1
|
Kielbinski M, Bernacka J. Fiber photometry in neuroscience research: principles, applications, and future directions. Pharmacol Rep 2024; 76:1242-1255. [PMID: 39235662 PMCID: PMC11582208 DOI: 10.1007/s43440-024-00646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
In recent years, fluorescent sensors are enjoying a surge of popularity in the field of neuroscience. Through the development of novel genetically encoded sensors as well as improved methods of detection and analysis, fluorescent sensing has risen as a new major technique in neuroscience alongside molecular, electrophysiological, and imaging methods, opening up new avenues for research. Combined with multiphoton microscopy and fiber photometry, these sensors offer unique advantages in terms of cellular specificity, access to multiple targets - from calcium dynamics to neurotransmitter release to intracellular processes - as well as high capability for in vivo interrogation of neurobiological mechanisms underpinning behavior. Here, we provide a brief overview of the method, present examples of its integration with other tools in recent studies ranging from cellular to systems neuroscience, and discuss some of its principles and limitations, with the aim of introducing new potential users to this rapidly developing and potent technique.
Collapse
Affiliation(s)
- Michal Kielbinski
- Department of Physiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland.
| | - Joanna Bernacka
- Cancer Neurophysiology Group, Łukasiewicz - PORT, Polish Center for Technology Development, Stabłowicka 147, Wrocław, 54-066, Poland
| |
Collapse
|
2
|
Robledo-Montaña J, Díaz-García C, Martínez M, Ambrosio N, Montero E, Marín MJ, Virto L, Muñoz-López M, Herrera D, Sanz M, Leza JC, García-Bueno B, Figuero E, Martín-Hernández D. Microglial morphological/inflammatory phenotypes and endocannabinoid signaling in a preclinical model of periodontitis and depression. J Neuroinflammation 2024; 21:219. [PMID: 39245706 PMCID: PMC11382403 DOI: 10.1186/s12974-024-03213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Depression is a chronic psychiatric disease of multifactorial etiology, and its pathophysiology is not fully understood. Stress and other chronic inflammatory pathologies are shared risk factors for psychiatric diseases, and comorbidities are features of major depression. Epidemiological evidence suggests that periodontitis, as a source of low-grade chronic systemic inflammation, may be associated with depression, but the underlying mechanisms are not well understood. METHODS Periodontitis (P) was induced in Wistar: Han rats through oral gavage with the pathogenic bacteria Porphyromonas gingivalis and Fusobacterium nucleatum for 12 weeks, followed by 3 weeks of chronic mild stress (CMS) to induce depressive-like behavior. The following four groups were established (n = 12 rats/group): periodontitis and CMS (P + CMS+), periodontitis without CMS, CMS without periodontitis, and control. The morphology and inflammatory phenotype of microglia in the frontal cortex (FC) were studied using immunofluorescence and bioinformatics tools. The endocannabinoid (EC) signaling and proteins related to synaptic plasticity were analyzed in FC samples using biochemical and immunohistochemical techniques. RESULTS Ultrastructural and fractal analyses of FC revealed a significant increase in the complexity and heterogeneity of Iba1 + parenchymal microglia in the combined experimental model (P + CMS+) and increased expression of the proinflammatory marker inducible nitric oxide synthase (iNOS), while there were no changes in the expression of cannabinoid receptor 2 (CB2). In the FC protein extracts of the P + CMS + animals, there was a decrease in the levels of the EC metabolic enzymes N-acyl phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), diacylglycerol lipase (DAGL), and monoacylglycerol lipase (MAGL) compared to those in the controls, which extended to protein expression in neurons and in FC extracts of cannabinoid receptor 1 (CB1) and to the intracellular signaling molecules phosphatidylinositol-3-kinase (PI3K), protein kinase B (Akt) and extracellular signal-regulated kinase 1/2 (ERK1/2). The protein levels of brain-derived neurotrophic factor (BDNF) and synaptophysin were also lower in P + CMS + animals than in controls. CONCLUSIONS The combined effects on microglial morphology and inflammatory phenotype, the EC signaling, and proteins related to synaptic plasticity in P + CMS + animals may represent relevant mechanisms explaining the association between periodontitis and depression. These findings highlight potential therapeutic targets that warrant further investigation.
Collapse
Affiliation(s)
- Javier Robledo-Montaña
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - César Díaz-García
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - María Martínez
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Nagore Ambrosio
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Eduardo Montero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - María José Marín
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
| | - Leire Virto
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Anatomy and Embryology, Faculty of Optics, Complutense University of Madrid, Madrid, Spain
| | - Marina Muñoz-López
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
| | - Juan Carlos Leza
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Borja García-Bueno
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Elena Figuero
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, Complutense University of Madrid, Madrid, Spain.
- Department of Dental Clinical Specialties, School of Dentistry, Faculty of Dentistry, Complutense University of Madrid, Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Faculty of Medicine, Complutense University of Madrid (UCM), Hospital 12 de Octubre Research Institute (Imas12), Neurochemistry Research Institute UCM (IUIN), Pza. Ramón y Cajal s/n, Madrid, 28040, Spain.
- Biomedical Network Research Center of Mental Health (CIBERSAM), Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
4
|
Li Y, Ren J, Zhang Z, Weng Y, Zhang J, Zou X, Wu S, Hu H. Modification and Expression of mRNA m6A in the Lateral Habenular of Rats after Long-Term Exposure to Blue Light during the Sleep Period. Genes (Basel) 2023; 14:143. [PMID: 36672884 PMCID: PMC9859551 DOI: 10.3390/genes14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Artificial lighting, especially blue light, is becoming a public-health risk. Excessive exposure to blue light at night has been reported to be associated with brain diseases. However, the mechanisms underlying neuropathy induced by blue light remain unclear. An early anatomical tracing study described the projection of the retina to the lateral habenula (LHb), whereas more mechanistic reports are available on multiple brain functions and neuropsychiatric disorders in the LHb, which are rarely seen in epigenetic studies, particularly N6-methyladenosine (m6A). The purpose of our study was to first expose Sprague-Dawley rats to blue light (6.11 ± 0.05 mW/cm2, the same irradiance as 200 lx of white light in the control group) for 4 h, and simultaneously provide white light to the control group for the same time to enter a sleep period. The experiment was conducted over 12 weeks. RNA m6A modifications and different mRNA transcriptome profiles were observed in the LHb. We refer to this experimental group as BLS. High-throughput MeRIP-seq and mRNA-seq were performed, and we used bioinformatics to analyze the data. There were 188 genes in the LHb that overlapped between differentially m6A-modified mRNA and differentially expressed mRNA. The Kyoto Encyclopedia of Genes and Genomes and gene ontology analysis were used to enrich neuroactive ligand-receptor interaction, long-term depression, the cyclic guanosine monophosphate-dependent protein kinase G (cGMP-PKG) signaling pathway, and circadian entrainment. The m6A methylation level of the target genes in the BLS group was disordered. In conclusion, this study suggests that the mRNA expression and their m6A of the LHb were abnormal after blue light exposure during the sleep period, and the methylation levels of target genes related to synaptic plasticity were disturbed. This study offers a theoretical basis for the scientific use of light.
Collapse
Affiliation(s)
- Yinhan Li
- Fujian Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jinjin Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350108, China
| | - Zhaoting Zhang
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Yali Weng
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Jian Zhang
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Xinhui Zou
- School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Siying Wu
- Fujian Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| | - Hong Hu
- Fujian Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350108, China
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350108, China
| |
Collapse
|
5
|
Zhang GM, Wu HY, Cui WQ, Peng W. Multi-level variations of lateral habenula in depression: A comprehensive review of current evidence. Front Psychiatry 2022; 13:1043846. [PMID: 36386995 PMCID: PMC9649931 DOI: 10.3389/fpsyt.2022.1043846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Despite extensive research in recent decades, knowledge of the pathophysiology of depression in neural circuits remains limited. Recently, the lateral habenula (LHb) has been extensively reported to undergo a series of adaptive changes at multiple levels during the depression state. As a crucial relay in brain networks associated with emotion regulation, LHb receives excitatory or inhibitory projections from upstream brain regions related to stress and cognition and interacts with brain regions involved in emotion regulation. A series of pathological alterations induced by aberrant inputs cause abnormal function of the LHb, resulting in dysregulation of mood and motivation, which present with depressive-like phenotypes in rodents. Herein, we systematically combed advances from rodents, summarized changes in the LHb and related neural circuits in depression, and attempted to analyze the intrinsic logical relationship among these pathological alterations. We expect that this summary will greatly enhance our understanding of the pathological processes of depression. This is advantageous for fostering the understanding and screening of potential antidepressant targets against LHb.
Collapse
Affiliation(s)
- Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Peng
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|