessica P Y Hua
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA; Sierra Pacific Mental Illness Research Education and Clinical Centers, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, The University of California, San Francisco, CA, USA
| | - Judith M Ford
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA; University of California, San Francisco, CA, USA.
| |
Collapse
|
28
|
Diamond A, Silverstein SM, Keane BP. Visual system assessment for predicting a transition to psychosis. Transl Psychiatry 2022; 12:351. [PMID: 36038544 PMCID: PMC9424317 DOI: 10.1038/s41398-022-02111-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 01/19/2023] Open
Abstract
The field of psychiatry is far from perfect in predicting which individuals will transition to a psychotic disorder. Here, we argue that visual system assessment can help in this regard. Such assessments have generated medium-to-large group differences with individuals prior to or near the first psychotic episode or have shown little influence of illness duration in larger samples of more chronic patients. For example, self-reported visual perceptual distortions-so-called visual basic symptoms-occur in up to 2/3rds of those with non-affective psychosis and have already longitudinally predicted an impending onset of schizophrenia. Possibly predictive psychophysical markers include enhanced contrast sensitivity, prolonged backward masking, muted collinear facilitation, reduced stereoscopic depth perception, impaired contour and shape integration, and spatially restricted exploratory eye movements. Promising brain-based markers include visual thalamo-cortical hyperconnectivity, decreased occipital gamma band power during visual detection (MEG), and reduced visually evoked occipital P1 amplitudes (EEG). Potentially predictive retinal markers include diminished cone a- and b-wave amplitudes and an attenuated photopic flicker response during electroretinography. The foregoing assessments are often well-described mechanistically, implying that their findings could readily shed light on the underlying pathophysiological changes that precede or accompany a transition to psychosis. The retinal and psychophysical assessments in particular are inexpensive, well-tolerated, easy to administer, and brief, with few inclusion/exclusion criteria. Therefore, across all major levels of analysis-from phenomenology to behavior to brain and retinal functioning-visual system assessment could complement and improve upon existing methods for predicting which individuals go on to develop a psychotic disorder.
Collapse
Affiliation(s)
- Alexander Diamond
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Steven M Silverstein
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA
- Department of Ophthalmology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA
| | - Brian P Keane
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, USA.
- Center for Visual Science, University of Rochester, 601 Elmwood Ave, Rochester, NY, USA.
- Department of Brain & Cognitive Sciences, University of Rochester, 358 Meliora Hall, NY, Rochester, USA.
| |
Collapse
|