1
|
Wu CC, Hu SW, Dong SW, Tzou KY, Li CH. The prognostic and neuroendocrine implications of SLC25A29-mediated biomass signature in prostate cancer. GeroScience 2025:10.1007/s11357-025-01538-4. [PMID: 39890746 DOI: 10.1007/s11357-025-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/17/2025] [Indexed: 02/03/2025] Open
Abstract
Dysregulated solutes are linked to cancer progression, with associated carriers being potential targets for prognosis and treatment. Androgen deprivation therapy (ADT) is essential for prostate cancer (PCa) progression, but secondary resistance often leads to androgen-independent tumor growth, necessitating new prognostic biomarkers. Transcriptome-based datasets identify SLC25A29, an arginine carrier, as upregulated in PCa, correlating with metastatic features and serving as a high-risk prognostic factor, particularly in castration-resistant prostate cancer (CRPC). Molecular simulations indicate that SLC25A29-mediated pathways contribute to mitochondrial metabolism and redox homeostasis, implicating POLD1 regulation and suggesting a link to ferroptosis. Further analysis reveals that SLC25A29 may transactivate POLD1 via E2F1, as shown by RNA-seq profiling of E2F1 knockdown in CRPC-related cells, which demonstrated reduced POLD1 expression. Clinical and cellular studies confirm that SLC25A29, E2F1, and POLD1 levels positively correlate with pathological features, with their downstream effectors serving as prognosis signatures. The SLC25A29/E2F1/POLD1 axis is associated with neuroendocrine PCa (NEPC) development, indicating its role in response to androgen receptor inhibition. Downregulation of E2F1 not only decreases POLD1 levels but also reduces NEPC-related markers. These findings support the SLC25A29/E2F1/POLD1 axis as a prognostic tool for CRPC and NEPC, and targeting E2F1 may offer a therapeutic strategy to disrupt SLC25A29-mediated PCa progression.
Collapse
Affiliation(s)
- Chia-Chang Wu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Su-Wei Hu
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
| | - Shao-Wei Dong
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
| | - Kai-Yi Tzou
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Taipei Medical University (TMU) Research Center of Urology and Kidney, Taipei Medical University, Taipei City, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| | - Chien Hsiu Li
- Department of Urology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| |
Collapse
|
3
|
Wang D, Pan H, Cheng S, Huang Z, Shi Z, Deng H, Yang J, Jin C, Dai J. Construction and Validation of a Prognostic Model Based on Mitochondrial Genes in Prostate Cancer. Horm Metab Res 2024; 56:807-817. [PMID: 38870985 DOI: 10.1055/a-2330-3696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
This study attempted to build a prostate cancer (PC) prognostic risk model with mitochondrial feature genes. PC-related MTGs were screened for Cox regression analyses, followed by establishing a prognostic model. Model validity was analyzed via survival analysis and receiver operating characteristic (ROC) curves, and model accuracy was validated in the GEO dataset. Combining risk score with clinical factors, the independence of the risk score was verified by using Cox analysis, followed by generating a nomogram. The Gleason score, microsatellite instability (MSI), immune microenvironment, and tumor mutation burden were analyzed in two risk groups. Finally, the prognostic feature genes were verified through a q-PCR test. Ten PC-associated MTGs were screened, and a prognostic model was built. Survival analysis and ROC curves illustrated that the model was a good predictor for the risk of PC. Cox regression analysis revealed that risk score acted as an independent prognostic factor. The Gleason score and MSI in the high-risk group were substantially higher than in the low-risk group. Levels of ESTIMATE Score, Immune Score, Stromal Score, immune cells, immune function, immune checkpoint, and immunopheno score of partial immune checkpoints in the high-risk group were significantly lower than in the low-risk group. Genes with the highest mutation frequencies in the two groups were SPOP, TTN, and TP53. The q-PCR results of the feature genes were consistent with the gene expression results in the database. The 10-gene model based on MTGs could accurately predict the prognosis of PC patients and their responses to immunotherapy.
Collapse
Affiliation(s)
- Dan Wang
- Radiology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hui Pan
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Shaoping Cheng
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhigang Huang
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Zhenlei Shi
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Hao Deng
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Junwu Yang
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Chenghua Jin
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| | - Jin Dai
- Urology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
4
|
Ghosh N, Mahalanobish S, Sil PC. Reprogramming of urea cycle in cancer: Mechanism, regulation and prospective therapeutic scopes. Biochem Pharmacol 2024; 228:116326. [PMID: 38815626 DOI: 10.1016/j.bcp.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hepatic urea cycle, previously known as ornithine cycle, is the chief biochemical pathway that deals with the disposal of excessive nitrogen in form of urea, resulted from protein breakdown and concomitant condensation of ammonia. Enzymes involved in urea cycle are expressed differentially outside hepatic tissue and are mostly involved in production of arginine from citrulline in arginine-depleted condition. Inline, cancer cells frequently adapt metabolic rewiring to support sufficient biomass production in order to sustain tumor cell survival, multiplication and subsequent growth. For the accomplishment of this aim, metabolic reprogramming in cancer cells is set in way so that cellular nitrogen and carbon repertoire can be utilized and channelized maximally towards anabolic reactions. A strategy to meet such outcome is to cut down unnecessary catabolic reactions and nitrogen elimination. Thus, transfigured urea cycle is a hallmark of neoplasia. During oncogenesis, altered expression and regulation of enzymes involved in urea cycle is a revolutionary approach meet to maximum incorporation of nitrogen for sustaining tumor specific biogenesis. Currently, we have reviewed neoplasm-specific deregulations of urea cycle-enzymes in different types and stages of cancers suggesting its context-oriented dynamic nature. Considering such insight to be valuable in terms of prospective cancer diagnosis and therapeutics adaptive evolution of deregulated urea cycle has been enlightened.
Collapse
Affiliation(s)
- Noyel Ghosh
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Sushweta Mahalanobish
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India
| | - Parames C Sil
- Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata 700054, West Bengal, India.
| |
Collapse
|
5
|
Le HH, Shorey-Kendrick LE, Hinds MT, McCarty OJT, Lo JO, Anderson DEJ. Effects of in utero exposure to Δ-9-tetrahydrocannabinol on cardiac extracellular matrix expression and vascular transcriptome in rhesus macaques. Am J Physiol Heart Circ Physiol 2024; 327:H701-H714. [PMID: 39028280 PMCID: PMC11442028 DOI: 10.1152/ajpheart.00181.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/27/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Delta-9-tetrahydrocannabinol (THC), the psychoactive component of cannabis, remains a schedule I substance, thus safety data regarding the effects on the cardiovascular and prenatal health are limited. Importantly, there is evidence showing prenatal cannabis exposure can negatively impact fetal organ development, including the cardiovascular system. THC can cross the placenta and bind to cannabinoid receptors expressed in the developing fetus, including on endothelial cells. To understand the impact of prenatal THC exposure on the fetal cardiovascular system, we used our rhesus macaque model of prenatal daily edible THC consumption. Before conception, animals were acclimated to THC (2.5 mg/7 kg/day, equivalent to a heavy medical cannabis dose) and maintained on this dose daily throughout pregnancy. Fetal tissue samples were collected at gestational day 155 (full term is 168 days). Our model showed that in utero THC exposure was associated with a decreased heart weight-to-body weight ratio in offspring, warranting further mechanistic investigation. Histological examination of the fetal cardiac and vascular tissues did not reveal any significant effect of THC exposure on the maturity of collagen within the fetal heart or the aorta. Total collagen III expression and elastin production and organization were unchanged. However, bulk RNA-sequencing of vascular cells in the umbilical vein, umbilical artery, and fetal aorta demonstrated that THC alters the fetal vascular transcriptome and is associated with upregulated expression of genes involved in carbohydrate metabolism and inflammation. The long-term consequences of these findings are unknown but suggest that prenatal THC exposure may affect cardiovascular development in offspring.NEW & NOTEWORTHY Prenatal cannabis use is increasing and despite the public health relevance, there is limited safety data regarding its impact on offspring cardiovascular health outcomes. We used a translational, nonhuman primate model of daily edible Δ-9-tetrahydrocannabinol (THC) consumption during pregnancy to assess its effects on the fetal cardiovascular system. THC-exposed fetal vascular tissues displayed upregulation of genes involved in cellular metabolism and inflammation, suggesting that prenatal THC exposure may impact fetal vascular tissues.
Collapse
Affiliation(s)
- Hillary H Le
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
- Center for Developmental Health, Oregon Health & Science University, Portland, Oregon, United States
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, United States
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| | - Jamie O Lo
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, Oregon, United States
| | - Deirdre E J Anderson
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
6
|
Patitucci C, Hernández-Camacho JD, Vimont E, Yde S, Cokelaer T, Chaze T, Giai Gianetto Q, Matondo M, Gazi A, Nemazanyy I, Stroud DA, Hock DH, Donnarumma E, Wai T. Mtfp1 ablation enhances mitochondrial respiration and protects against hepatic steatosis. Nat Commun 2023; 14:8474. [PMID: 38123539 PMCID: PMC10733382 DOI: 10.1038/s41467-023-44143-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023] Open
Abstract
Hepatic steatosis is the result of imbalanced nutrient delivery and metabolism in the liver and is the first hallmark of Metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD is the most common chronic liver disease and involves the accumulation of excess lipids in hepatocytes, inflammation, and cancer. Mitochondria play central roles in liver metabolism yet the specific mitochondrial functions causally linked to MASLD remain unclear. Here, we identify Mitochondrial Fission Process 1 protein (MTFP1) as a key regulator of mitochondrial and metabolic activity in the liver. Deletion of Mtfp1 in hepatocytes is physiologically benign in mice yet leads to the upregulation of oxidative phosphorylation (OXPHOS) activity and mitochondrial respiration, independently of mitochondrial biogenesis. Consequently, liver-specific knockout mice are protected against high fat diet-induced steatosis and metabolic dysregulation. Additionally, Mtfp1 deletion inhibits mitochondrial permeability transition pore opening in hepatocytes, conferring protection against apoptotic liver damage in vivo and ex vivo. Our work uncovers additional functions of MTFP1 in the liver, positioning this gene as an unexpected regulator of OXPHOS and a therapeutic candidate for MASLD.
Collapse
Affiliation(s)
- Cecilia Patitucci
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | | | - Elodie Vimont
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Sonny Yde
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Thomas Cokelaer
- Institut Pasteur, Biomics Technological Platform, Université Paris Cité, Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Thibault Chaze
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
- Institut Pasteur, Proteomics Core Facility, MSBio UtechS, UAR CNRS 2024, Université Paris Cité, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, Paris, France
| | - Anastasia Gazi
- Institut Pasteur Ultrastructural Bio Imaging, UTechS, Université Paris Cité, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, SFR Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victorian Clinical Genetics Services and Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| | - Erminia Donnarumma
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France
| | - Timothy Wai
- Institut Pasteur, Mitochondrial Biology Group, CNRS UMR 3691, Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Vardar Acar N, Özgül RK. A big picture of the mitochondria-mediated signals: From mitochondria to organism. Biochem Biophys Res Commun 2023; 678:45-61. [PMID: 37619311 DOI: 10.1016/j.bbrc.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/02/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Mitochondria, well-known for years as the powerhouse and biosynthetic center of the cell, are dynamic signaling organelles beyond their energy production and biosynthesis functions. The metabolic functions of mitochondria, playing an important role in various biological events both in physiological and stress conditions, transform them into important cellular stress sensors. Mitochondria constantly communicate with the rest of the cell and even from other cells to the organism, transmitting stress signals including oxidative and reductive stress or adaptive signals such as mitohormesis. Mitochondrial signal transduction has a vital function in regulating integrity of human genome, organelles, cells, and ultimately organism.
Collapse
Affiliation(s)
- Neşe Vardar Acar
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - R Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Faculty of Medicine, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
8
|
Zheng P, Mao Z, Luo M, Zhou L, Wang L, Liu H, Liu W, Wei S. Comprehensive bioinformatics analysis of the solute carrier family and preliminary exploration of SLC25A29 in lung adenocarcinoma. Cancer Cell Int 2023; 23:222. [PMID: 37775731 PMCID: PMC10543265 DOI: 10.1186/s12935-023-03082-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 09/21/2023] [Indexed: 10/01/2023] Open
Abstract
According to the latest epidemiological investigation, lung adenocarcinoma (LUAD) is one of the most fatal cancer among both men and women. Despite continuous advancements in treatment approaches in recent years, the prognosis for LUAD remains relatively poor. Given the crucial role of the solute carrier (SLC) family in maintaining cellular energy metabolism stability, we conducted a comprehensive analysis of the association between SLC genes and LUAD prognosis. In the present study, we identified 71 genes among the SLC family members, of which 32 were downregulated and 39 were upregulated in LUAD samples. Based on these differentially expressed genes, a prognostic risk scoring model was established that was composed of five genes (SLC16A7, SLC16A4, SLC16A3, SLC12A8, and SLC25A15) and clinical characteristics; this model could effectively predict the survival and prognosis of patients in the cohort. Notably, SLC2A1, SLC25A29, and SLC27A4 were identified as key genes associated with survival and tumor stage. Further analysis revealed that SLC25A29 was underexpressed in LUAD tissue and regulated the phenotype of endothelial cells. Endothelial cell proliferation and migration increased and apoptosis decreased with a decrease in SLC25A29 expression. Investigation of the upstream regulatory mechanisms of SLC25A29 revealed that SLC25A29 expression gradually decreased as the lactate concentration increased. This phenomenon suggested that the expression of SLC25A29 may be related to lactylation modification. ChIP-qPCR experiments confirmed the critical regulatory role played by H3K14la and H3K18la modifications in the promoter region of SLC25A29. In conclusion, this study confirmed the role of SLC family genes in LUAD prognosis and revealed the role of SLC25A29 in regulating endothelial cell phenotypes. These study results provided important clues to further understand LUAD pathogenesis and develop appropriate therapeutic strategies.
Collapse
Affiliation(s)
- Pengdou Zheng
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Zhenyu Mao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Miao Luo
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Lingling Wang
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China
| | - Wei Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| | - Shuang Wei
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030, Wuhan, China.
| |
Collapse
|
9
|
Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 2023; 24:ijms24054954. [PMID: 36902385 PMCID: PMC10003438 DOI: 10.3390/ijms24054954] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.
Collapse
|
10
|
Chaudhary S, Ganguly S, Palanichamy JK, Singh A, Pradhan D, Bakhshi R, Chopra A, Bakhshi S. Mitochondrial gene expression signature predicts prognosis of pediatric acute myeloid leukemia patients. Front Oncol 2023; 13:1109518. [PMID: 36845715 PMCID: PMC9947241 DOI: 10.3389/fonc.2023.1109518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Gene expression profile of mitochondrial-related genes is not well deciphered in pediatric acute myeloid leukaemia (AML). We aimed to identify mitochondria-related differentially expressed genes (DEGs) in pediatric AML with their prognostic significance. METHODS Children with de novo AML were included prospectively between July 2016-December 2019. Transcriptomic profiling was done for a subset of samples, stratified by mtDNA copy number. Top mitochondria-related DEGs were identified and validated by real-time PCR. A prognostic gene signature risk score was formulated using DEGs independently predictive of overall survival (OS) in multivariable analysis. Predictive ability of the risk score was estimated along with external validation in The Tumor Genome Atlas (TCGA) AML dataset. RESULTS In 143 children with AML, twenty mitochondria-related DEGs were selected for validation, of which 16 were found to be significantly dysregulated. Upregulation of SDHC (p<0.001), CLIC1 (p=0.013) and downregulation of SLC25A29 (p<0.001) were independently predictive of inferior OS, and included for developing prognostic risk score. The risk score model was independently predictive of survival over and above ELN risk categorization (Harrell's c-index: 0.675). High-risk patients (risk score above median) had significantly inferior OS (p<0.001) and event free survival (p<0.001); they were associated with poor-risk cytogenetics (p=0.021), ELN intermediate/poor risk group (p=0.016), absence of RUNX1-RUNX1T1 (p=0.027), and not attaining remission (p=0.016). On external validation, the risk score also predicted OS (p=0.019) in TCGA dataset. DISCUSSION We identified and validated mitochondria-related DEGs with prognostic impact in pediatric AML and also developed a novel 3-gene based externally validated gene signature predictive of survival.
Collapse
Affiliation(s)
- Shilpi Chaudhary
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Shuvadeep Ganguly
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Archna Singh
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Dibyabhaba Pradhan
- Computational Genomics Centre, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Radhika Bakhshi
- Shaheed Rajguru College of Applied Sciences for Women, University of Delhi, Delhi, India
| | - Anita Chopra
- Department of Laboratory Oncology, All India Institute of Medical Sciences, New Delhi, India
| | - Sameer Bakhshi
- Department of Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
Zhang Q, Tang Y, Sun S, Xie Q, Yao J, Wang X, Qian J, Li Z. An extensive bioinformatics study on the role of mitochondrial solute carrier family 25 in PC and its mechanism behind affecting immune infiltration and tumor energy metabolism. J Transl Med 2022; 20:592. [PMID: 36514121 PMCID: PMC9746138 DOI: 10.1186/s12967-022-03756-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/05/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Several metabolic disorders and malignancies are directly related to abnormal mitochondrial solute carrier family 25 (SLC25A) members activity. However, its biological role in pancreatic cancer (PC) is not entirely understood. METHODS The lasso method was used to create a novel prognostic risk model for PC based on SLC25A members, and its roles in tumor immunology and energy metabolism were explored. Furthermore, co-expression networks were constructed for SLC25A11, SLC25A29, and SLC25A44. Single-cell RNA sequencing (ScRNA-seq) revealed the distribution of gene expression in PC. Tumor immune infiltration was examined with the TIMER database. Lastly, drug sensitivity was investigated, and co-transcriptional factors were predicted. RESULTS In the present study, a novel prognostic risk model was established and validated for PC based on SLC25A members. The high-risk group had a lower activation of oxidative phosphorylation and a more abundant immune infiltration phenotype than the low-risk group. According to co-expression network studies, SLC25A11, SLC25A29, and SLC25A44 were involved in the energy metabolism of PC and prevented tumor growth, invasion, and metastasis. ScRNA-seq research also pointed to their contribution to the tumor microenvironment. Moreover, the recruitment of numerous immune cells was positively correlated with SLC25A11 and SLC25A44 but negatively correlated with SLC25A29. Additionally, the sensitivity to 20 Food and Drug Administration-approved antineoplastic medicines was strongly linked to the aforementioned genes, where cisplatin sensitivity increased with the up-regulation of SLC25A29. Finally, the Scleraxis BHLH Transcription Factor (SCX) and other proteins were hypothesized to co-regulate the mRNA transcription of the genes. CONCLUSION SLC25A members are crucial for tumor immune and energy metabolism in PC, and SLC25A11, SLC25A29, and SLC25A44 can be used as favorable prognostic markers. The use of these markers will provide new directions to unravel their action mechanisms in PC.
Collapse
Affiliation(s)
- Qiang Zhang
- grid.268415.cMedical College of Yangzhou University, Yangzhou, Jiangsu 225000 China
| | - Yubao Tang
- grid.268415.cMedical College of Yangzhou University, Yangzhou, Jiangsu 225000 China
| | - Shuai Sun
- grid.411971.b0000 0000 9558 1426Dalian Medical University, Dalian, 111600 Liaoning China
| | - Qiuyi Xie
- grid.268415.cMedical College of Yangzhou University, Yangzhou, Jiangsu 225000 China
| | - Jie Yao
- grid.452743.30000 0004 1788 4869Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, 225001 Jiangsu China
| | - Xiaodong Wang
- grid.452743.30000 0004 1788 4869Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, 225001 Jiangsu China
| | - Jianjun Qian
- grid.452743.30000 0004 1788 4869Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, 225001 Jiangsu China
| | - Zhennan Li
- grid.452743.30000 0004 1788 4869Department of Hepatobiliary and Pancreatic Surgery, Northern Jiangsu People’s Hospital, Yangzhou, 225001 Jiangsu China
| |
Collapse
|
12
|
Wohlrab H, Signoretti S, Rameh LE, DeConti DK, Hansen SH. Mitochondrial transporter expression patterns distinguish tumor from normal tissue and identify cancer subtypes with different survival and metabolism. Sci Rep 2022; 12:17035. [PMID: 36220979 PMCID: PMC9553943 DOI: 10.1038/s41598-022-21411-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/27/2022] [Indexed: 12/29/2022] Open
Abstract
Transporters of the inner mitochondrial membrane are essential to metabolism. We demonstrate that metabolism as represented by expression of genes encoding SLC25 transporters differentiates human cancers. Tumor to normal tissue expression ratios for clear cell renal cell carcinoma, colon adenocarcinoma, lung adenocarcinoma and breast invasive carcinoma were found to be highly significant. Affinity propagation trained on SLC25 gene expression patterns from 19 human cancer types (6825 TCGA samples) and normal tissues (2322 GTEx samples) was used to generate clusters. They differentiate cancers from normal tissues. They also indicate cancer subtypes with survivals distinct from the total patient population of the cancer type. Probing the kidney, colon, lung, and breast cancer clusters, subtype pairs of cancers were identified with distinct prognoses and differing in expression of protein coding genes from among 2080 metabolic enzymes assayed. We demonstrate that SLC25 expression clusters facilitate the identification of the tissue-of-origin, essential to efficacy of most cancer therapies, of CUPs (cancer-unknown-primary) known to have poor prognoses. Different cancer types within a single cluster have similar metabolic patterns and this raises the possibility that such cancers may respond similarly to existing and new anti-cancer therapies.
Collapse
Affiliation(s)
- Hartmut Wohlrab
- grid.38142.3c000000041936754XDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115 USA ,grid.2515.30000 0004 0378 8438GI Cell Biology Research Laboratory, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115 USA
| | - Sabina Signoretti
- grid.62560.370000 0004 0378 8294Department of Pathology, Brigham and Women’s Hospital, 75 Francis Street, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, USA
| | - Lucia E. Rameh
- grid.152326.10000 0001 2264 7217Department of Biochemistry, School of Medicine, Vanderbilt University, 2209 Garland Ave, Nashville, TN 37240 USA
| | - Derrick K. DeConti
- grid.38142.3c000000041936754XQuantitative Biomedical Research Center, Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA 02115 USA
| | - Steen H. Hansen
- grid.2515.30000 0004 0378 8438GI Cell Biology Research Laboratory, Boston Children’s Hospital, 300 Longwood Ave, Boston, MA 02115 USA ,grid.38142.3c000000041936754XHarvard Medical School, Boston, USA
| |
Collapse
|
13
|
Pasquadibisceglie A, Polticelli F. Structural determinants of ligands recognition by the human mitochondrial basic amino acids transporter SLC25A29. Insights from molecular dynamics simulations of the c-state. Comput Struct Biotechnol J 2021; 19:5600-5612. [PMID: 34849194 PMCID: PMC8598871 DOI: 10.1016/j.csbj.2021.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 11/26/2022] Open
Abstract
In mitochondria, metabolic processes require the trafficking of solutes and organic molecules, such as amino acids. This task is accomplished by the Mitochondrial Carrier Family members (also known as SLC25), among which the SLC25A29 is responsible for the translocation of basic amino acids. In this regard, nitric oxide levels originated by the arginine mitochondrial catabolism have been shown to strongly affect cancer cells' metabolic status. Furthermore, the metabolic disease saccharopinuria has been linked to a mitochondrial dysregulation caused by a toxic intermediate of the lysine catabolism. In both cases, a reduction of the activity of SLC25A29 has been shown to ameliorate these pathological conditions. However, no detailed structural data are available on SLC25A29. In the present work, molecular modelling, docking and dynamics simulations have been employed to analyse the structural determinants of ligands recognition by SLC25A29 in the c-state. Results confirm and reinforce earlier predictions that Asn73, Arg160 and Glu161, and Arg257 represent the ligand contact points I, II, and III, respectively, and that Arg160, Trp204 and Arg257 form a stable interaction, likely critical for ligand binding and translocation. These results are discussed in view of the experimental data available for SLC25A29 and other homologous carriers of the same family.
Collapse
Affiliation(s)
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, 00146 Rome, Italy.,National Institute of Nuclear Physics, Roma Tre Section, 00146 Rome, Italy
| |
Collapse
|
14
|
Learning from Yeast about Mitochondrial Carriers. Microorganisms 2021; 9:microorganisms9102044. [PMID: 34683364 PMCID: PMC8539049 DOI: 10.3390/microorganisms9102044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/14/2021] [Accepted: 09/23/2021] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are organelles that play an important role in both energetic and synthetic metabolism of eukaryotic cells. The flow of metabolites between the cytosol and mitochondrial matrix is controlled by a set of highly selective carrier proteins localised in the inner mitochondrial membrane. As defects in the transport of these molecules may affect cell metabolism, mutations in genes encoding for mitochondrial carriers are involved in numerous human diseases. Yeast Saccharomyces cerevisiae is a traditional model organism with unprecedented impact on our understanding of many fundamental processes in eukaryotic cells. As such, the yeast is also exceptionally well suited for investigation of mitochondrial carriers. This article reviews the advantages of using yeast to study mitochondrial carriers with the focus on addressing the involvement of these carriers in human diseases.
Collapse
|
15
|
Hewton KG, Johal AS, Parker SJ. Transporters at the Interface between Cytosolic and Mitochondrial Amino Acid Metabolism. Metabolites 2021; 11:metabo11020112. [PMID: 33669382 PMCID: PMC7920303 DOI: 10.3390/metabo11020112] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are central organelles that coordinate a vast array of metabolic and biologic functions important for cellular health. Amino acids are intricately linked to the bioenergetic, biosynthetic, and homeostatic function of the mitochondrion and require specific transporters to facilitate their import, export, and exchange across the inner mitochondrial membrane. Here we review key cellular metabolic outputs of eukaryotic mitochondrial amino acid metabolism and discuss both known and unknown transporters involved. Furthermore, we discuss how utilization of compartmentalized amino acid metabolism functions in disease and physiological contexts. We examine how improved methods to study mitochondrial metabolism, define organelle metabolite composition, and visualize cellular gradients allow for a more comprehensive understanding of how transporters facilitate compartmentalized metabolism.
Collapse
Affiliation(s)
- Keeley G. Hewton
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Amritpal S. Johal
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
| | - Seth J. Parker
- Department of Biochemistry & Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; (K.G.H.); (A.S.J.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V6H 0B3, Canada
- Correspondence: ; Tel.: +1-604-875-3121
| |
Collapse
|
16
|
Direct Antiviral Treatments for Hepatitis C Virus Have Off-Target Effects of Oncologic Relevance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12092674. [PMID: 32961688 PMCID: PMC7565876 DOI: 10.3390/cancers12092674] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Hepatitis C virus (HCV) eradication by direct-acting antiviral agents (DAAs) reduces de novo hepatocellular carcinoma incidence in cirrhosis; however, contrasting evidence on higher incidence of hepatocellular carcinoma (HCC) was reported in patients previously treated for HCC. Here, we showed that sofosbuvir and daclatasvir can modulate cell proliferation, invasion capability and gene expression in HCC-derived cell lines, suggesting that off-target effects of these drugs might be responsible for both the increase and reduction of cell proliferation and migration capability. Off-target gene modulation, mainly affecting mitochondrial functions, ribosomal genes and histones, was consistent with matched phenotypic changes and might account either for pro-oncogenic or tumor-suppressive functions of DAAs, that seemed to be dictated by the molecular background. Abstract Background and Aims: HCV eradication by direct-acting antiviral agents (DAAs) reduces de novo hepatocellular carcinoma (HCC) incidence in cirrhosis; however, contrasting evidence about beneficial or detrimental effects still exists in patients who have already developed HCC. Methods: we investigated whether sofosbuvir and daclatasvir modulate cell proliferation, invasion capability and gene expression (RNA-seq) in HCC-derived cell lines, hypothesizing possible off-target effects of these drugs. Results observed in HCC cell lines were validated in non-HCC cancer-derived cell lines and a preliminary series of human HCC tissues by qPCR and IHC. Results: DAAs can affect HCC cell proliferation and migration capability by either increasing or reducing them, showing transcriptomic changes consistent with some unexpected drug-associated effects. Off-target gene modulation, mainly affecting ribosomal genes, mitochondrial functions and histones, points to epigenetics and proliferation as relevant events, consistent with matched phenotypic changes. A preliminary validation of in vitro findings was performed in a restricted cohort of HCC patients previously treated with DAAs, with immunohistochemical correlations suggesting DAA-treated HCCs to be more aggressive in terms of migration and epidermal-to-mesenchymal transition. Conclusions: Our findings suggested the possible occurrence of off-target effects ultimately modulating cell proliferation and/or migration and potentially justified previous findings showing some instances of particularly aggressive HCC recurrence as well as reduced incidence of recurrence of HCC following treatment with DAAs.
Collapse
|
17
|
López-Sánchez LM, Aranda E, Rodríguez-Ariza A. Nitric oxide and tumor metabolic reprogramming. Biochem Pharmacol 2019; 176:113769. [PMID: 31862448 DOI: 10.1016/j.bcp.2019.113769] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
Nitric oxide (NO) has been highlighted as an important agent in tumor processes. However, a complete understanding of the mechanisms by which this simple diatomic molecule contributes in tumorigenesis is lacking. Evidence is rapidly accumulating that metabolic reprogramming is a major new aspect of NO biology and this review is aimed to summarize recent research progress on this novel feature that expands the complex and multifaceted role of NO in cancer. Therefore, we discuss how NO may influence glucose and glutamine utilization by tumor cells, and its participation in the regulation of mitochondrial function and dynamics, that is an important mechanism through which cancer cells reprogram their metabolism to meet the biosynthetic needs of rapid proliferation. Finally, we also discuss the NO-related metabolic rewiring involved in the modification of the tumor microenvironment to support cancer invasion and the escape from immune system-mediated recognition. Protein S-nitrosylation appears as a common mechanism by which NO signaling reprograms metabolism. Hence, future research is needed on dysregulated S-nitrosylation/denitrosylation in cancer to comprehend the NO-induced metabolic changes in tumor cells and the role of NO in the metabolic crosstalk within tumor microenvironment.
Collapse
Affiliation(s)
- Laura M López-Sánchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain
| | - Enrique Aranda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain
| | - Antonio Rodríguez-Ariza
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Av. Menéndez Pidal s/n, E14004 Córdoba, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Av. Monforte de Lemos, 3-5, E 28029 Madrid, Spain; Unidad de Gestión Clínica de Oncología Médica, Hospital Reina Sofía, Universidad de Córdoba, Av. Menéndez Pidal s/n, E14004 Córdoba, Spain.
| |
Collapse
|
18
|
Proteomic alteration of porcine intestinal epithelial cells after pretreatment with Lactobacillus plantarum followed by infection with enterotoxigenic Escherichia coli F4. Vet Immunol Immunopathol 2019; 222:109943. [PMID: 32146421 DOI: 10.1016/j.vetimm.2019.109943] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/16/2022]
Abstract
Enterotoxigenic Escherichia coli (ETEC) F4 causes diarrhea in infants and weaned piglets. The technique of isobaric tags for relative and absolute quantitation (iTRAQ) was used in this study to determine the differentially expressed proteins in porcine intestinal epithelial cells (IPEC-J2) after pretreatment with Lactobacillus plantarum (LP) followed by challenge with ETEC F4. A total of 4771 proteins were identified in IPEC-J2 cells, with 90, 105, and 134 differentially expressed proteins in cells exposed to ETEC, LP, and LP + ETEC, respectively. The COG analysis divided the identified proteins into 20 categories. The GO and KEGG annotation indicated that most of the differentially expressed proteins were enriched in various biological metabolism including cell cycle control, cell division and differentiation. Additionally, western blotting analyses confirmed the reduced abundance of selected proteins of the mTOR and MAPK signal pathways affected by ETEC F4. Moreover, LP pretreatment increased JNK activation in IPEC-J2 cells infected with ETEC F4. These results may provide further insights into the mechanisms involved in the interaction between ETEC F4 and intestinal epithelial cells, and broaden the understanding of the protective effects of LP in alleviating ETEC-provoked diarrhea of piglets.
Collapse
|
19
|
Abstract
Cancer cells reprogramme metabolism to maximize the use of nitrogen and carbon for the anabolic synthesis of macromolecules that are required during tumour proliferation and growth. To achieve this aim, one strategy is to reduce catabolism and nitrogen disposal. The urea cycle (UC) in the liver is the main metabolic pathway to convert excess nitrogen into disposable urea. Outside the liver, UC enzymes are differentially expressed, enabling the use of nitrogen for the synthesis of UC intermediates that are required to accommodate cellular needs. Interestingly, the expression of UC enzymes is altered in cancer, revealing a revolutionary mechanism to maximize nitrogen incorporation into biomass. In this Review, we discuss the metabolic benefits underlying UC deregulation in cancer and the relevance of these alterations for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Peter Szlosarek
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, UK
- Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country, Bilbao, Spain
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
20
|
Keshet R, Erez A. Arginine and the metabolic regulation of nitric oxide synthesis in cancer. Dis Model Mech 2018; 11:11/8/dmm033332. [PMID: 30082427 PMCID: PMC6124554 DOI: 10.1242/dmm.033332] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Nitric oxide (NO) is a signaling molecule that plays important roles in diverse biological processes and thus its dysregulation is involved in the pathogenesis of various disorders. In cancer, NO has broad and sometimes dichotomous roles; it is involved in cancer initiation and progression, but also restricts cancer proliferation and invasion, and contributes to the anti-tumor immune response. The importance of NO in a range of cellular processes is exemplified by its tight spatial and dosage control at multiple levels, including via its transcriptional, post-translational and metabolic regulation. In this Review, we focus on the regulation of NO via the synthesis and availability of its precursor, arginine, and discuss the implications of this metabolic regulation for cancer biology and therapy. Despite the established contribution of NO to cancer pathogenesis, the implementation of NO-related cancer therapeutics remains limited, likely due to the challenge of targeting and inducing its protective functions in a cell- and dosage-specific manner. A better understanding of how arginine regulates the production of NO in cancer might thus support the development of anti-cancer drugs that target this key metabolic pathway, and other metabolic pathways involved in NO production.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|