1
|
Van Alstyne M, Pratt J, Parker R. Diverse influences on tau aggregation and implications for disease progression. Genes Dev 2025; 39:555-581. [PMID: 40113250 PMCID: PMC12047666 DOI: 10.1101/gad.352551.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Tau is an intrinsically disordered protein that accumulates in fibrillar aggregates in neurodegenerative diseases. The misfolding of tau can be understood as an equilibrium between different states and their propensity to form higher-order fibers, which is affected by several factors. First, modulation of the biochemical state of tau due to ionic conditions, post-translational modifications, cofactors, and interacting molecules or assemblies can affect the formation and structure of tau fibrils. Second, cellular processes impact tau aggregation through modulating stability, clearance, disaggregation, and transport. Third, through interactions with glial cells, the neuronal microenvironment can affect intraneuronal conditions with impacts on tau fibrilization and toxicity. Importantly, tau fibrils propagate through the brain via a "prion-like" manner, contributing to disease progression. This review highlights the biochemical and cellular pathways that modulate tau aggregation and discusses implications for pathobiology and tau-directed therapeutic approaches.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - James Pratt
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA
| | - Roy Parker
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado 80301, USA;
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80301, USA
| |
Collapse
|
2
|
Itsuno M, Tanabe H, Sano E, Sasaki T, Oyama C, Bannai H, Saito K, Nakata K, Endoh-Yamagami S, Okano H, Maeda S. MAPT-A152T mutation drives neuronal hyperactivity through Fyn-NMDAR signaling in human iPSC-Derived neurons: Insights into Alzheimer's pathogenesis. Regen Ther 2025; 28:201-213. [PMID: 39811068 PMCID: PMC11730958 DOI: 10.1016/j.reth.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Tau protein plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) and in regulating neuronal excitability. Among tau-coding microtubule associated protein tau (MAPT) gene mutations, the A152T mutation is reported to increase the risk of AD and neuronal excitability in mouse models. Methods To investigate the effects of MAPT gene expression and its mutations on neuronal activity in human neurons, we employed genome editing technology to introduce the A152T or P301S mutations into induced pluripotent stem cells (iPSCs). We then differentiated them into excitatory and inhibitory neurons. As a control, iPSCs in which the MAPT gene was replaced with a fluorescent protein were also created. Results In excitatory neuronal cultures, the A152T mutation was found to enhance spontaneous neuronal activity and the association of tau and Fyn. However, in inhibitory neuron-enriched cultures, the A152T mutation did not affect neuronal activity. Inhibition of NMDA receptors (NMDAR) and the reduction of tau protein levels decreased neuronal excitability in both A152T/A152T and healthy control (WT/WT) excitatory neurons. In addition, the A152T mutation increased the interaction between tau and Fyn. These findings suggest that the tau-Fyn interaction plays a critical role in regulating neuronal activity under physiological conditions, while the A152T mutation enhances neuronal activity by strengthening this endogenous interaction between tau and Fyn. In addition, transcriptomic analysis revealed structural changes specific to excitatory neurons with the A152T mutation. Common changes observed in both A152T and P301S lines recapitulated a dedifferentiation phenotype, consistent with previous reports. Conclusions These data demonstrate that the A152T mutation in the MAPT gene increases neuronal excitability through the tau-Fyn-NMDAR pathway in excitatory neurons, shedding light on its role in AD pathogenesis.
Collapse
Affiliation(s)
- Maika Itsuno
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Hirokazu Tanabe
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Etsuko Sano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Takashi Sasaki
- Center for Supercentenarian Medical Research, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| | - Chisato Oyama
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Hiroko Bannai
- Department of Electrical Engineering and Biosciences, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo 162-0056, Japan
| | - Koichi Saito
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Kazuhiko Nakata
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Setsu Endoh-Yamagami
- FUJIFILM Corporation, Bio Science & Engineering Laboratories, 577 Ushijima, Kaisei-cho, Ashigarakami-gun, Kanagawa 258-8577, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
- Keio University Regenerative Medicine Research Center (KRM), 3-25-10 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
| | - Sumihiro Maeda
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 160-8582, Japan
| |
Collapse
|
3
|
Putra M, Rao NS, Gardner C, Liu G, Trommater J, Bunney M, Gage M, Bassuk AG, Hefti M, Lee G, Thippeswamy T. Enhanced Fyn-tau and NR2B-PSD95 interactions in epileptic foci in experimental models and human epilepsy. Brain Commun 2024; 6:fcae327. [PMID: 39355003 PMCID: PMC11444080 DOI: 10.1093/braincomms/fcae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/25/2024] [Accepted: 09/17/2024] [Indexed: 10/03/2024] Open
Abstract
Epilepsy and Alzheimer's disease share some common pathologies such as neurodegeneration, seizures and impaired cognition. However, the molecular mechanisms of these changes are still largely unknown. Fyn, a Src-family non-receptor tyrosine kinase (SFK), and its interaction with tau in mediating brain pathology in epilepsy and Alzheimer's disease can be a potential therapeutic target for disease modification. Although Fyn and tau pathology occurs in both Alzheimer's disease and epilepsy, the dynamics of Fyn-tau and PSD95-NR2B interactions affected by seizures and their impact on brain pathology in epilepsy have not been investigated. In this study, we demonstrate a significant increase of Fyn-tau interactions following seizure induction by kainate in both acute and chronic rodent models and in human epilepsy. In the early phase of epileptogenesis, we show increased Fyn/tau/NR2B/PSD95/neuronal nitric oxide synthase complexes after status epilepticus and a postsynaptic increase of phosphorylated tau (pY18 and AT8), Fyn (pSFK-Y416), NMDAR (pNR2B-Y1472) and neuronal nitric oxide synthase. Hippocampal proximity ligation assay and co-immunoprecipitation revealed a sustained increase of Fyn-tau and NR2B-PSD95 complexes/binding in rat chronic epilepsy at 3 months post-status epilepticus. Enhanced Fyn-tau complexes strongly correlated with the frequency of spontaneously recurring convulsive seizures and epileptiform spikes in the chronic epilepsy model. In human epileptic brains, we also identified increased Fyn-tau and NR2B-PSD95 complexes, tau phosphorylation (pY18 and AT8) and Fyn activation (pSFK-Y416), implying the translational and therapeutic potential of these molecular interactions. In tau knockout mice and in rats treated with a Fyn/SFK inhibitor saracatinib, we found a significant reduction of phosphorylated Fyn, tau (AT8 in saracatinib-treated), NR2B and neuronal nitric oxide synthase and their interactions (Fyn-tau and NR2B-PSD95 in saracatinib-treated group; NR2B-PSD95 in tau knockout group). The reduction of Fyn-tau and NR2B-PSD95 interactions in the saracatinib-treated group, in contrast to the vehicle-treated group, correlated with the modification in seizure progression in the rat chronic epilepsy model. These findings from animal models and human epilepsy provide evidence for the role of Fyn-tau and NR2B-PSD95 interactions in seizure-induced brain pathology and suggest that blocking such interactions could modify the progression of epilepsy.
Collapse
Affiliation(s)
- Marson Putra
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Nikhil S Rao
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Cara Gardner
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Guanghao Liu
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Jordan Trommater
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Michael Bunney
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Meghan Gage
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| | - Alexander G Bassuk
- Department of Pediatrics, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Department of Neurology, The University of Iowa Stead Family, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute (INI), College of Medicine, University of Iowa Carver, Iowa City, IA 52242, USA
| | - Marco Hefti
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52240, USA
| | - Gloria Lee
- Department of Internal Medicine, Carver College of Medicine, Carver College of Medicine University of Iowa, Iowa City, IA 52242, USA
| | - Thimmasettappa Thippeswamy
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA
| |
Collapse
|
4
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
5
|
Longfield SF, Gormal RS, Feller M, Parutto P, Reingruber J, Wallis TP, Joensuu M, Augustine GJ, Martínez-Mármol R, Holcman D, Meunier FA. Synapsin 2a tetramerisation selectively controls the presynaptic nanoscale organisation of reserve synaptic vesicles. Nat Commun 2024; 15:2217. [PMID: 38472171 PMCID: PMC10933366 DOI: 10.1038/s41467-024-46256-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmitter release relies on the regulated fusion of synaptic vesicles (SVs) that are tightly packed within the presynaptic bouton of neurons. The mechanism by which SVs are clustered at the presynapse, while preserving their ability to dynamically recycle to support neuronal communication, remains unknown. Synapsin 2a (Syn2a) tetramerization has been suggested as a potential clustering mechanism. Here, we used Dual-pulse sub-diffractional Tracking of Internalised Molecules (DsdTIM) to simultaneously track single SVs from the recycling and the reserve pools, in live hippocampal neurons. The reserve pool displays a lower presynaptic mobility compared to the recycling pool and is also present in the axons. Triple knockout of Synapsin 1-3 genes (SynTKO) increased the mobility of reserve pool SVs. Re-expression of wild-type Syn2a (Syn2aWT), but not the tetramerization-deficient mutant K337Q (Syn2aK337Q), fully rescued these effects. Single-particle tracking revealed that Syn2aK337QmEos3.1 exhibited altered activity-dependent presynaptic translocation and nanoclustering. Therefore, Syn2a tetramerization controls its own presynaptic nanoclustering and thereby contributes to the dynamic immobilisation of the SV reserve pool.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matis Feller
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Pierre Parutto
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Jürgen Reingruber
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - David Holcman
- Group of Data Modelling and Computational Biology, IBENS, Ecole Normale Superieure, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics (DAMPT) visitor, University of Cambridge, and Churchill College, CB30DS, Cambridge, UK
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
6
|
Gormal RS, Martinez-Marmol R, Brooks AJ, Meunier FA. Location, location, location: Protein kinase nanoclustering for optimised signalling output. eLife 2024; 13:e93902. [PMID: 38206309 PMCID: PMC10783869 DOI: 10.7554/elife.93902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Protein kinases (PKs) are proteins at the core of cellular signalling and are thereby responsible for most cellular physiological processes and their regulations. As for all intracellular proteins, PKs are subjected to Brownian thermal energy that tends to homogenise their distribution throughout the volume of the cell. To access their substrates and perform their critical functions, PK localisation is therefore tightly regulated in space and time, relying upon a range of clustering mechanisms. These include post-translational modifications, protein-protein and protein-lipid interactions, as well as liquid-liquid phase separation, allowing spatial restriction and ultimately regulating access to their substrates. In this review, we will focus on key mechanisms mediating PK nanoclustering in physiological and pathophysiological processes. We propose that PK nanoclusters act as a cellular quantal unit of signalling output capable of integration and regulation in space and time. We will specifically outline the various super-resolution microscopy approaches currently used to elucidate the composition and mechanisms driving PK nanoscale clustering and explore the pathological consequences of altered kinase clustering in the context of neurodegenerative disorders, inflammation, and cancer.
Collapse
Affiliation(s)
- Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Andrew J Brooks
- Frazer Institute, The University of QueenslandWoolloongabbaAustralia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Biomedical Sciences, The University of QueenslandSt LuciaAustralia
| |
Collapse
|
7
|
Cruz E, Nisbet RM, Götz J. Break and accelerator-The mechanics of Tau (and amyloid) toxicity. Cytoskeleton (Hoboken) 2024; 81:24-29. [PMID: 37632370 DOI: 10.1002/cm.21781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/28/2023]
Abstract
Aggregates of the microtubule-associated protein Tau define more than a dozen primary tauopathies, and together with amyloid-β, the secondary tauopathy Alzheimer's disease (AD). Historically, Tau has been viewed as executor of amyloid-β toxicity, with the two molecules working together as "trigger and bullet." Given the two protein's opposing roles in protein translation, we wish to introduce another metaphor, borrowing from the mechanics of a car, with amyloid-β boosting Tau translation, whereas Tau puts a break on global translation. The underlying studies entail an alternative hypothesis regarding Tau's subcellular accumulation in AD, namely its de novo synthesis in the somatodendritic domain rather than the relocalization from the axon upon dissociation from microtubules. We contest that it may be worth (given Tau's 50th birthday) to revisit some entrenched dogmas about Tau's pathophysiology.
Collapse
Affiliation(s)
- Esteban Cruz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Rebecca M Nisbet
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
8
|
Leinenga G, Padmanabhan P, Götz J. Improving Cognition Without Clearing Amyloid: Effects of Tau and Ultrasound Neuromodulation. J Alzheimers Dis 2024; 100:S211-S222. [PMID: 39058447 DOI: 10.3233/jad-240616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Alzheimer's disease is characterized by progressive impairment of neuronal functions culminating in neuronal loss and dementia. A universal feature of dementia is protein aggregation, a process by which a monomer forms intermediate oligomeric assembly states and filaments that develop into end-stage hallmark lesions. In Alzheimer's disease, this is exemplified by extracellular amyloid-β (Aβ) plaques which have been placed upstream of tau, found in intracellular neurofibrillary tangles and dystrophic neurites. This implies causality that can be modeled as a linear activation cascade. When Aβ load is reduced, for example, in response to an anti-Aβ immunotherapy, cognitive functions improve in plaque-forming mice. They also deteriorate less in clinical trial cohorts although real-world clinical benefits remain to be demonstrated. Given the existence of aged humans with unimpaired cognition despite a high plaque load, the central role of Aβ has been challenged. A counter argument has been that clinical symptoms would eventually develop if these aged individuals were to live long enough. Alternatively, intrinsic mechanisms that protect the brain in the presence of pathology may exist. In fact, Aβ toxicity can be abolished by either reducing or manipulating tau (through which Aβ signals), at least in preclinical models. In addition to manipulating steps in this linear pathocascade model, mechanisms of restoring brain reserve can also counteract Aβ toxicity. Low-intensity ultrasound is a neuromodulatory modality that can improve cognitive functions in Aβ-depositing mice without the need for removing Aβ. Together, this highlights a dissociation of Aβ and cognition, with important implications for therapeutic interventions.
Collapse
Affiliation(s)
- Gerhard Leinenga
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| | - Pranesh Padmanabhan
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Longfield SF, Mollazade M, Wallis TP, Gormal RS, Joensuu M, Wark JR, van Waardenberg AJ, Small C, Graham ME, Meunier FA, Martínez-Mármol R. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nat Commun 2023; 14:7277. [PMID: 37949856 PMCID: PMC10638352 DOI: 10.1038/s41467-023-43130-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | | | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
10
|
Wallis TP, Jiang A, Young K, Hou H, Kudo K, McCann AJ, Durisic N, Joensuu M, Oelz D, Nguyen H, Gormal RS, Meunier FA. Super-resolved trajectory-derived nanoclustering analysis using spatiotemporal indexing. Nat Commun 2023; 14:3353. [PMID: 37291117 PMCID: PMC10250379 DOI: 10.1038/s41467-023-38866-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/11/2023] [Indexed: 06/10/2023] Open
Abstract
Single-molecule localization microscopy techniques are emerging as vital tools to unravel the nanoscale world of living cells by understanding the spatiotemporal organization of protein clusters at the nanometer scale. Current analyses define spatial nanoclusters based on detections but neglect important temporal information such as cluster lifetime and recurrence in "hotspots" on the plasma membrane. Spatial indexing is widely used in video games to detect interactions between moving geometric objects. Here, we use the R-tree spatial indexing algorithm to determine the overlap of the bounding boxes of individual molecular trajectories to establish membership in nanoclusters. Extending the spatial indexing into the time dimension allows the resolution of spatial nanoclusters into multiple spatiotemporal clusters. Using spatiotemporal indexing, we found that syntaxin1a and Munc18-1 molecules transiently cluster in hotspots, offering insights into the dynamics of neuroexocytosis. Nanoscale spatiotemporal indexing clustering (NASTIC) has been implemented as a free and open-source Python graphic user interface.
Collapse
Affiliation(s)
- Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Anmin Jiang
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kyle Young
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Huiyi Hou
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kye Kudo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alex J McCann
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nela Durisic
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dietmar Oelz
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hien Nguyen
- School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|