1
|
Postberg J, Schubert MT, Nin V, Wagner L, Piefke M. A perspective on epigenomic aging processes in the human brain and their plasticity in patients with mental disorders - a systematic review. Neurogenetics 2024; 25:351-366. [PMID: 38967831 PMCID: PMC11534990 DOI: 10.1007/s10048-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
- Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
| | - Michèle Tina Schubert
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Vincent Nin
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Lukas Wagner
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Martina Piefke
- Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| |
Collapse
|
2
|
Beydoun MA, Beydoun HA, Ashe J, Georgescu MF, Horvath S, Lu A, Zannas AS, Shadyab AH, Jung SY, Wassertheil-Smoller S, Casanova R, Zonderman AB, Brunner RL. Relationships of depression and antidepressant use with epigenetic age acceleration and all-cause mortality among postmenopausal women. Aging (Albany NY) 2024; 16:8446-8471. [PMID: 38809417 PMCID: PMC11164525 DOI: 10.18632/aging.205868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/03/2024] [Indexed: 05/30/2024]
Abstract
We investigated relations of depressive symptoms, antidepressant use, and epigenetic age acceleration with all-cause mortality risk among postmenopausal women. Data were analyzed from ≤1,900 participants in the Women's Health Initiative study testing four-way decomposition models. After a median 20.4y follow-up, 1,161 deaths occurred. Approximately 11% had elevated depressive symptoms (EDS+), 7% were taking antidepressant medication at baseline (ANTIDEP+), while 16.5% fell into either category (EDS_ANTIDEP+). Baseline ANTIDEP+, longitudinal transition into ANTIDEP+ and accelerated epigenetic aging directly predicted increased mortality risk. GrimAge DNA methylation age acceleration (AgeAccelGrim) partially mediated total effects of baseline ANTIDEP+ and EDS_ANTIDEP+ on all-cause mortality risk in socio-demographic factors-adjusted models (Pure Indirect Effect >0, P < 0.05; Total Effect >0, P < 0.05). Thus, higher AgeAccelGrim partially explained the relationship between antidepressant use and increased all-cause mortality risk, though only prior to controlling for lifestyle and health-related factors. Antidepressant use and epigenetic age acceleration independently predicted increased all-cause mortality risk. Further studies are needed in varying populations.
Collapse
Affiliation(s)
- May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Hind A. Beydoun
- VA National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Washington, DC 20420, USA
- Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jason Ashe
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Michael F. Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ake Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony S. Zannas
- Department of Psychiatry, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Aladdin H. Shadyab
- Herbert Wertheim School of Public Health and Human Longevity Science and Division of Geriatrics, Gerontology, and Palliative Care, Department of Medicine, University of California, San Diego, CA 92093, USA
| | - Su Yon Jung
- Department of Epidemiology, Fielding School of Public Health, Translational Sciences Section, School of Nursing, University of California, Los Angeles, CA 90095, USA
| | - Sylvia Wassertheil-Smoller
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ramon Casanova
- Department of Biostatistics and Data Science, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224, USA
| | - Robert L. Brunner
- Department of Family and Community Medicine (Emeritus), School of Medicine, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
3
|
Daskalakis NP, Iatrou A, Chatzinakos C, Jajoo A, Snijders C, Wylie D, DiPietro CP, Tsatsani I, Chen CY, Pernia CD, Soliva-Estruch M, Arasappan D, Bharadwaj RA, Collado-Torres L, Wuchty S, Alvarez VE, Dammer EB, Deep-Soboslay A, Duong DM, Eagles N, Huber BR, Huuki L, Holstein VL, Logue ΜW, Lugenbühl JF, Maihofer AX, Miller MW, Nievergelt CM, Pertea G, Ross D, Sendi MSE, Sun BB, Tao R, Tooke J, Wolf EJ, Zeier Z, Berretta S, Champagne FA, Hyde T, Seyfried NT, Shin JH, Weinberger DR, Nemeroff CB, Kleinman JE, Ressler KJ. Systems biology dissection of PTSD and MDD across brain regions, cell types, and blood. Science 2024; 384:eadh3707. [PMID: 38781393 PMCID: PMC11203158 DOI: 10.1126/science.adh3707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
The molecular pathology of stress-related disorders remains elusive. Our brain multiregion, multiomic study of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) included the central nucleus of the amygdala, hippocampal dentate gyrus, and medial prefrontal cortex (mPFC). Genes and exons within the mPFC carried most disease signals replicated across two independent cohorts. Pathways pointed to immune function, neuronal and synaptic regulation, and stress hormones. Multiomic factor and gene network analyses provided the underlying genomic structure. Single nucleus RNA sequencing in dorsolateral PFC revealed dysregulated (stress-related) signals in neuronal and non-neuronal cell types. Analyses of brain-blood intersections in >50,000 UK Biobank participants were conducted along with fine-mapping of the results of PTSD and MDD genome-wide association studies to distinguish risk from disease processes. Our data suggest shared and distinct molecular pathology in both disorders and propose potential therapeutic targets and biomarkers.
Collapse
Affiliation(s)
- Nikolaos P. Daskalakis
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Artemis Iatrou
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Chris Chatzinakos
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Downstate Health Sciences University, Brooklyn, NY, 11203, USA
- VA New York Harbor Healthcare System, Brooklyn, NY, 11209, USA
| | - Aarti Jajoo
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Clara Snijders
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Dennis Wylie
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Christopher P. DiPietro
- McLean Hospital; Belmont, MA, 02478, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Ioulia Tsatsani
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | | | - Cameron D. Pernia
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Marina Soliva-Estruch
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Dhivya Arasappan
- Center for Biomedical Research Support, The University of Texas at Austin; Austin, TX, 78712, USA
| | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stefan Wuchty
- Departments of Computer Science, University of Miami, Miami, FL, 33146, USA
- Department of Biology, University of Miami, Miami, FL, 33146, USA
| | - Victor E. Alvarez
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Eric B Dammer
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Amy Deep-Soboslay
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Duc M. Duong
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Nick Eagles
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Bertrand R. Huber
- Department of Neurology, Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- National Posttraumatic Stress Disorder Brain Bank, VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Louise Huuki
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Vincent L Holstein
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | - Μark W. Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Justina F. Lugenbühl
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
- Department of Psychiatry and Neuropsychology, School for Mental Health, and Neuroscience (MHeNs), Maastricht University, Maastricht, 6229 ER, The Netherlands
| | - Adam X. Maihofer
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Mark W. Miller
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego; La Jolla, CA, 92093, USA
- Center for Excellence in Stress and Mental Health, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
- Research Service, Veterans Affairs San Diego Healthcare System; San Diego, CA, 92161, USA
| | - Geo Pertea
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Deanna Ross
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
| | - Mohammad S. E Sendi
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Ran Tao
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - James Tooke
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Erika J. Wolf
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, 02130, USA
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Zane Zeier
- Department of Psychiatry & Behavioral Sciences, Center for Therapeutic Innovation, University of Miami Miller School of Medicine; Miami, FL, 33136, USA
| | | | - Sabina Berretta
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA, 02142, USA
| | | | - Thomas Hyde
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Nicholas T. Seyfried
- Department of Biochemistry, Center for Neurodegenerative Disease, Emory School of Medicine; Atlanta GA, 30329, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Daniel R. Weinberger
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Charles B. Nemeroff
- Department of Psychology, University of Texas at Austin; Austin, TX, 78712, USA
- Department of Psychiatry and Behavioral Sciences, University of Texas at Austin; Austin, TX, 78712, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development; Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine; Baltimore, MD, 21205, USA
| | - Kerry J. Ressler
- McLean Hospital; Belmont, MA, 02478, USA
- Department of Psychiatry, Harvard Medical School; Boston, MA, 02115, USA
| |
Collapse
|
4
|
Martínez-Magaña JJ, Krystal JH, Girgenti MJ, Núnez-Ríos DL, Nagamatsu ST, Andrade-Brito DE, Montalvo-Ortiz JL. Decoding the role of transcriptomic clocks in the human prefrontal cortex. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.04.19.23288765. [PMID: 37163025 PMCID: PMC10168432 DOI: 10.1101/2023.04.19.23288765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Aging is a complex process with interindividual variability, which can be measured by aging biological clocks. Aging clocks are machine-learning algorithms guided by biological information and associated with mortality risk and a wide range of health outcomes. One of these aging clocks are transcriptomic clocks, which uses gene expression data to predict biological age; however, their functional role is unknown. Here, we profiled two transcriptomic clocks (RNAAgeCalc and knowledge-based deep neural network clock) in a large dataset of human postmortem prefrontal cortex (PFC) samples. We identified that deep-learning transcriptomic clock outperforms RNAAgeCalc to predict transcriptomic age in the human PFC. We identified associations of transcriptomic clocks with psychiatric-related traits. Further, we applied system biology algorithms to identify common gene networks among both clocks and performed pathways enrichment analyses to assess its functionality and prioritize genes involved in the aging processes. Identified gene networks showed enrichment for diseases of signal transduction by growth factor receptors and second messenger pathways. We also observed enrichment of genome-wide signals of mental and physical health outcomes and identified genes previously associated with human brain aging. Our findings suggest a link between transcriptomic aging and health disorders, including psychiatric traits. Further, it reveals functional genes within the human PFC that may play an important role in aging and health risk.
Collapse
Affiliation(s)
- José J. Martínez-Magaña
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - John H. Krystal
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, USA
| | - Matthew J. Girgenti
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Diana L. Núnez-Ríos
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Sheila T. Nagamatsu
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | - Diego E. Andrade-Brito
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
| | | | - Janitza L. Montalvo-Ortiz
- Division of Human Genetics, Department of Psychiatry, Yale University School of Medicine, New Haven
- National Center for PTSD, US Department of Veterans Affairs, West Haven, CT, USA
- Psychiatry Service, VA Connecticut Health Care System, West Haven, CT, USA
| |
Collapse
|
5
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Krystal JH, Martínez-González KG, Giusti-Rodríguez P, Montalvo-Ortiz JL. Cross-Species Convergence of Brain Transcriptomic and Epigenomic Findings in Posttraumatic Stress Disorder: A Systematic Review. Complex Psychiatry 2023; 9:100-118. [PMID: 37404872 PMCID: PMC10315001 DOI: 10.1159/000529536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/31/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Posttraumatic stress disorder (PTSD) is a complex multifactorial disorder influenced by the interaction of genetic and environmental factors. Analyses of epigenomic and transcriptomic modifications may help to dissect the biological factors underlying the gene-environment interplay in PTSD. To date, most human PTSD epigenetics studies have used peripheral tissue, and these findings have complex and poorly understood relationships to brain alterations. Studies examining brain tissue may help characterize the brain-specific transcriptomic and epigenomic profiles of PTSD. In this review, we compiled and integrated brain-specific molecular findings of PTSD from humans and animals. Methods A systematic literature search according to the PRISMA criteria was performed to identify transcriptomic and epigenomic studies of PTSD, focusing on brain tissue from human postmortem samples or animal-stress paradigms. Results Gene- and pathway-level convergence analyses revealed PTSD-dysregulated genes and biological pathways across brain regions and species. A total of 243 genes converged across species, with 17 of them significantly enriched for PTSD. Chemical synaptic transmission and signaling by G-protein-coupled receptors were consistently enriched across omics and species. Discussion Our findings point out dysregulated genes highly replicated across PTSD studies in humans and animal models and suggest a potential role for the corticotropin-releasing hormone/orexin pathway in PTSD's pathophysiology. Further, we highlight current knowledge gaps and limitations and recommend future directions to address them.
Collapse
Affiliation(s)
- Diana Leandra Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - Sheila Tiemi Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| | | | - Paola Giusti-Rodríguez
- Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, USA
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- National Center for Posttraumatic Stress Disorder, VA CT Healthcare System, West Haven, CT, USA
| |
Collapse
|
6
|
Luthra NS, Clow A, Corcos DM. The Interrelated Multifactorial Actions of Cortisol and Klotho: Potential Implications in the Pathogenesis of Parkinson's Disease. Brain Sci 2022; 12:1695. [PMID: 36552155 PMCID: PMC9775285 DOI: 10.3390/brainsci12121695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94127, USA
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London W1B 2HW, UK
| | - Daniel M. Corcos
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
7
|
Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev 2022; 82:101766. [PMID: 36283617 DOI: 10.1016/j.arr.2022.101766] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.
Collapse
Affiliation(s)
- Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, USA.
| | - Anne Li
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
8
|
Zhao X, Logue MW, Hawn SE, Neale ZE, Zhou Z, Huber BR, Miller MW, Wolf EJ. PTSD, major depression, and advanced transcriptomic age in brain tissue. Depress Anxiety 2022; 39:824-834. [PMID: 36281744 PMCID: PMC9729392 DOI: 10.1002/da.23289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/06/2022] [Accepted: 09/29/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Psychiatric disorders have been associated with advanced epigenetic age in DNA methylation, yet this relationship has not been studied in the brain transcriptome. We examined transcriptomic age using an RNA-based algorithm recently developed by Ren and Kuan ("RNAAgeCalc") and the associations between posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and alcohol use disorder with age-adjusted RNA age ("RNA age residuals") in three brain regions: dorsolateral prefrontal cortex, ventromedial prefrontal cortex (vmPFC), and motor cortex. METHODS RNA sequencing was used to measure gene expression in postmortem brain tissue from the VA National PTSD Brain Bank (n = 94; 59% male). RESULTS Linear models revealed that diagnoses of PTSD and/or MDD were positively associated with RNA age residuals in vmPFC only (p-adj = 0.012). Three genes in the RNAAgeCalc algorithm (KCNJ16, HYAL2, and CEBPB) were also differentially expressed in association with PTSD/MDD in vmPFC (p-adj = 6.45E-05 to 0.02). Enrichment analysis revealed that inflammatory and immune-related pathways were overrepresented (p-adj < 0.05) among the 43 genes in RNAAgeCalc that were also at least nominally associated with PTSD/MDD in vmPFC relative to the 448 RNAAgeCalc genes. Endothelial and mural cells were negatively associated with RNA age residuals in vmPFC (both p-adj = 0.028) and with PTSD/MDD (both p-adj = 0.017). CONCLUSIONS Results highlight the importance of inflammation and immune system dysregulation in the link between psychopathology and accelerated cellular aging and raise the possibility that blood-brain barrier degradation may play an important role in stress-related accelerated brain aging.
Collapse
Affiliation(s)
- Xiang Zhao
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W. Logue
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Sage E. Hawn
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Zoe E. Neale
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Zhenwei Zhou
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Bertrand R. Huber
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Pathology and Laboratory Medicine, VA Boston Healthcare System, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | | | - Mark W. Miller
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Erika J. Wolf
- National Center for PTSD at VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
9
|
McCullough KM, Katrinli S, Hartmann J, Lori A, Klengel C, Missig G, Klengel T, Langford NA, Newman EL, Anderson KJ, Smith AK, Carroll FI, Ressler KJ, Carlezon WA. Blood levels of T-Cell Receptor Excision Circles (TRECs) provide an index of exposure to traumatic stress in mice and humans. Transl Psychiatry 2022; 12:423. [PMID: 36192377 PMCID: PMC9530209 DOI: 10.1038/s41398-022-02159-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Exposure to stress triggers biological changes throughout the body. Accumulating evidence indicates that alterations in immune system function are associated with the development of stress-associated illnesses such as major depressive disorder and post-traumatic stress disorder, increasing interest in identifying immune markers that provide insight into mental health. Recombination events during T-cell receptor rearrangement and T-cell maturation in the thymus produce circular DNA fragments called T-cell receptor excision circles (TRECs) that can be utilized as indicators of thymic function and numbers of newly emigrating T-cells. Given data suggesting that stress affects thymus function, we examined whether blood levels of TRECs might serve as a quantitative peripheral index of cumulative stress exposure and its physiological correlates. We hypothesized that chronic stress exposure would compromise thymus function and produce corresponding decreases in levels of TRECs. In male mice, exposure to chronic social defeat stress (CSDS) produced thymic involution, adrenal hypertrophy, and decreased levels of TRECs in blood. Extending these studies to humans revealed robust inverse correlations between levels of circulating TRECs and childhood emotional and physical abuse. Cell-type specific analyses also revealed associations between TREC levels and blood cell composition, as well as cell-type specific methylation changes in CD4T + and CD8T + cells. Additionally, TREC levels correlated with epigenetic age acceleration, a common biomarker of stress exposure. Our findings demonstrate alignment between findings in mice and humans and suggest that blood-borne TRECs are a translationally-relevant biomarker that correlates with, and provides insight into, the cumulative physiological and immune-related impacts of stress exposure in mammals.
Collapse
Affiliation(s)
- Kenneth M McCullough
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Seyma Katrinli
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
| | - Jakob Hartmann
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Adriana Lori
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Claudia Klengel
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Galen Missig
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Torsten Klengel
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Nicole A Langford
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Emily L Newman
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Kasey J Anderson
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Alicia K Smith
- Department of Gynecology and Obstetrics, Emory University, Atlanta, GA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - F Ivy Carroll
- Center for Organic and Medicinal Chemistry, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Kerry J Ressler
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry & Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - William A Carlezon
- Basic Neuroscience Division, Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
10
|
Sun D, Rakesh G, Clarke-Rubright EK, Haswell CC, Logue MW, O'Leary EN, Cotton AS, Xie H, Dennis EL, Jahanshad N, Salminen LE, Thomopoulos SI, Rashid FM, Ching CRK, Koch SBJ, Frijling JL, Nawijn L, van Zuiden M, Zhu X, Suarez-Jimenez B, Sierk A, Walter H, Manthey A, Stevens JS, Fani N, van Rooij SJH, Stein MB, Bomyea J, Koerte I, Choi K, van der Werff SJA, Vermeiren RRJM, Herzog JI, Lebois LAM, Baker JT, Ressler KJ, Olson EA, Straube T, Korgaonkar MS, Andrew E, Zhu Y, Li G, Ipser J, Hudson AR, Peverill M, Sambrook K, Gordon E, Baugh LA, Forster G, Simons RM, Simons JS, Magnotta VA, Maron-Katz A, du Plessis S, Disner SG, Davenport ND, Grupe D, Nitschke JB, deRoon-Cassini TA, Fitzgerald J, Krystal JH, Levy I, Olff M, Veltman DJ, Wang L, Neria Y, De Bellis MD, Jovanovic T, Daniels JK, Shenton ME, van de Wee NJA, Schmahl C, Kaufman ML, Rosso IM, Sponheim SR, Hofmann DB, Bryant RA, Fercho KA, Stein DJ, Mueller SC, Phan KL, McLaughlin KA, Davidson RJ, Larson C, May G, Nelson SM, Abdallah CG, Gomaa H, Etkin A, Seedat S, Harpaz-Rotem I, Liberzon I, Wang X, Thompson PM, Morey RA. Remodeling of the Cortical Structural Connectome in Posttraumatic Stress Disorder: Results From the ENIGMA-PGC Posttraumatic Stress Disorder Consortium. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:935-948. [PMID: 35307575 PMCID: PMC9835553 DOI: 10.1016/j.bpsc.2022.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Posttraumatic stress disorder (PTSD) is accompanied by disrupted cortical neuroanatomy. We investigated alteration in covariance of structural networks associated with PTSD in regions that demonstrate the case-control differences in cortical thickness (CT) and surface area (SA). METHODS Neuroimaging and clinical data were aggregated from 29 research sites in >1300 PTSD cases and >2000 trauma-exposed control subjects (ages 6.2-85.2 years) by the ENIGMA-PGC (Enhancing Neuro Imaging Genetics through Meta Analysis-Psychiatric Genomics Consortium) PTSD working group. Cortical regions in the network were rank ordered by the effect size of PTSD-related cortical differences in CT and SA. The top-n (n = 2-148) regions with the largest effect size for PTSD > non-PTSD formed hypertrophic networks, the largest effect size for PTSD < non-PTSD formed atrophic networks, and the smallest effect size of between-group differences formed stable networks. The mean structural covariance (SC) of a given n-region network was the average of all positive pairwise correlations and was compared with the mean SC of 5000 randomly generated n-region networks. RESULTS Patients with PTSD, relative to non-PTSD control subjects, exhibited lower mean SC in CT-based and SA-based atrophic networks. Comorbid depression, sex, and age modulated covariance differences of PTSD-related structural networks. CONCLUSIONS Covariance of structural networks based on CT and cortical SA are affected by PTSD and further modulated by comorbid depression, sex, and age. The SC networks that are perturbed in PTSD comport with converging evidence from resting-state functional connectivity networks and networks affected by inflammatory processes and stress hormones in PTSD.
Collapse
Affiliation(s)
- Delin Sun
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Gopalkumar Rakesh
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Emily K Clarke-Rubright
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Courtney C Haswell
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, Massachusetts; Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts; Biomedical Genetics, Boston University School of Medicine, Boston, Massachusetts; Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Erin N O'Leary
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Andrew S Cotton
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Hong Xie
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts; Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California; Stanford Neurodevelopment, Affect, and Psychopathology Laboratory, Stanford, California; Department of Neurology, University of Utah, Salt Lake City, Utah
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Lauren E Salminen
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Faisal M Rashid
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Christopher R K Ching
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Saskia B J Koch
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Benjamin Suarez-Jimenez
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York; University of Rochester Medical Center, Rochester, New York
| | - Anika Sierk
- University Medical Centre Charité, Berlin, Germany
| | | | | | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Negar Fani
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Murray B Stein
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Jessica Bomyea
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Inga Koerte
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
| | - Kyle Choi
- Health Services Research Center, University of California San Diego, San Diego, California
| | - Steven J A van der Werff
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | | | - Julia I Herzog
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Lauren A M Lebois
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety Disorders, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Justin T Baker
- Institute for Technology in Psychiatry, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety Disorders, McLean Hospital, Harvard University, Belmont, Massachusetts; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth A Olson
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute of Medical Research, Westmead, New South Wales, Australia
| | - Elpiniki Andrew
- Department of Psychology, University of Sydney, Westmead, New South Wales, Australia
| | - Ye Zhu
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jonathan Ipser
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Anna R Hudson
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Matthew Peverill
- Department of Psychology, University of Washington, Seattle, Washington
| | - Kelly Sambrook
- Department of Radiology, University of Washington, Seattle, Washington
| | - Evan Gordon
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Washington University School of Medicine, St. Louis, Missouri
| | - Lee A Baugh
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Vermillion, South Dakota; Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Sioux Falls VA Health Care System, Sioux Falls, South Dakota
| | - Gina Forster
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Vermillion, South Dakota; Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Raluca M Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Department of Psychology, University of South Dakota, Vermillion, South Dakota
| | - Jeffrey S Simons
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Department of Psychology, University of South Dakota, Vermillion, South Dakota
| | - Vincent A Magnotta
- Department of Radiology, Psychiatry, and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Adi Maron-Katz
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Stefan du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Seth G Disner
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Nicholas D Davenport
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - Dan Grupe
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jack B Nitschke
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin
| | - Terri A deRoon-Cassini
- Division of Trauma and Acute Care Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - John H Krystal
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Ifat Levy
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands; ARQ National Psychotrauma Centre, Diemen, the Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Li Wang
- Laboratory for Traumatic Stress Studies, Chinese Academy of Sciences Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, New York; New York State Psychiatric Institute, New York, New York
| | - Michael D De Bellis
- Healthy Childhood Brain Development Developmental Traumatology Research Program, Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine, Detroit, Michigan
| | - Judith K Daniels
- Department of Clinical Psychology, University of Groningen, Groningen, the Netherlands
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts; VA Boston Healthcare System, Brockton Division, Brockton, Massachusetts
| | - Nic J A van de Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Milissa L Kaufman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Women's Mental Health, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Isabelle M Rosso
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Center for Depression, Anxiety, and Stress Research, McLean Hospital, Harvard University, Belmont, Massachusetts
| | - Scott R Sponheim
- Minneapolis VA Health Care System, University of Minnesota, Minneapolis, Minnesota; Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
| | - David Bernd Hofmann
- Institute of Medical Psychology and Systems Neuroscience, University of Münster, Münster, Germany
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, New South Wales, Australia
| | - Kelene A Fercho
- Division of Basic Biomedical Sciences, Sanford School of Medicine, Vermillion, South Dakota; Center for Brain and Behavior Research, University of South Dakota, Vermillion, South Dakota; Sioux Falls VA Health Care System, Sioux Falls, South Dakota; Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, Oklahoma
| | - Dan J Stein
- SA MRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium; Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois; Mental Health Service Line, Jesse Brown VA Chicago Health Care System, Chicago, Illinois
| | | | - Richard J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Christine Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Geoffrey May
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Steven M Nelson
- Veterans Integrated Service Network-17 Center of Excellence for Research on Returning War Veterans, Waco, Texas; Department of Psychology and Neuroscience, Baylor University, Waco, Texas; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas; Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Bryan, Texas
| | - Chadi G Abdallah
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Hassaan Gomaa
- Department of Psychiatry, Pennsylvania State University, State College, Pennsylvania
| | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California; VA Palo Alto Health Care System, Palo Alto, California
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | - Ilan Harpaz-Rotem
- Division of Clinical Neuroscience, National Center for PTSD, West Haven, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Israel Liberzon
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
| | - Xin Wang
- Department of Psychiatry, University of Toledo, Toledo, Ohio
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina; Department of Veteran Affairs Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham, North Carolina.
| |
Collapse
|
11
|
Núñez-Rios DL, Martínez-Magaña JJ, Nagamatsu ST, Andrade-Brito DE, Forero DA, Orozco-Castaño CA, Montalvo-Ortiz JL. Central and Peripheral Immune Dysregulation in Posttraumatic Stress Disorder: Convergent Multi-Omics Evidence. Biomedicines 2022; 10:1107. [PMID: 35625844 PMCID: PMC9138536 DOI: 10.3390/biomedicines10051107] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Posttraumatic stress disorder (PTSD) is a chronic and multifactorial disorder with a prevalence ranging between 6-10% in the general population and ~35% in individuals with high lifetime trauma exposure. Growing evidence indicates that the immune system may contribute to the etiology of PTSD, suggesting the inflammatory dysregulation as a hallmark feature of PTSD. However, the potential interplay between the central and peripheral immune system, as well as the biological mechanisms underlying this dysregulation remain poorly understood. The activation of the HPA axis after trauma exposure and the subsequent activation of the inflammatory system mediated by glucocorticoids is the most common mechanism that orchestrates an exacerbated immunological response in PTSD. Recent high-throughput analyses in peripheral and brain tissue from both humans with and animal models of PTSD have found that changes in gene regulation via epigenetic alterations may participate in the impaired inflammatory signaling in PTSD. The goal of this review is to assess the role of the inflammatory system in PTSD across tissue and species, with a particular focus on the genomics, transcriptomics, epigenomics, and proteomics domains. We conducted an integrative multi-omics approach identifying TNF (Tumor Necrosis Factor) signaling, interleukins, chemokines, Toll-like receptors and glucocorticoids among the common dysregulated pathways in both central and peripheral immune systems in PTSD and propose potential novel drug targets for PTSD treatment.
Collapse
Affiliation(s)
- Diana L. Núñez-Rios
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - José J. Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Sheila T. Nagamatsu
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego E. Andrade-Brito
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| | - Diego A. Forero
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Carlos A. Orozco-Castaño
- Health and Sport Sciences Research Group, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 110231, Colombia; (D.A.F.); (C.A.O.-C.)
| | - Janitza L. Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA; (D.L.N.-R.); (J.J.M.-M.); (S.T.N.); (D.E.A.-B.)
- VA CT Healthcare Center, West Haven, CT 06516, USA
| |
Collapse
|
12
|
Ressler KJ, Berretta S, Bolshakov VY, Rosso IM, Meloni EG, Rauch SL, Carlezon WA. Post-traumatic stress disorder: clinical and translational neuroscience from cells to circuits. Nat Rev Neurol 2022; 18:273-288. [PMID: 35352034 PMCID: PMC9682920 DOI: 10.1038/s41582-022-00635-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 01/16/2023]
Abstract
Post-traumatic stress disorder (PTSD) is a maladaptive and debilitating psychiatric disorder, characterized by re-experiencing, avoidance, negative emotions and thoughts, and hyperarousal in the months and years following exposure to severe trauma. PTSD has a prevalence of approximately 6-8% in the general population, although this can increase to 25% among groups who have experienced severe psychological trauma, such as combat veterans, refugees and victims of assault. The risk of developing PTSD in the aftermath of severe trauma is determined by multiple factors, including genetics - at least 30-40% of the risk of PTSD is heritable - and past history, for example, prior adult and childhood trauma. Many of the primary symptoms of PTSD, including hyperarousal and sleep dysregulation, are increasingly understood through translational neuroscience. In addition, a large amount of evidence suggests that PTSD can be viewed, at least in part, as a disorder that involves dysregulation of normal fear processes. The neural circuitry underlying fear and threat-related behaviour and learning in mammals, including the amygdala-hippocampus-medial prefrontal cortex circuit, is among the most well-understood in behavioural neuroscience. Furthermore, the study of threat-responding and its underlying circuitry has led to rapid progress in understanding learning and memory processes. By combining molecular-genetic approaches with a translational, mechanistic knowledge of fear circuitry, transformational advances in the conceptual framework, diagnosis and treatment of PTSD are possible. In this Review, we describe the clinical features and current treatments for PTSD, examine the neurobiology of symptom domains, highlight genomic advances and discuss translational approaches to understanding mechanisms and identifying new treatments and interventions for this devastating syndrome.
Collapse
Affiliation(s)
- Kerry J Ressler
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sabina Berretta
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Vadim Y Bolshakov
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle M Rosso
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward G Meloni
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott L Rauch
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - William A Carlezon
- SPARED Center, Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Roig‐Soriano J, Griñán‐Ferré C, Espinosa‐Parrilla JF, Abraham CR, Bosch A, Pallàs M, Chillón M. AAV-mediated expression of secreted and transmembrane αKlotho isoforms rescues relevant aging hallmarks in senescent SAMP8 mice. Aging Cell 2022; 21:e13581. [PMID: 35274439 PMCID: PMC9009104 DOI: 10.1111/acel.13581] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 02/09/2022] [Accepted: 02/20/2022] [Indexed: 11/26/2022] Open
Abstract
Senescence represents a stage in life associated with elevated incidence of morbidity and increased risk of mortality due to the accumulation of molecular alterations and tissue dysfunction, promoting a decrease in the organism's protective systems. Thus, aging presents molecular and biological hallmarks, which include chronic inflammation, epigenetic alterations, neuronal dysfunction, and worsening of physical status. In this context, we explored the AAV9-mediated expression of the two main isoforms of the aging-protective factor Klotho (KL) as a strategy to prevent these general age-related features using the senescence-accelerated mouse prone 8 (SAMP8) model. Both secreted and transmembrane KL isoforms improved cognitive performance, physical state parameters, and different molecular variables associated with aging. Epigenetic landscape was recovered for the analyzed global markers DNA methylation (5-mC), hydroxymethylation (5-hmC), and restoration occurred in the acetylation levels of H3 and H4. Gene expression of pro- and anti-inflammatory mediators in central nervous system such as TNF-α and IL-10, respectively, had improved levels, which were comparable to the senescence-accelerated-mouse resistant 1 (SAMR1) healthy control. Additionally, this improvement in neuroinflammation was supported by changes in the histological markers Iba1, GFAP, and SA β-gal. Furthermore, bone tissue structural variables, especially altered during senescence, recovered in SAMP8 mice to SAMR1 control values after treatment with both KL isoforms. This work presents evidence of the beneficial pleiotropic role of Klotho as an anti-aging therapy as well as new specific functions of the KL isoforms for the epigenetic regulation and aged bone structure alteration in an aging mouse model.
Collapse
Affiliation(s)
- J. Roig‐Soriano
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
| | - C. Griñán‐Ferré
- Pharmacology Section Department of Pharmacology, Toxicology, and Therapeutic Chemistry Faculty of Pharmacy and Food Sciences Institut de Neurosciències‐Universitat de Barcelona (NeuroUB) Barcelona Spain
| | - J. F. Espinosa‐Parrilla
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
| | - C. R. Abraham
- Department of Pharmacology and Experimental Therapeutics Boston University School of Medicine Boston Massachusetts USA
| | - A. Bosch
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
- Vall d'Hebron Institut de Recerca (VHIR) Barcelona Spain
- Unitat producció de Vectors (UPV) Universitat Autònoma Barcelona Bellaterra Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) Instituto de Salud Carlos III Madrid Spain
| | - M. Pallàs
- Pharmacology Section Department of Pharmacology, Toxicology, and Therapeutic Chemistry Faculty of Pharmacy and Food Sciences Institut de Neurosciències‐Universitat de Barcelona (NeuroUB) Barcelona Spain
| | - Miguel Chillón
- Institut de Neurociènces (INc) Department of Biochemistry and Molecular Biology Universitat Autònoma Barcelona Bellaterra Spain
- Vall d'Hebron Institut de Recerca (VHIR) Barcelona Spain
- Unitat producció de Vectors (UPV) Universitat Autònoma Barcelona Bellaterra Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA) Passeig Lluis Companys Barcelona Spain
| |
Collapse
|
14
|
Schnurr PP. Honoring the Career of Matthew J. Friedman, MD, PhD. Psychiatry 2022; 85:153-156. [PMID: 35588491 DOI: 10.1080/00332747.2022.2068924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Young KA. Matthew J. Friedman and the VA National PTSD Brain Bank: New Transcriptomic Insight into PTSD Pathophysiology. Psychiatry 2022; 85:171-182. [PMID: 35588482 DOI: 10.1080/00332747.2022.2068932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Gene expression correlates of advanced epigenetic age and psychopathology in postmortem cortical tissue. Neurobiol Stress 2021; 15:100371. [PMID: 34458511 PMCID: PMC8377489 DOI: 10.1016/j.ynstr.2021.100371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 07/02/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022] Open
Abstract
Psychiatric stress has been associated with accelerated epigenetic aging (i.e., when estimates of cellular age based on DNA methylation exceed chronological age) in both blood and brain tissue. Little is known about the downstream biological effects of accelerated epigenetic age on gene expression. In this study we examined associations between DNA methylation-derived estimates of cellular age that range from decelerated to accelerated relative to chronological age (“DNAm age residuals”) and transcriptome-wide gene expression. This was examined using tissue from three post-mortem cortical regions (ventromedial and dorsolateral prefrontal cortex and motor cortex, n = 97) from the VA National PTSD Brain Bank. In addition, we examined how posttraumatic stress disorder (PTSD) and alcohol-use disorders (AUD) moderated the association between DNAm age residuals and gene expression. Transcriptome-wide results across brain regions, psychiatric diagnoses, and cohorts (full sample and male and female subsets) revealed experiment-wide differential expression of 11 genes in association with PTSD or AUD in interaction with DNAm age residuals. This included the inflammation-related genes IL1B, RCOR2, and GCNT1. Candidate gene class analyses and gene network enrichment analyses further supported differential expression of inflammation/immune gene networks as well as glucocorticoid, circadian, and oxidative stress-related genes. Gene co-expression network modules suggested enrichment of myelination related processes and oligodendrocyte enrichment in association with DNAm age residuals in the presence of psychopathology. Collectively, results suggest that psychiatric stress accentuates the association between advanced epigenetic age and expression of inflammation genes in the brain. This highlights the role of inflammatory processes in the pathophysiology of accelerated cellular aging and suggests that inflammatory pathways may link accelerated cellular aging to premature disease onset and neurodegeneration, particularly in stressed populations. This suggests that anti-inflammatory interventions may be an important direction to pursue in evaluating ways to prevent or delay cellular aging and increase resilience to diseases of aging.
Collapse
|
17
|
Exercise-Linked Irisin Prevents Mortality and Enhances Cognition in a Mice Model of Cerebral Ischemia by Regulating Klotho Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1697070. [PMID: 34306305 PMCID: PMC8282383 DOI: 10.1155/2021/1697070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 06/13/2021] [Indexed: 01/04/2023]
Abstract
Irisin, which can be released in the hippocampus after physical exercise, is demonstrated to have beneficial effects on neurovascular diseases. This study investigated the impact of exercise linked-irisin on mortality and cognition in a mice model of cerebral ischemia and further explored its underlying mechanism. The cerebrospinal concentrations of irisin and klotho from ischemic stroke patients were measured with an enzyme-linked immunosorbent assay (ELISA). The cognitive function of mice was evaluated by a series of behavioural experiments. The expressions of klotho, MnSOD, and FOXO3a in the hippocampus of mice were detected by Western blot. Superoxide production in the brain tissue of mice was evaluated with the dihydroethidium (DHE) dying. The results demonstrated that stroke patients showed a positive correlation between their CSF irisin concentration and klotho concentration. In addition, when mice subjected to cerebral ischemia, their cognitive function was impaired, the protein expressions of klotho, MnSOD, and FOXO3a downregulated, and the production of reactive oxygen species (ROS) increased compared with the sham group. After pretreatment with exogenous irisin, improved cognitive impairment, upregulated protein expressions of klotho, MnSOD, and FOXO3a, and reduced ROS generation were observed in mice with MCAO. However, the neuroprotective effects of irisin compromised with the evidence of severe cognitive impairment, decreased protein expressions of MnSOD and FOXO3a, and increased ROS production in klotho knockout mice. Thus, our results indicated that exercise-linked irisin could prevent mortality and improve cognitive impairment after cerebral ischemia by regulating klotho expression.
Collapse
|
18
|
Gao X, Sun Z, Ma G, Li Y, Liu M, Zhang G, Xu H, Gao Y, Zhou J, Deng Q, Li R. Reduced Plasma Levels of α-Klotho and Their Correlation With Klotho Polymorphisms in Elderly Patients With Major Depressive Disorders. Front Psychiatry 2021; 12:682691. [PMID: 34721095 PMCID: PMC8548667 DOI: 10.3389/fpsyt.2021.682691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Recent literature suggests that α-Klotho, a widely recognized anti-aging protein, is involved in longevity as well as in many diseases, including Alzheimer's disease, and depression. Although the Klotho gene encodes α-Klotho, a single transmembrane protein with intracellular and extracellular domains, the relationship between Klotho gene polymorphism and circulating α-Klotho levels in patients with major depressive disorder (MDD) is not clear. Methods: A total of 144 MDD patients and 112 age-matched healthy controls were included in this study. The Klotho genetic polymorphisms (rs9536314, rs9527025, and rs9315202) and plasma α-Klotho levels were measured by PCR and ELISA, respectively. The severity of depressive symptoms was estimated using the Hamilton Depression Scale (HAMD). Results: We found a significantly lower level of plasma α-Klotho in the MDD patients than in controls. Among them, only elderly MDD patients (first episode) showed significantly lower α-Klotho levels than the age-matched controls, while elderly recurrent and young MDD patients showed no difference in plasma α-Klotho levels from age-matched controls. The young MDD group showed a significantly earlier onset age, higher plasma α-Klotho levels, and lower HAMD scores than those in the elderly MDD group. While the plasma α-Klotho levels were higher in rs9315202 T alleles carrier regardless age or sex, the rs9315202 T allele was negatively correlated with disease severity only in the elderly MDD patients. Conclusion: The results of our study showed that only elderly MDD patients showed a decrease in plasma α-Klotho levels along with an increase in disease severity as well as an association with the number of rs9315202 T alleles, and not young MDD patients compared to age-matched controls. Our data suggest that circulating α-Klotho levels combined with Klotho genetic polymorphisms are important in elderly MDD patients, particularly carriers of the Klotho gene rs9315202 T allele.
Collapse
Affiliation(s)
- Xiang Gao
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Zuoli Sun
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guangwei Ma
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yuhong Li
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Min Liu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Guofu Zhang
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Hong Xu
- Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Yane Gao
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Jixuan Zhou
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Qi Deng
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Rena Li
- Laboratory of Brain Disorders, Ministry of Science and Technology, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|