1
|
Zhou C, Zhao L, Zhou M, Wu C, Liu G, Long J, Shi Y, Liu C. GANT61 surmounts drug resistance of ADR by upregulating lysosome activities and reducing BCL2 expression in HL-60/ADR cells. Cancer Cell Int 2024; 24:430. [PMID: 39726048 DOI: 10.1186/s12935-024-03626-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Drug resistance remains a significant obstacle to Acute myeloid leukemia (AML) successful treatment, often leading to therapeutic failure. Our previous studies demonstrated that Glioma-associated oncogene-1 (GLI1) reduces chemotherapy sensitivity and promotes cell proliferation in AML cells. GANT61, an inhibitor of GLI1, emerges as a promising candidate in AML treatment. This study aims to explore the effects of the combination of GANT61 and Adriamycin (ADR) on AML cells resistance and elucidate the mechanisms through which GANT61 may potentiate the sensitivity of AML cells to ADR. METHODS AML cell lines and AML primary cells were studied to evaluate effects and mechanisms of GANT61. Flow cytometry assays were used to verify apoptosis. Cell Counting Kit-8 (CCK-8) and EDU+ staining were used to observe changes in cell viability and the cytotoxic effect to different drugs. The transcriptomic profiles of HL-60/ADR cells with or without GANT61 treatment were compared via RNA-Seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses and Gene Set Enrichment Analysis (GSEA) were performed for differentially expressed genes (DEGs) to reveal the underlying mechanisms of GANT61 in AML cells. GLI1, BCL2, Bax protein and mRNA expression levels were assessed by Western blot and Real-time polymerase chain reaction (RT-PCR). RESULTS Our studies found that the combination of GANT61 and ADR synergistically inhibits proliferation while enhancing apoptosis in HL-60/ADR cells, and does not significantly exacerbate myelosuppression. Mechanistically, GSEA revealed enrichment of the gene set associated with the KEGG term "Apoptosis" and "Lysosome" in GANT61 treated cells. Meanwhile, "Apoptosis" was identified as the third most relevant pathway enriched by lysosomal DEGs, and BCL2 expression showed a negative correlation with these lysosomal DEGs in AML patients. RT-PCR and Western blot analysis disclosed that GANT61 significantly restrained BCL2 expression in AML cells. Lastly, we proved that venetoclax, a BCL2 inhibitor, co-treatment with GANT61 improved ADR sensitivity in HL-60/ADR cells. CONCLUSIONS GANT61 effectively reversed ADR resistance in HL-60/ADR cells by upregulating lysosome activities and downgrading BCL2 expression, providing a new treatment strategy with acceptable toxicity for AML-resistant patients.
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Zhou
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Chao Wu
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Guanghua Liu
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Jiangwen Long
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Yuanxiang Shi
- Institute of Clinical Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Can Liu
- Department of Hematology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China.
| |
Collapse
|
2
|
van Spronsen MF, Van Gassen S, Duetz C, Westers TM, Saeys Y, van de Loosdrecht AA. Myelodysplastic neoplasms dissected into indolent, leukaemic and unfavourable subtypes by computational clustering of haematopoietic stem and progenitor cells. Leukemia 2024; 38:1365-1377. [PMID: 38459168 PMCID: PMC11147773 DOI: 10.1038/s41375-024-02203-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Myelodysplastic neoplasms (MDS) encompass haematological malignancies, which are characterised by dysplasia, ineffective haematopoiesis and the risk of progression towards acute myeloid leukaemia (AML). Myelodysplastic neoplasms are notorious for their heterogeneity: clinical outcomes range from a near-normal life expectancy to leukaemic transformation or premature death due to cytopenia. The Molecular International Prognostic Scoring System made progress in the dissection of MDS by clinical outcomes. To contribute to the risk stratification of MDS by immunophenotypic profiles, this study performed computational clustering of flow cytometry data of CD34+ cells in 67 MDS, 67 AML patients and 49 controls. Our data revealed heterogeneity also within the MDS-derived CD34+ compartment. In MDS, maintenance of lymphoid progenitors and megakaryocytic-erythroid progenitors predicted favourable outcomes, whereas expansion of granulocyte-monocyte progenitors increased the risk of leukaemic transformation. The proliferation of haematopoietic stem cells and common myeloid progenitors with downregulated CD44 expression, suggestive of impaired haematopoietic differentiation, characterised a distinct MDS subtype with a poor overall survival. This exploratory study demonstrates the prognostic value of known and previously unexplored CD34+ populations and suggests the feasibility of dissecting MDS into a more indolent, a leukaemic and another unfavourable subtype.
Collapse
Affiliation(s)
- Margot F van Spronsen
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Sofie Van Gassen
- VIB Inflammation Research Centre, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Carolien Duetz
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Theresia M Westers
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands
| | - Yvan Saeys
- VIB Inflammation Research Centre, Ghent University, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Arjan A van de Loosdrecht
- Department of Haematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Cancer Centre Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
3
|
Krenn PW, Aberger F. Targeting cancer hallmark vulnerabilities in hematologic malignancies by interfering with Hedgehog/GLI signaling. Blood 2023; 142:1945-1959. [PMID: 37595276 DOI: 10.1182/blood.2021014761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 08/20/2023] Open
Abstract
Understanding the genetic alterations, disrupted signaling pathways, and hijacked mechanisms in oncogene-transformed hematologic cells is critical for the development of effective and durable treatment strategies against liquid tumors. In this review, we focus on the specific involvement of the Hedgehog (HH)/GLI pathway in the manifestation and initiation of various cancer features in hematologic malignancies, including multiple myeloma, T- and B-cell lymphomas, and lymphoid and myeloid leukemias. By reviewing canonical and noncanonical, Smoothened-independent HH/GLI signaling and summarizing preclinical in vitro and in vivo studies in hematologic malignancies, we elucidate common molecular mechanisms by which HH/GLI signaling controls key oncogenic processes and cancer hallmarks such as cell proliferation, cancer stem cell fate, genomic instability, microenvironment remodeling, and cell survival. We also summarize current clinical trials with HH inhibitors and discuss successes and challenges, as well as opportunities for future combined therapeutic approaches. By providing a bird's eye view of the role of HH/GLI signaling in liquid tumors, we suggest that a comprehensive understanding of the general oncogenic effects of HH/GLI signaling on the formation of cancer hallmarks is essential to identify critical vulnerabilities within tumor cells and their supporting remodeled microenvironment, paving the way for the development of novel and efficient personalized combination therapies for hematologic malignancies.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris Lodron University of Salzburg, Salzburg, Austria
| |
Collapse
|
4
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
El Zaiat RS, Nabil R, Khalifa KA, El Feshawy AA. High GLI-1 Expression is a Reliable Indicator of Bad Prognosis in Newly Diagnosed Acute Leukemia Patients. Indian J Hematol Blood Transfus 2023; 39:376-382. [PMID: 37304485 PMCID: PMC10247660 DOI: 10.1007/s12288-022-01609-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/14/2022] [Indexed: 01/05/2023] Open
Abstract
PURPOSE To explore the expression and prognostic significance of Hedgehog signaling transcription factor GLI-1 in newly diagnosed acute myeloid leukemia (AML) patients. METHODS Clinical specimens were obtained from 46 recently diagnosed AML patients. Real-time qPCR was used to measure the GLI-1 mRNA expression in bone marrow mononuclear cells.Also, the relationship between GLI-1 mRNA levels and clinical variables and prognostic variables was assessed. RESULTS GLI-1 was overexpressed in the bone marrow samples of our patients. GLI-1mRNA expression did not differ significantly across different age groups, between both sexes, or between different FAB subtypes (P = 0.882, P = 0.246, and P = 0.890, respectively). GLI-1 expression varied significantly in different risk categories, with the greatest levels observed in 11 patients with poor risk (24.6 versus 22.7) compared to intermediate risk (5.2 versus 3.9; P = 0.006) and favorable risk (4.2 versus 3; P = 0.001). Comparing patients with the wild FLT3 allele to those with the mutant one, GLI-1 gene levels were considerably greater in those with the mutant allele of FLT3.Following induction chemotherapy, the levels of GLI-1 mRNA were significantly higher in 22 patients who did not experience complete remission (CR) diagnosed with de novo non-acute promyelocytic leukemia (APL) compared to 17 patients who did (P = 0.017). Significantly greater levels of expression were observed in each category of the patients with favorable risk; wild FLT3 allele (P = 0.033) and CR failure P = 0.005). CONCLUSION GLI-1 overexpression is a risk factor for poor prognosis and could be a novel therapeutic target for AML.
Collapse
Affiliation(s)
- Reham S. El Zaiat
- Faculty of Medicine, Clinical Pathology Department, Menoufia University, Shebein El kom, Egypt
| | - Reem Nabil
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Khaled A. Khalifa
- Faculty of Medicine, Clinical Pathology Department, Menoufia University, Shebein El kom, Egypt
| | - Aliaa A. El Feshawy
- Faculty of Medicine, Clinical Pathology Department, Menoufia University, Shebein El kom, Egypt
| |
Collapse
|
6
|
Li J, Kalev‐Zylinska ML. Advances in molecular characterization of pediatric acute megakaryoblastic leukemia not associated with Down syndrome; impact on therapy development. Front Cell Dev Biol 2023; 11:1170622. [PMID: 37325571 PMCID: PMC10267407 DOI: 10.3389/fcell.2023.1170622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Acute megakaryoblastic leukemia (AMKL) is a rare subtype of acute myeloid leukemia (AML) in which leukemic blasts have megakaryocytic features. AMKL makes up 4%-15% of newly diagnosed pediatric AML, typically affecting young children (less than 2 years old). AMKL associated with Down syndrome (DS) shows GATA1 mutations and has a favorable prognosis. In contrast, AMKL in children without DS is often associated with recurrent and mutually exclusive chimeric fusion genes and has an unfavorable prognosis. This review mainly summarizes the unique features of pediatric non-DS AMKL and highlights the development of novel therapies for high-risk patients. Due to the rarity of pediatric AMKL, large-scale multi-center studies are needed to progress molecular characterization of this disease. Better disease models are also required to test leukemogenic mechanisms and emerging therapies.
Collapse
Affiliation(s)
- Jixia Li
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
| | - Maggie L. Kalev‐Zylinska
- Blood and Cancer Biology Laboratory, Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
- Haematology Laboratory, Department of Pathology and Laboratory Medicine, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
7
|
Wu H, Zhang L, Chen B, Ou B, Xu J, Tian N, Yang D, Ai Y, Chen Q, Quan D, Zhang T, Lv L, Tian Y, Zhang J, Wu S. B13, a well-tolerated inhibitor of hedgehog pathway, exhibited potent anti-tumor effects against colorectal carcinoma in vitro and in vivo. Bioorg Chem 2023; 135:106488. [PMID: 36989734 DOI: 10.1016/j.bioorg.2023.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/02/2023] [Accepted: 03/18/2023] [Indexed: 03/29/2023]
Abstract
Abnormal activation of Hedgehog (Hh) signaling pathway mediates the genesis and progression of various tumors [1]. Currently, three drugs targeting the Hh signaling component Smoothened (Smo) have been marketed for the clinical treatment of basal cell tumors or acute myeloid leukemia. However, drug resistance is a common problem in those drugs, so the study of Smo inhibitors that can overcome drug resistance has important guiding significance for clinical adjuvant drugs. MTT assay, clone formation assay and EdU assay were used to detect the proliferation inhibitory activity of the drugs on tumor cells. The effect of B13 on cell cycle and apoptosis were detected by flow cytometry. An acute toxicity test was used to detect the toxicity of B13 in vivo, and xenograft tumor model was used to detect the efficacy of B13 in vivo. The binding of B13 to Smo was studied by BODIPY-cyclopamine competitive binding assay and molecular docking. The effect of B13 on the expression and localization of downstream target gene Gli1/2 of Smo was investigated by Western Blot and immunofluorescence assay. SmoD473H mutant cell line was constructed to study the effect of B13 against drug resistance. (1) B13 had the strongest inhibitory activity against colorectal cancer cells. (2) B13 can effectively inhibit the clone formation and EdU positive rate of colon cancer cells. (3) B13 can block the cell cycle in the G2/M phase and cell apoptosis. (4) B13 has low toxicity in vivo, and its efficacy in vivo is better than that of the Vismodegib. (5) Molecular docking and BODIPY-cyclopamine experiments showed that B13 could bind to Smo protein. (6) B13 can inhibit the protein expression of Gli1, the downstream of Smo, and inhibit its entry into the nucleus. (7) B13 could inhibit the expression of Gli1 in the HEK293 cells with SmoD473H, and the molecular docking results showed that B13 could bind SmoD473H protein. B13 with the best anti-tumor activity was screened out by MTT assay. In vitro, pharmacodynamics experiments showed that B13 could effectively inhibit the proliferation and metastasis of colorectal cancer cells, induce cell cycle arrest, and induce cell apoptosis. In vivo pharmacodynamics experiments showed that B13 was superior to Vismodegib in antitumor activity and had low toxicity in vivo. Mechanism studies have shown that B13 can bind Smo protein, inhibit the expression of downstream Gli1 and its entry into the nucleus. Notably, B13 overcomes resistance caused by SmoD473H mutations.
Collapse
|
8
|
Understanding the Roles of the Hedgehog Signaling Pathway during T-Cell Lymphopoiesis and in T-Cell Acute Lymphoblastic Leukemia (T-ALL). Int J Mol Sci 2023; 24:ijms24032962. [PMID: 36769284 PMCID: PMC9917970 DOI: 10.3390/ijms24032962] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The Hedgehog (HH) signaling network is one of the main regulators of invertebrate and vertebrate embryonic development. Along with other networks, such as NOTCH and WNT, HH signaling specifies both the early patterning and the polarity events as well as the subsequent organ formation via the temporal and spatial regulation of cell proliferation and differentiation. However, aberrant activation of HH signaling has been identified in a broad range of malignant disorders, where it positively influences proliferation, survival, and therapeutic resistance of neoplastic cells. Inhibitors targeting the HH pathway have been tested in preclinical cancer models. The HH pathway is also overactive in other blood malignancies, including T-cell acute lymphoblastic leukemia (T-ALL). This review is intended to summarize our knowledge of the biological roles and pathophysiology of the HH pathway during normal T-cell lymphopoiesis and in T-ALL. In addition, we will discuss potential therapeutic strategies that might expand the clinical usefulness of drugs targeting the HH pathway in T-ALL.
Collapse
|
9
|
Comprehensive transcriptome analysis of sika deer antler using PacBio and Illumina sequencing. Sci Rep 2022; 12:16161. [PMID: 36171236 PMCID: PMC9519574 DOI: 10.1038/s41598-022-20244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Antler is the fastest growing and ossifying tissue in animals and it is a valuable model for cartilage/bone development. To understand the molecular mechanisms of chondrogenesis and osteogenesis of antlers, the PacBio Sequel II and Illumina sequencing technology were combined and used to investigate the mRNA expression profiles in antler tip, middle, and base at six different developmental stages, i.e., at 15th, 25th, 45th, 65th, 100th and 130th growth days. Consequently, we identified 24,856 genes (FPKM > 0.1), including 8778 novel genes. Besides, principal component analysis (PCA) revealed a significant separation between the growth stage (25th, 45th and 65th days) and ossification stage (100th and 130th days). COL2A1 gene was significantly abundant in the growth stage, whereas S100A7, S100A12, S100A8, and WFDC18 genes were abundant at the ossification stage. Subsequently screened to 14,765 significantly differentially expressed genes (DEGs), WGCNA and GO functional enrichment analyses revealed that genes related to cell division and chondrocyte differentiation were up-regulated, whereas those with steroid hormone-mediated signaling pathways were down-regulated at ossification stages. Additionally, 25 tumor suppressor genes and 11 oncogenes were identified and were predicted to interact with p53. Co-regulation of tumor suppressor genes and oncogenes is responsible for the special growth pattern of antlers. Together, we constructed the most complete sika deer antler transcriptome database so far. The database provides data support for subsequent studies on the molecular mechanism of sika deer antler chondrogenesis and osteogenesis.
Collapse
|
10
|
Lemos T, Merchant A. The hedgehog pathway in hematopoiesis and hematological malignancy. Front Oncol 2022; 12:960943. [PMID: 36091167 PMCID: PMC9453489 DOI: 10.3389/fonc.2022.960943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Hedgehog (HH) pathway is a promising therapeutic target in hematological malignancies. Activation of the pathway has been tied to greater chances of relapse and poorer outcomes in several hematological malignancies and inhibiting the pathway has improved outcomes in several clinical trials. One inhibitor targeting the pathway via the protein Smoothened (SMO), glasdegib, has been approved by the FDA for use with a low dose cytarabine regiment in some high-risk acute myeloid leukemia patients (AML). If further clinical trials in glasdegib produce positive results, there may soon be more general use of HH inhibitors in the treatment of hematological malignancies.While there is clinical evidence that HH inhibitors may improve outcomes and help prevent relapse, a full understanding of any mechanism of action remains elusive. The bulk of AML cells exhibit primary resistance to SMO inhibition (SMOi), leading some to hypothesize that that clinical activity of SMOi is mediated through modulation of self-renewal and chemoresistance in rare cancer stem cells (CSC). Direct evidence that CSC are being targeted in patients by SMOi has proven difficult to produce, and here we present data to support the alternative hypothesis that suggests the clinical benefit observed with SMOi is being mediated through stromal cells in the tumor microenvironment.This paper's aims are to review the history of the HH pathway in hematopoiesis and hematological malignancy, to highlight the pre-clinical and clinical evidence for its use a therapeutic target, and to explore the evidence for stromal activation of the pathway acting to protect CSCs and enable self-renewal of AML and other diseases. Finally, we highlight gaps in the current data and present hypotheses for new research directions.
Collapse
Affiliation(s)
| | - Akil Merchant
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
11
|
Canonical Hedgehog Pathway and Noncanonical GLI Transcription Factor Activation in Cancer. Cells 2022; 11:cells11162523. [PMID: 36010600 PMCID: PMC9406872 DOI: 10.3390/cells11162523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 01/12/2023] Open
Abstract
The Hedgehog signaling pathway is one of the fundamental pathways required for development and regulation of postnatal regeneration in a variety of tissues. The pathway has also been associated with cancers since the identification of a mutation in one of its components, PTCH, as the cause of Basal Cell Nevus Syndrome, which is associated with several cancers. Our understanding of the pathway in tumorigenesis has expanded greatly since that initial discovery over two decades ago. The pathway has tumor-suppressive and oncogenic functions depending on the context of the cancer. Furthermore, noncanonical activation of GLI transcription factors has been reported in a number of tumor types. Here, we review the roles of canonical Hedgehog signaling pathway and noncanonical GLI activation in cancers, particularly epithelial cancers, and discuss an emerging concept of the distinct outcomes that these modes have on cancer initiation and progression.
Collapse
|
12
|
Falduto GH, Pfeiffer A, Zhang Q, Yin Y, Metcalfe DD, Olivera A. A Critical Function for the Transcription Factors GLI1 and GLI2 in the Proliferation and Survival of Human Mast Cells. Front Immunol 2022; 13:841045. [PMID: 35251038 PMCID: PMC8888842 DOI: 10.3389/fimmu.2022.841045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Mast cell hyperactivity and accumulation in tissues are associated with allergy and other mast cell-related disorders. However, the molecular pathways regulating mast cell survival in homeostasis and disease are not completely understood. As glioma-associated oncogene (GLI) proteins are involved in both tissue homeostasis and in the hematopoietic system by regulating cell fate decisions, we sought to investigate the role for GLI proteins in the control of proliferation and survival of human mast cells. GLI1 transcripts were present in primary human mast cells and mast cell lines harboring or not activating mutations in the tyrosine kinase receptor KIT (HMC-1.1 and HMC-1.2, and LAD2 cells, respectively), while GLI2 transcripts were only present in HMC-1.1 and HMC-1.2 cells, suggesting a role for oncogenic KIT signaling in the regulation of GLI2. Reduction in GLI activity by small molecule inhibitors, or by shRNA-mediated knockdown of GLI1 or GLI2, led to increases in apoptotic cell death in both cultured human and murine mast cells, and reduced the number of peritoneal mast cells in mice. Although GLI proteins are typically activated via the hedgehog pathway, steady-state activation of GLI in mast cells occurred primarily via non-canonical pathways. Apoptosis induced by GLI silencing was associated with a downregulation in the expression of KIT and of genes that influence p53 stability and function including USP48, which promotes p53 degradation; and iASPP, which inhibits p53-induced transcription, thus leading to the induction of p53-regulated apoptotic genes. Furthermore, we found that GLI silencing inhibited the proliferation of neoplastic mast cell lines, an effect that was more pronounced in rapidly growing cells. Our findings support the conclusion that GLI1/2 transcription factors are critical regulators of mast cell survival and that their inhibition leads to a significant reduction in the number of mast cells in vitro and in vivo, even in cells with constitutively active KIT variants. This knowledge can potentially be applicable to reducing mast cell burden in mast cell-related diseases.
Collapse
Affiliation(s)
- Guido Hernan Falduto
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Annika Pfeiffer
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Qunshu Zhang
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yuzhi Yin
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dean Darrel Metcalfe
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Ana Olivera
- Mast Cell Biology Section, Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
13
|
Hashem Boroojerdi M, Hosseinpour Sarmadi V, Maqbool M, Ling KH, Safarzadeh Kozani P, Safarzadeh Kozani P, Ramasamy R. Directional capacity of human mesenchymal stem cells to support hematopoietic stem cell proliferation in vitro. Gene 2022; 820:146218. [PMID: 35134469 DOI: 10.1016/j.gene.2022.146218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Hematopoietic stem cells (HSCs) reside in a specialised microenvironment in the bone marrow, which is majorly composed of mesenchymal stem cells (MSCs) and its' derivatives. This study aimed to investigate the regulatory role of MSCs to decipher the cellular and humoral communications on HSCs' proliferation, self-renewal, and differentiation at the transcriptomic level. MATERIALS AND METHODS Microarray assay was employed to analyse the gene expression profile of HSCs that imparted by MSCs during co-culture. RESULTS The proliferation of human umbilical cord blood-derived HSCs (hUC-HSCs) markedly propagated when MSCs were used as the feeder layer, without disturbing the undifferentiated state of HSCs, and reduced the cell death of HSCs. Upon co-culture with MSCs, the global microarray analysis of HSCs disclosed 712 differentially expressed genes (DEGs) (561 up-regulated and 151 down-regulated). The dysregulations of various transcripts were enriched for cellular functions such as cell cycle (including CCND1), apoptosis (including TNF), and genes related to signalling pathways governing self-renewal, as well as WNT5A from the Wnt signalling pathway, MAPK, Hedgehog, FGF2 from FGF, Jak-STAT, and PITX2 from the TGF-β signalling pathway. To concur this, real-time quantitative PCR (RT-qPCR) was utilised for corroborating the microarray results from five of the most dysregulated genes. CONCLUSION This study elucidates the underlying mechanisms of the mitogenic influences of MSCs on the propagation of HSCs. The exploitation of such mechanisms provides a potential means for achieving larger quantities of HSCs in vitro, thus obviating the need for manipulating their differentiation potential for clinical application.
Collapse
Affiliation(s)
- Mohadese Hashem Boroojerdi
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Vahid Hosseinpour Sarmadi
- Institute of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Science, Tehran, Iran
| | - Maryam Maqbool
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Rajesh Ramasamy
- Stem Cell & Immunity Research Group, Immunology Laboratory, Department of Pathology, Faculty of Medicine and Health Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Dental Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya 60132, Indonesia.
| |
Collapse
|
14
|
Shimada IS, Kato Y. Ciliary signaling in stem cells in health and disease: Hedgehog pathway and beyond. Semin Cell Dev Biol 2022; 129:115-125. [PMID: 35466055 DOI: 10.1016/j.semcdb.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The primary cilium is a hair-like sensory compartment that protrudes from the cellular surface. The primary cilium is enriched in a variety of signaling molecules that regulate cellular activities. Stem cells have primary cilia. They reside in a specialized environment, called the stem cell niche. This niche contains a variety of secreted factors, and some of their receptors are localized in the primary cilia of stem cells. Here, we summarize the current understanding of the function of cilia in compartmentalized signaling in stem cells. We describe how ciliary signaling regulates stem cells and progenitor cells during development, tissue homeostasis and tumorigenesis. We summarize our understanding of cilia regulated signaling -primary involving the hedgehog pathway- in stem cells in diverse settings that include neuroepithelial cells, radial glia, cerebellar granule neuron precursors, hematopoietic stem cells, hair follicle stem cells, bone marrow mesenchymal stem cells and mammary gland stem cells. Overall, our review highlights a variety of roles that ciliary signaling plays in regulating stem cells throughout life.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| | - Yoichi Kato
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| |
Collapse
|
15
|
Abraham A, Matsui W. Hedgehog Signaling in Myeloid Malignancies. Cancers (Basel) 2021; 13:cancers13194888. [PMID: 34638372 PMCID: PMC8507617 DOI: 10.3390/cancers13194888] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary The Hedgehog signaling pathway is aberrantly activated in many myeloid malignancies, and pathway inhibition is clinically beneficial in specific patients with acute myeloid leukemia. However, even with the approval of these agents, the role of Hedgehog signaling in other myeloid disorders is less clear. In this review, we summarize the laboratory studies that have examined Hedgehog signaling in normal and malignant hematopoiesis as well as the clinical studies that have been carried out in several myeloid leukemias. Finally, we explore potential strategies to further expand the use of pathway inhibitors as therapies for these diseases. Abstract Myeloid malignancies arise from normal hematopoiesis and include several individual disorders with a wide range of clinical manifestations, treatment options, and clinical outcomes. The Hedgehog (HH) signaling pathway is aberrantly activated in many of these diseases, and glasdegib, a Smoothened (SMO) antagonist and HH pathway inhibitor, has recently been approved for the treatment of acute myeloid leukemia (AML). The efficacy of SMO inhibitors in AML suggests that they may be broadly active, but clinical studies in other myeloid malignancies have been largely inconclusive. We will discuss the biological role of the HH pathway in normal hematopoiesis and myeloid malignancies and review clinical studies targeting HH signaling in these diseases. In addition, we will examine SMO-independent pathway activation and highlight potential strategies that may expand the clinical utility of HH pathway antagonists.
Collapse
|
16
|
Rodrigues ACBDC, Costa RGA, Silva SLR, Dias IRSB, Dias RB, Bezerra DP. Cell signaling pathways as molecular targets to eliminate AML stem cells. Crit Rev Oncol Hematol 2021; 160:103277. [PMID: 33716201 DOI: 10.1016/j.critrevonc.2021.103277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/25/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
Acute myeloid leukemia (AML) remains the most lethal of leukemias and a small population of cells called leukemic stem cells (LSCs) has been associated with disease relapses. Some cell signaling pathways play an important role in AML survival, proliferation and self-renewal properties and are abnormally activated or suppressed in LSCs. This includes the NF-κB, Wnt/β-catenin, Hedgehog, Notch, EGFR, JAK/STAT, PI3K/AKT/mTOR, TGF/SMAD and PPAR pathways. This review aimed to discuss these pathways as molecular targets for eliminating AML LSCs. Herein, inhibitors/activators of these pathways were summarized as a potential new anti-AML therapy capable of eliminating LSCs to guide future researches. The clinical use of cell signaling pathways data can be useful to enhance the anti-AML therapy.
Collapse
Affiliation(s)
| | - Rafaela G A Costa
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Suellen L R Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Ingrid R S B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Rosane B Dias
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil
| | - Daniel P Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, 40296-710, Brazil.
| |
Collapse
|
17
|
Zhou C, Du J, Zhao L, Liu W, Zhao T, Liang H, Fang P, Zhang K, Zeng H. GLI1 reduces drug sensitivity by regulating cell cycle through PI3K/AKT/GSK3/CDK pathway in acute myeloid leukemia. Cell Death Dis 2021; 12:231. [PMID: 33658491 PMCID: PMC7930050 DOI: 10.1038/s41419-021-03504-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 01/07/2023]
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy with high incidence and recurrence rates. Gene expression profiling has revealed that transcriptional overexpression of glioma-associated oncogene 1 (GLI1), a vital gene in the Hedgehog (Hh) signaling pathway, occurs in poor-prognosis AML, and high levels of phosphoinositide-3-kinase, regulatory subunit 1 (PIK3R1) and AKT3 predict shorter overall survival in AML patients. In this study, we discovered that GLI1 overexpression promotes cell proliferation and reduces chemotherapy sensitivity in AML cells while knocking down GLI1 has the opposite effect. Moreover, GLI1 promoted cell cycle progression and led to elevated protein levels of cyclins and cyclin-dependent kinases (CDKs) in AML cells. By luciferase assays and co-immunoprecipitation, we demonstrated that the PI3K/AKT pathway is directly activated by GLI1. GLI1 overexpression significantly accelerates tumor growth and upregulated p-AKT, CDK4, and cyclinD3 in vivo. Notably, the GLI1 inhibitor GANT61 and the CDK4/6 inhibitor PD 0332991 had synergistic effects in promoting Ara-c sensitivity in AML cell lines and patient samples. Collectively, our data demonstrate that GLI1 reduces drug sensitivity by regulating cell cycle through the PI3K/AKT/GSK3/CDK pathway, providing a new perspective for involving GLI1 and CDK4/6 inhibitors in relapsed/refractory (RR) patient treatment.
Collapse
MESH Headings
- Animals
- Antimetabolites, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Cell Cycle/drug effects
- Cell Proliferation/drug effects
- Cyclin-Dependent Kinases/antagonists & inhibitors
- Cyclin-Dependent Kinases/metabolism
- Cytarabine/pharmacology
- Drug Resistance, Neoplasm
- Female
- Gene Expression Regulation, Leukemic
- Glycogen Synthase Kinase 3/metabolism
- HEK293 Cells
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/enzymology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mice, Nude
- Phosphatidylinositol 3-Kinase/metabolism
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/metabolism
- Pyridines/pharmacology
- Pyrimidines/pharmacology
- Signal Transduction
- THP-1 Cells
- Tumor Burden/drug effects
- U937 Cells
- Xenograft Model Antitumor Assays
- Zinc Finger Protein GLI1/antagonists & inhibitors
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Mice
Collapse
Affiliation(s)
- Cheng Zhou
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Du
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Liang Zhao
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Peng Fang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Kaixuan Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510630, China.
| |
Collapse
|
18
|
Carter JL, Hege K, Yang J, Kalpage HA, Su Y, Edwards H, Hüttemann M, Taub JW, Ge Y. Targeting multiple signaling pathways: the new approach to acute myeloid leukemia therapy. Signal Transduct Target Ther 2020; 5:288. [PMID: 33335095 PMCID: PMC7746731 DOI: 10.1038/s41392-020-00361-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults and the second most common form of acute leukemia in children. Despite this, very little improvement in survival rates has been achieved over the past few decades. This is partially due to the heterogeneity of AML and the need for more targeted therapeutics than the traditional cytotoxic chemotherapies that have been a mainstay in therapy for the past 50 years. In the past 20 years, research has been diversifying the approach to treating AML by investigating molecular pathways uniquely relevant to AML cell proliferation and survival. Here we review the development of novel therapeutics in targeting apoptosis, receptor tyrosine kinase (RTK) signaling, hedgehog (HH) pathway, mitochondrial function, DNA repair, and c-Myc signaling. There has been an impressive effort into better understanding the diversity of AML cell characteristics and here we highlight important preclinical studies that have supported therapeutic development and continue to promote new ways to target AML cells. In addition, we describe clinical investigations that have led to FDA approval of new targeted AML therapies and ongoing clinical trials of novel therapies targeting AML survival pathways. We also describe the complexity of targeting leukemia stem cells (LSCs) as an approach to addressing relapse and remission in AML and targetable pathways that are unique to LSC survival. This comprehensive review details what we currently understand about the signaling pathways that support AML cell survival and the exceptional ways in which we disrupt them.
Collapse
Affiliation(s)
- Jenna L Carter
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA.,MD/PhD Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Katie Hege
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hasini A Kalpage
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yongwei Su
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.,National Engineering Laboratory for AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - Maik Hüttemann
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jeffrey W Taub
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA. .,Division of Pediatric Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, USA. .,Department of Pediatrics, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
19
|
Zhang Z, Hao C, Zhang R, Pei X, Li J, Wang L. A Gli inhibitor GANT61 suppresses cell proliferation, promotes cell apoptosis and induces G1/G0 cycle retardation with a dose- and time-dependent manner through inhibiting Notch pathway in multiple myeloma. Cell Cycle 2020; 19:2063-2073. [PMID: 32677544 DOI: 10.1080/15384101.2020.1792686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
PURPOSE This study aimed to explore the effect of GANT61 on regulating cell proliferation, cell apoptosis and cell cycle, and to investigate whether GANT61 would function in multiple myeloma (MM) via inhibiting Notch pathway. Methods: RPMI-8226 and U266 cells were treated by GANT61 (0, 2.5, 5.0, 10.0, 20.0, 30.0, 40.0, 50.0 μmol/L) for 18, 24 and 36 hours (h), and cell proliferation was detected by Cell Counting Kit 8. Then these cells were treated by GANT61 at 0, 2.5, 5.0, 10.0 μmol/L for 24 h or treated by 10.0 μmol/L GANT61 for 0, 18, 24 and 36 h, and cell apoptosis rate, apoptosis markers and cell cycle were detected by AV/PI, Western blot, and PI staining. Notch1, Jagged1, Jagged2 and Hes1 expressions were detected by qPCR and Western blot. Further rescue experiments were conducted by upregulating Notch1. Results: In RPMI-8226 and U266 cells, GANT61 inhibited cell proliferation, increased cell apoptosis rate and cell percentage of G1/G0 phase while decreased cell percentage of S phase in a dose- and time-dependent manner. Besides, GANT61 inhibited Notch1, Jagged1, Jagged2 and Hes1 expressions in a dose- and time-dependent manner as well. In rescue experiments, Notch1 upregulation attenuated the inhibition of cell proliferation, promotion of cell apoptosis, induction of G1/G0 cycle retardation and repression of Notch signaling pathway induced by GANT61 treatment in RPMI-8226 and U266 cells. Conclusions: GANT61 suppresses cell proliferation, promotes cell apoptosis and induces G1/G0 cycle retardation with a dose- and time-dependent manner through inhibiting Notch pathway in MM. ABBREVIATIONS MM: Multiple myeloma; Hh: Hedgehog; EMT: epithelial mesenchymal transition; AML: acute myeloid leukemia; GANT61: GLI antagonist; DMSO: dimethyl sulfoxide; CCK-8: Cell Counting Kit 8; C-Caspase 3: Cleaved Caspase 3; Bcl-2: B-cell lymphoma-2; RT-qPCR: real-time quantitative polymerase chain reaction; OD: optical density; PTCH1: Patched1.
Collapse
Affiliation(s)
- Zhihua Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College , Chengde, Hebei, China
| | - Changlai Hao
- Department of Hematology, The Affiliated Hospital of Chengde Medical College , Chengde, Hebei, China
| | - Rongjuan Zhang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College , Chengde, Hebei, China
| | - Xiaochuan Pei
- Department of Hematology, The Affiliated Hospital of Chengde Medical College , Chengde, Hebei, China
| | - Jundong Li
- Department of Hematology, The Affiliated Hospital of Chengde Medical College , Chengde, Hebei, China
| | - Lihong Wang
- Department of Hematology, The Affiliated Hospital of Chengde Medical College , Chengde, Hebei, China
| |
Collapse
|
20
|
Canaani J. Emerging Therapies for the Myelodysplastic Syndromes. Clin Hematol Int 2020; 2:13-17. [PMID: 34595438 PMCID: PMC8432342 DOI: 10.2991/chi.d.191202.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 11/27/2019] [Indexed: 01/11/2023] Open
Abstract
Despite considerable advances in our understanding of the molecular and epigenetic underpinnings of the myelodysplastic syndromes (MDS), this diverse group of myeloid neoplasms remains a significant clinical challenge. Considerable barriers to timely development of effective therapy include the diverse molecular landscape encountered in MDS patients, the difficulty in translating specific molecular aberration into a clinically meaningful animal model, as well as challenges in patient recruitment into clinical trials. These speak to the need to discover efficacious novel therapeutic targets which would in turn translate into improved patient outcomes in terms of both survival and quality of life. In this review, we outline recently published data pertaining to therapeutic advances in TGF-β pathway inhibition, STAT3, Hedgehog signaling, and additional therapeutic venues being actively explored in MDS.
Collapse
Affiliation(s)
- Jonathan Canaani
- Hematology Division, Chaim Sheba Medical Center, Tel Aviv University, Tel Hashomer, Israel
| |
Collapse
|
21
|
Peer E, Tesanovic S, Aberger F. Next-Generation Hedgehog/GLI Pathway Inhibitors for Cancer Therapy. Cancers (Basel) 2019; 11:cancers11040538. [PMID: 30991683 PMCID: PMC6520835 DOI: 10.3390/cancers11040538] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022] Open
Abstract
The Hedgehog/Glioma-associated oncogene homolog (HH/GLI) signaling pathway regulates self-renewal of rare and highly malignant cancer stem cells (CSC), which have been shown to account for the initiation and maintenance of tumor growth as well as for drug resistance, metastatic spread and relapse. Efficacious therapeutic approaches targeting CSC pathways, such as HH/GLI signaling in combination with chemo, radiation or immunotherapy are, therefore, of high medical need. Pharmacological inhibition of HH/GLI pathway activity represents a promising approach to eliminate malignant CSC. Clinically approved HH/GLI pathway inhibitors target the essential pathway effector Smoothened (SMO) with striking therapeutic efficacy in skin and brain cancer patients. However, multiple genetic and molecular mechanisms resulting in de novo and acquired resistance to SMO inhibitors pose major limitations to anti-HH/GLI therapies and, thus, the eradication of CSC. In this review, we summarize reasons for clinical failure of SMO inhibitors, including mechanisms caused by genetic alterations in HH pathway effectors or triggered by additional oncogenic signals activating GLI transcription factors in a noncanonical manner. We then discuss emerging novel and rationale-based approaches to overcome SMO-inhibitor resistance, focusing on pharmacological perturbations of enzymatic modifiers of GLI activity and on compounds either directly targeting oncogenic GLI factors or interfering with synergistic crosstalk signals known to boost the oncogenicity of HH/GLI signaling.
Collapse
Affiliation(s)
- Elisabeth Peer
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Suzana Tesanovic
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| | - Fritz Aberger
- Department of Biosciences, Paris-Lodron University of Salzburg, Cancer Cluster Salzburg, Hellbrunner Strasse 34, 5020 Salzburg, Austria.
| |
Collapse
|
22
|
Terao T, Minami Y. Targeting Hedgehog (Hh) Pathway for the Acute Myeloid Leukemia Treatment. Cells 2019; 8:cells8040312. [PMID: 30987263 PMCID: PMC6523210 DOI: 10.3390/cells8040312] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023] Open
Abstract
The Hedgehog (Hh) pathway, containing the Patched (PTCH) and Smoothened (SMO) multitransmembrane proteins, is the main regulator of vertebrate embryonic development. A non-canonical Hh pathway was recently observed in numerous types of solid cancers and hematological malignancies. Although acute myeloid leukemia (AML) is a common and lethal myeloid malignancy, the chemotherapy for AML has not changed in the last three decades. The Hh pathway and other intracellular signaling pathways are important for the tumor cells’ cycle or therapeutic resistance of AML cells. In this article, we will review the current trends in Hh pathway inhibitors for treating AML.
Collapse
Affiliation(s)
- Toshiki Terao
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan.
- Division of Hematology/Oncology, Department of Internal Medicine, Kameda Medical Center, Kamogawa 296-8602, Japan.
| | - Yosuke Minami
- Department of Hematology, National Cancer Center Hospital East, Kashiwa 277-8577, Japan.
| |
Collapse
|