1
|
Huang Q, Chen Y, Zhang W, Xia X, Li H, Qin M, Gao H. Nanotechnology for enhanced nose-to-brain drug delivery in treating neurological diseases. J Control Release 2024; 366:519-534. [PMID: 38182059 DOI: 10.1016/j.jconrel.2023.12.054] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024]
Abstract
Despite the increasing global incidence of brain disorders, achieving sufficient delivery towards the central nervous system (CNS) remains a formidable challenge in terms of translating into improved clinical outcomes. The brain is highly safeguarded by physiological barriers, primarily the blood-brain barrier (BBB), which routinely excludes most therapeutics from entering the brain following systemic administration. Among various strategies investigated to circumvent this challenge, intranasal administration, a noninvasive method that bypasses the BBB to allow direct access of drugs to the CNS, has been showing promising results. Nanotechnology-based drug delivery systems, in particular, have demonstrated remarkable capacities in overcoming the challenges posed by nose-to-brain drug delivery and facilitating targeted drug accumulation within the brain while minimizing side effects of systemic distribution. This review comprehensively summarizes the barriers of nose-to-brain drug delivery, aiming to enhance our understanding of potential physiological obstacles and improve the efficacy of nasal delivery in future trials. We then highlight cutting-edge nanotechnology-based studies that enhance nose-to-brain drug delivery in three key aspects, demonstrating substantial potential for improved treatment of brain diseases. Furthermore, the attention towards clinical studies will ease the regulatory approval process for nasal administration of nanomedicines targeting brain disease.
Collapse
Affiliation(s)
- Qianqian Huang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yongke Chen
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Weiwei Zhang
- Department of Public Health, Chengdu Medical College, 783 Xindu Avenue, Xindu, Chengdu, Sichuan 610500, China
| | - Xue Xia
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Hanmei Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Meng Qin
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| | - Huile Gao
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
2
|
Lombard A, Isci D, Reuter G, Di Valentin E, Hego A, Martin D, Rogister B, Neirinckx V. Development of an intraventricular adeno-associated virus-based labeling strategy for glioblastoma cells nested in the subventricular zone. Neurooncol Adv 2024; 6:vdae161. [PMID: 39445338 PMCID: PMC11497599 DOI: 10.1093/noajnl/vdae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Background Glioblastoma (GBM) is a dreadful brain tumor, with a particular relationship to the adult subventricular zone (SVZ) that has been described as relevant to disease initiation, progression, and recurrence. Methods We propose a novel strategy for the detection and tracking of xenografted GBM cells that are located in the SVZ, based on an intracerebroventricular (icv) recombinant adeno-associated virus (AAV)-mediated color conversion method. We used different patient-derived GBM stem-like cells (GSCs), which we transduced first with a retroviral vector (LRLG) that included a lox-dsRed-STOP-lox cassette, upstream of the eGFP gene, then with rAAVs expressing the Cre-recombinase. Red and green fluorescence is analyzed in vitro and in vivo using flow cytometry and fluorescence microscopy. Results After comparing the efficiency of diverse rAAV serotypes, we confirmed that the in vitro transduction of GSC-LRLG with rAAV-Cre induced a switch from red to green fluorescence. In parallel, we verified that rAAV transduction was confined to the walls of the lateral ventricles. We, therefore, applied this conversion approach in 2 patient-derived orthotopic GSC xenograft models and showed that the icv injection of an rAAV-DJ-Cre after GSC-LRLG tumor implantation triggered the conversion of red GSCs to green, in the periventricular region. Green GSCs were also found at distant places, including the migratory tract and the tumor core. Conclusions This study not only sheds light on the putative outcome of SVZ-nested GBM cells but also shows that icv injection of rAAV vectors allows to transduce and potentially modulate gene expression in hard-to-reach GBM cells of the periventricular area.
Collapse
Affiliation(s)
- Arnaud Lombard
- Neurosurgery Department, CHR Citadelle, Liège, Belgium
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Damla Isci
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Gilles Reuter
- Neurosurgery Department, University Hospital, Liège, Belgium
| | | | - Alexandre Hego
- GIGA Cell Imaging Platform, University of Liège, Liège, Belgium
| | - Didier Martin
- Neurosurgery Department, University Hospital, Liège, Belgium
| | - Bernard Rogister
- Neurology Department, University Hospital, Liège, Belgium
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Diseases and Therapy, GIGA Neuroscience, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Li C, Liao J, Wang X, Chen FX, Guo X, Chen X. Combined Aurora Kinase A and CHK1 Inhibition Enhances Radiosensitivity of Triple-Negative Breast Cancer Through Induction of Apoptosis and Mitotic Catastrophe Associated With Excessive DNA Damage. Int J Radiat Oncol Biol Phys 2023; 117:1241-1254. [PMID: 37393021 DOI: 10.1016/j.ijrobp.2023.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 05/25/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
PURPOSE There is an urgent need for biomarkers and new actionable targets to improve radiosensitivity of triple-negative breast cancer (TNBC) tumors. We characterized the radiosensitizing effects and underlying mechanisms of combined Aurora kinase A (AURKA) and CHK1 inhibition in TNBC. METHODS AND MATERIALS Different TNBC cell lines were treated with AURKA inhibitor (AURKAi, MLN8237) and CHK1 inhibitor (CHK1i, MK8776). Cell responses to irradiation (IR) were then evaluated. Cell apoptosis, DNA damage, cell cycle distribution, and mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) and Phosphoinositide 3-Kinase (PI3K) pathways were evaluated in vitro. Transcriptomic analysis was performed to facilitate the identification of potential biomarkers. Xenograft and immunohistochemistry were carried out to investigate the radiosensitizing effects of dual inhibition in vivo. Finally, the prognostic effect of CHEK1/AURKA in TNBC samples in the The Cancer Genome Atlas (TCGA) database and our center were analyzed. RESULTS AURKAi (MLN8237) induced overexpression of phospho-CHK1 in TNBC cells. The addition of MK8776 (CHK1i) to MLN8237 greatly reduced cell viability and increased radiosensitivity compared with either the control or MLN8237 alone in vitro. Mechanistically, dual inhibition resulted in inducing excessive DNA damage by prompting G2/M transition to cells with defective spindles, leading to mitotic catastrophe and induction of apoptosis after IR. We also observed that dual inhibition suppressed the phosphorylation of ERK, while activation of ERK with its agonist or overexpression of active ERK1/2 allele could attenuate the apoptosis induced by dual inhibition with IR. Additionally, dual inhibition of AURKA and CHK1 synergistically enhanced radiosensitivity in MDA-MB-231 xenografts. Moreover, we detected that both CHEK1 and AURKA were overexpressed in patients with TNBC and negatively correlated with patient survival. CONCLUSIONS Our findings suggested that AURKAi in combination with CHK1i enhanced TNBC radiosensitivity in preclinical models, potentially providing a novel strategy of precision treatment for patients with TNBC.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Jiatao Liao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Xuanyi Wang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Fei Xavier Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China; Institutes of Biomedical Science, Fudan University, Shanghai, China.
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| | - Xingxing Chen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Clinical Research Center for Radiation Oncology, Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
4
|
Saito T, Muragaki Y, Komori A, Nitta M, Tsuzuki S, Koriyama S, Ro B, Kawamata T. Increase in serum vimentin levels in patients with glioma and its correlation with prognosis of patients with glioblastoma. Neurosurg Rev 2023; 46:202. [PMID: 37584729 DOI: 10.1007/s10143-023-02112-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Early diagnosis of glioma is of great value to improve prognosis. We focused on serum vimentin levels as a useful biomarker for preoperative diagnosis. The aim of this study was to determine whether serum vimentin levels in patients with glioma are significantly higher than those of healthy adult volunteer and whether the serum vimentin level is associated with overall survival (OS) in patients with glioblastoma (GBM). This study included 52 consecutive patients with newly diagnosed glioma and a control group of 13 healthy adult volunteers. We measured serum vimentin levels in blood samples obtained from patients with glioma preoperatively and a control group. Furthermore, we investigated the correlation between serum vimentin levels and OS in patients with GBM. The serum vimentin levels of patients with glioma were significantly higher than those of the control group. The serum vimentin level of 2.9 ng/ml was the optimal value for differentiating patients with glioma from the control group with a sensitivity of 92.3% and specificity of 88.5%. The serum vimentin levels correlated significantly with immunoreactivity for survivin. In 27 patients with GBM, serum vimentin levels (cutoff value, median value 53.3 ng/ml) correlated with OS in univariate and multivariate analyses. Our study revealed that serum vimentin levels of patients with glioma are significantly higher than those of the control group. Therefore, we believe that serum vimentin level might be a useful and practical biomarker for preoperative diagnosis of glioma. Furthermore, high serum vimentin levels correlated significantly with shorter OS in patients with GBM.
Collapse
Affiliation(s)
- Taiichi Saito
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| | - Yoshihiro Muragaki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
- Center for Advanced Medical Engineering Research and Development (CAMED), Kobe University, Kobe City, Japan
| | - Asuka Komori
- Department of Central Clinical Laboratory, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayuki Nitta
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Shunsuke Tsuzuki
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Shunichi Koriyama
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Bunto Ro
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Tokyo Women's Medical University, 8-1 Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| |
Collapse
|
5
|
Kou D, Gao Y, Li C, Zhou D, Lu K, Wang N, Zhang R, Yang Z, Zhou Y, Chen L, Ge J, Zeng J, Gao M. Intranasal Pathway for Nanoparticles to Enter the Central Nervous System. NANO LETTERS 2023; 23:5381-5390. [PMID: 36996288 DOI: 10.1021/acs.nanolett.2c05056] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Intranasal administration was previously proposed for delivering drugs for central nervous system (CNS) diseases. However, the delivery and elimination pathways, which are very imperative to know for exploring the therapeutic applications of any given CNS drugs, remain far from clear. Because lipophilicity has a high priority in the design of CNS drugs, the as-prepared CNS drugs tend to form aggregates. Therefore, a PEGylated Fe3O4 nanoparticle labeled with a fluorescent dye was prepared as a model drug and studied to elucidate the delivery pathways of intranasally administered nanodrugs. Through magnetic resonance imaging, the distribution of the nanoparticles was investigated in vivo. Through ex vivo fluorescence imaging and microscopy studies, more precise distribution of the nanoparticles across the entire brain was disclosed. Moreover, the elimination of the nanoparticles from cerebrospinal fluid was carefully studied. The temporal dose levels of intranasally delivered nanodrugs in different parts of the brain were also investigated.
Collapse
Affiliation(s)
- Dandan Kou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yun Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Cang Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Kuan Lu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ning Wang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Ruru Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Zhe Yang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Yi Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Mingyuan Gao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| |
Collapse
|
6
|
Zheng D, Li J, Yan H, Zhang G, Li W, Chu E, Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm Sin B 2023. [PMID: 37521867 PMCID: PMC10372834 DOI: 10.1016/j.apsb.2023.03.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Aurora kinase A (Aurora-A), a serine/threonine kinase, plays a pivotal role in various cellular processes, including mitotic entry, centrosome maturation and spindle formation. Overexpression or gene-amplification/mutation of Aurora-A kinase occurs in different types of cancer, including lung cancer, colorectal cancer, and breast cancer. Alteration of Aurora-A impacts multiple cancer hallmarks, especially, immortalization, energy metabolism, immune escape and cell death resistance which are involved in cancer progression and resistance. This review highlights the most recent advances in the oncogenic roles and related multiple cancer hallmarks of Aurora-A kinase-driving cancer therapy resistance, including chemoresistance (taxanes, cisplatin, cyclophosphamide), targeted therapy resistance (osimertinib, imatinib, sorafenib, etc.), endocrine therapy resistance (tamoxifen, fulvestrant) and radioresistance. Specifically, the mechanisms of Aurora-A kinase promote acquired resistance through modulating DNA damage repair, feedback activation bypass pathways, resistance to apoptosis, necroptosis and autophagy, metastasis, and stemness. Noticeably, our review also summarizes the promising synthetic lethality strategy for Aurora-A inhibitors in RB1, ARID1A and MYC gene mutation tumors, and potential synergistic strategy for mTOR, PAK1, MDM2, MEK inhibitors or PD-L1 antibodies combined with targeting Aurora-A kinase. In addition, we discuss the design and development of the novel class of Aurora-A inhibitors in precision medicine for cancer treatment.
Collapse
|
7
|
Lu ZG, Shen J, Yang J, Wang JW, Zhao RC, Zhang TL, Guo J, Zhang X. Nucleic acid drug vectors for diagnosis and treatment of brain diseases. Signal Transduct Target Ther 2023; 8:39. [PMID: 36650130 PMCID: PMC9844208 DOI: 10.1038/s41392-022-01298-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/08/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Nucleic acid drugs have the advantages of rich target selection, simple in design, good and enduring effect. They have been demonstrated to have irreplaceable superiority in brain disease treatment, while vectors are a decisive factor in therapeutic efficacy. Strict physiological barriers, such as degradation and clearance in circulation, blood-brain barrier, cellular uptake, endosome/lysosome barriers, release, obstruct the delivery of nucleic acid drugs to the brain by the vectors. Nucleic acid drugs against a single target are inefficient in treating brain diseases of complex pathogenesis. Differences between individual patients lead to severe uncertainties in brain disease treatment with nucleic acid drugs. In this Review, we briefly summarize the classification of nucleic acid drugs. Next, we discuss physiological barriers during drug delivery and universal coping strategies and introduce the application methods of these universal strategies to nucleic acid drug vectors. Subsequently, we explore nucleic acid drug-based multidrug regimens for the combination treatment of brain diseases and the construction of the corresponding vectors. In the following, we address the feasibility of patient stratification and personalized therapy through diagnostic information from medical imaging and the manner of introducing contrast agents into vectors. Finally, we take a perspective on the future feasibility and remaining challenges of vector-based integrated diagnosis and gene therapy for brain diseases.
Collapse
Affiliation(s)
- Zhi-Guo Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| | - Jie Shen
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jun Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jing-Wen Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Rui-Chen Zhao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Tian-Lu Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Jing Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xin Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
8
|
AKTAN Ç. Identification of Ferroptosis-Related Genes in Laryngeal Carcinoma Using an Integrated Bioinformatics Approach. İSTANBUL GELIŞIM ÜNIVERSITESI SAĞLIK BILIMLERI DERGISI 2022. [DOI: 10.38079/igusabder.1128423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Amaç: Hücre içi demir birikimi ve lipid peroksidasyonu ile karakterize edilen ferroptoz, tümör baskılanmasında önemli rol oynayabilen yeni tanımlanmış bir hücre ölüm şeklidir. Larengeal skuamöz hücreli karsinom (LSHK) ve ferroptozis arasındaki ilişki hakkında yapılan çalışmalar sınırlıdır. Bu çalışmanın amacı, LSHK' nin tanı, tedavisinde ve ferroptozis ile ilgili belirteçleri in siliko yöntemleri kullanarak saptamaktır.Yöntem: Ferroptoz ile ilgili genler, FerrDb veri tabanından elde edildi. The Cancer Genome Atlas (TCGA) veri setlerinden LSHK hastalarının mRNA ekspresyon verileri ve ferroptoz ile ilgili bazı genleri taramak için kullanıldı. LSHK ile ilgili GSE143224 ve GSE84957 mikrodizi veri setleri GEO veri tabanından elde edilmiştir. Tüm veri setleri kullanılarak ferroptoz ve LSHK ile ilişkili genleri elde etmek için örtüşen veriler kullanılmıştır. LSHK grubu ve normal kontroller arasındaki diferansiyel olarak eksprese edilen genler (DEG'ler) ve ferroptoz ile ilgili DEG'ler, biyoinformatik yöntemler kullanılarak analiz edildi. Daha sonra STRING ve Cytoscape yazılımları kullanılarak Gene Ontology (GO), KEGG ve protein-protein etkileşimi (PPE) ağı analizleri gerçekleştirilmiştir.Bulgular: Ferroptoz ile ilgili 259 gen, FerrDb veri tabanından alındı ve ferroptoz DEG'lerini tanımlamak için bunları TCGA-HNSC (523 örnek), GSE143224 (25 örnek) ve GSE84957 (18 örnek) ile analizleri yapıldı. Analiz sonrasında 13 adet yukarı regüle edilmiş (NOX4, BID, ABCC1, TNFAIP3, PANX1, SLC1A4, SLC3A2, FTL, TFRC, AURKA, HSF1, PML, CA9; p<0.05) ve 3 adet aşağı regüle edilmiş gen (CHAC1, LPIN1, MUC1; p<0.05) saptanmıştır. GO, KEGG ve PPE analizleri ile elde edilen hücresel stres, inflamasyon, oksidatif stres ve karsinogenez süreçlerine benzer sonuçlar (p<0.05) ile bu genlerin LSHK' nin ilerlemesinde rol oynayabileceğini göstermektedir.Sonuç: Sonuç olarak, bu çalışmada LSHK'de ferroptoz ile yakından ilişkili olan ve LSHK hastalarını sağlıklı kontrollerden ayırt edebilen 16 potansiyel gen saptanmıştır. Çalışmamız, LSHK’nin moleküler mekanizmasını ve terapötik hedeflerini keşfetmek için daha geniş bir fikir sağlayabilir.
Collapse
|
9
|
Du C, Huang Z, Wei B, Li M. Comprehensive metabolomics study on the pathogenesis of anaplastic astrocytoma via UPLC-Q/TOF-MS. Medicine (Baltimore) 2022; 101:e29594. [PMID: 35945752 PMCID: PMC9351860 DOI: 10.1097/md.0000000000029594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Anaplastic astrocytoma (AA) is a malignant carcinoma whose pathogenesis remains to be fully elucidated. System biology techniques have been widely used to clarify the mechanism of diseases from a systematic perspective. The present study aimed to explore the pathogenesis and novel potential biomarkers for the diagnosis of AA according to metabolic differences. Patients with AA (n = 12) and healthy controls (n = 15) were recruited. Serum was assayed with untargeted ultraperformance liquid chromatography-quadrupole/time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) metabolomic techniques. The data were further evaluated using multivariate analysis and bioinformatic methods based on the KEGG database to determine the distinct metabolites and perturbed pathways. Principal component analysis and orthogonal projections to latent structures-discriminant analysis (OPLS-DA) identified the significance of the distinct metabolic pattern between patients with AA and healthy controls (P < .001) in both ESI modes. Permutation testing confirmed the validity of the OPLS-DA model (permutation = 200, Q2 < 0.5). In total, 24 differentiated metabolites and 5 metabolic pathways, including sphingolipid, glycerophospholipid, caffeine, linoleic acid, and porphyrin metabolism, were identified based on the OPLS-DA model. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide were recognized as potential biomarkers with excellent sensitivity and specificity (area under the curve > 98%). These findings indicate that the perturbed metabolic pattern related to immune regulation and cellular signal transduction is associated with the pathogenesis of AA. 3-Methylxanthine, sphinganine, LysoPC(18:1), and lactosylceramide could be used as biomarkers of AA in future clinical practice. This study provides a therapeutic basis for further studies on the mechanism and precise clinical diagnosis of AA.
Collapse
Affiliation(s)
- Chao Du
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Zhehao Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Bo Wei
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
| | - Miao Li
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin
- * Correspondence: Miao Li, MD, Department of Neurosurgery, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, Jilin 130033, PR China (e-mail: )
| |
Collapse
|
10
|
Rusyn L, Reinartz S, Nikiforov A, Mikhael N, Vom Stein A, Kohlhas V, Bloehdorn J, Stilgenbauer S, Lohneis P, Buettner R, Robrecht S, Fischer K, Pallasch C, Hallek M, Nguyen PH, Seeger-Nukpezah T. The scaffold protein NEDD9 is necessary for leukemia-cell migration and disease progression in a mouse model of chronic lymphocytic leukemia. Leukemia 2022; 36:1794-1805. [PMID: 35523865 PMCID: PMC9252910 DOI: 10.1038/s41375-022-01586-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/16/2022] [Accepted: 04/25/2022] [Indexed: 11/24/2022]
Abstract
The scaffold protein NEDD9 is frequently upregulated and hyperphosphorylated in cancers, and is associated with poor clinical outcome. NEDD9 promotes B-cell adhesion, migration and chemotaxis, pivotal processes for malignant development. We show that global or B-cell-specific deletion of Nedd9 in chronic lymphocytic leukemia (CLL) mouse models delayed CLL development, markedly reduced disease burden and resulted in significant survival benefit. NEDD9 was required for efficient CLL cell homing, chemotaxis, migration and adhesion. In CLL patients, peripheral NEDD9 expression was associated with adhesion and migration signatures as well as leukocyte count. Additionally, CLL lymph nodes frequently expressed high NEDD9 levels, with a subset of patients showing NEDD9 expression enriched in the CLL proliferation centers. Blocking activity of prominent NEDD9 effectors, including AURKA and HDAC6, effectively reduced CLL cell migration and chemotaxis. Collectively, our study provides evidence for a functional role of NEDD9 in CLL pathogenesis that involves intrinsic defects in adhesion, migration and homing.
Collapse
Affiliation(s)
- Lisa Rusyn
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Sebastian Reinartz
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Anastasia Nikiforov
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Nelly Mikhael
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Alexander Vom Stein
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Viktoria Kohlhas
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | | | | | - Philipp Lohneis
- Hämatopathologie Lübeck, Reference Centre for Lymphnode Pathology and Haematopathology, Luebeck, Germany
| | | | - Sandra Robrecht
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Kirsten Fischer
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany
| | - Christian Pallasch
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Michael Hallek
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany
| | - Phuong-Hien Nguyen
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany. .,CECAD Center of Excellence on Cellular Stress Responses in Aging-Associated Diseases, Center for Molecular Medicine Cologne, Cologne, Germany.
| | - Tamina Seeger-Nukpezah
- Faculty of Medicine and Cologne University Hospital, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, University of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Yoo S, Sinha A, Yang D, Altorki NK, Tandon R, Wang W, Chavez D, Lee E, Patel AS, Sato T, Kong R, Ding B, Schadt EE, Watanabe H, Massion PP, Borczuk AC, Zhu J, Powell CA. Integrative network analysis of early-stage lung adenocarcinoma identifies aurora kinase inhibition as interceptor of invasion and progression. Nat Commun 2022; 13:1592. [PMID: 35332150 PMCID: PMC8948234 DOI: 10.1038/s41467-022-29230-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/01/2022] [Indexed: 12/15/2022] Open
Abstract
Here we focus on the molecular characterization of clinically significant histological subtypes of early-stage lung adenocarcinoma (esLUAD), which is the most common histological subtype of lung cancer. Within lung adenocarcinoma, histology is heterogeneous and associated with tumor invasion and diverse clinical outcomes. We present a gene signature distinguishing invasive and non-invasive tumors among esLUAD. Using the gene signatures, we estimate an Invasiveness Score that is strongly associated with survival of esLUAD patients in multiple independent cohorts and with the invasiveness phenotype in lung cancer cell lines. Regulatory network analysis identifies aurora kinase as one of master regulators of the gene signature and the perturbation of aurora kinases in vitro and in a murine model of invasive lung adenocarcinoma reduces tumor invasion. Our study reveals aurora kinases as a therapeutic target for treatment of early-stage invasive lung adenocarcinoma.
Collapse
Affiliation(s)
- Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Abhilasha Sinha
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dawei Yang
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine-New York Presbyterian Hospital, New York, NY, USA
| | - Radhika Tandon
- School of Medicine, St. George's University, West Indies, Grenada
| | - Wenhui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
| | - Deebly Chavez
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eunjee Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Ayushi S Patel
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Vileck Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Takashi Sato
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Japan
| | - Ranran Kong
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Thoracic Surgery, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Bisen Ding
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Key Laboratory of Birth Defects and Related Diseases of Women And Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
- Sema4, Stamford, CT, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hideo Watanabe
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pierre P Massion
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain C Borczuk
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Icahn Institute for Data Science and Genomic Technology, New York, NY, USA.
- Sema4, Stamford, CT, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Charles A Powell
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Chen X, Liu C, Zhang Z, Wang M, Guo S, Li T, Sun H, Zhang P. ZNF655 Promotes the Progression of Glioma Through Transcriptional Regulation of AURKA. Front Oncol 2022; 12:770013. [PMID: 35280721 PMCID: PMC8907887 DOI: 10.3389/fonc.2022.770013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/10/2022] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Glioma has a high degree of malignancy, strong invasiveness, and poor prognosis, which is always a serious threat to human health. Previous studies have reported that C2H2 zinc finger (ZNF) protein is involved in the progression of various cancers. In this study, the clinical significance, biological behavior, and molecule mechanism of ZNF655 in glioma were explored. METHODS The expression of ZNF655 in glioma and its correlation with prognosis were analyzed through public datasets and immunohistochemical (IHC) staining. The shRNA-mediated ZNF655 knockdown was used to explore the effects of ZNF655 alteration on the phenotypes and tumorigenesis of human glioma cell lines. Chromatin immunoprecipitation (ChIP)-qPCR and luciferase reporter assays were performed to determine the potential mechanism of ZNF655 regulating Aurora kinase A (AURKA). RESULTS ZNF655 was abundantly expressed in glioma tissue and cell lines SHG-44 and U251. Knockdown of suppressed the progression of glioma cells, which was characterized by reduced proliferation, enhanced apoptosis, cycle repression in G2, inhibition of migration, and weakened tumorigenesis. Mechanistically, transcription factor ZNF655 activated the expression of AURKA by directly binding to the promoter of AURKA. In addition, downregulation of AURKA partially reversed the promoting effects of overexpression of ZNF655 on glioma cells. CONCLUSIONS ZNF655 promoted the progression of glioma by binding to the promoter of AURKA, which may be a promising target for molecular therapy.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, China
| | - Chao Liu
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Zhenyu Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Meng Wang
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Shewei Guo
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Tianhao Li
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Hongwei Sun
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| | - Peng Zhang
- Department of Neurosurgery of the First Affiliated Hospital of Zhengzhou University, Zhengzhou City, China
| |
Collapse
|
13
|
Garbulowski M, Smolinska K, Çabuk U, Yones SA, Celli L, Yaz EN, Barrenäs F, Diamanti K, Wadelius C, Komorowski J. Machine Learning-Based Analysis of Glioma Grades Reveals Co-Enrichment. Cancers (Basel) 2022; 14:1014. [PMID: 35205761 PMCID: PMC8870250 DOI: 10.3390/cancers14041014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Gliomas develop and grow in the brain and central nervous system. Examining glioma grading processes is valuable for improving therapeutic challenges. One of the most extensive repositories storing transcriptomics data for gliomas is The Cancer Genome Atlas (TCGA). However, such big cohorts should be processed with caution and evaluated thoroughly as they can contain batch and other effects. Furthermore, biological mechanisms of cancer contain interactions among biomarkers. Thus, we applied an interpretable machine learning approach to discover such relationships. This type of transparent learning provides not only good predictability, but also reveals co-predictive mechanisms among features. In this study, we corrected the strong and confounded batch effect in the TCGA glioma data. We further used the corrected datasets to perform comprehensive machine learning analysis applied on single-sample gene set enrichment scores using collections from the Molecular Signature Database. Furthermore, using rule-based classifiers, we displayed networks of co-enrichment related to glioma grades. Moreover, we validated our results using the external glioma cohorts. We believe that utilizing corrected glioma cohorts from TCGA may improve the application and validation of any future studies. Finally, the co-enrichment and survival analysis provided detailed explanations for glioma progression and consequently, it should support the targeted treatment.
Collapse
Affiliation(s)
- Mateusz Garbulowski
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Solna, Sweden
| | - Karolina Smolinska
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
| | - Uğur Çabuk
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Polar Terrestrial Environmental Systems, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 14473 Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, 14469 Potsdam, Germany
| | - Sara A. Yones
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
| | - Ludovica Celli
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Institute of Molecular Genetics Luigi Luca Cavalli-Sforza, National Research Council, 27100 Pavia, Italy
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
| | - Esma Nur Yaz
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Department of Biomedical Engineering and Bioinformatics, The Graduate School of Engineering and Natural Sciences, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Fredrik Barrenäs
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Washington National Primate Research Center, Seattle, WA 98195, USA
| | - Klev Diamanti
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jan Komorowski
- Department of Cell and Molecular Biology, Uppsala University, 752 37 Uppsala, Sweden; (K.S.); (U.Ç.); (S.A.Y.); (L.C.); (E.N.Y.); (F.B.); (K.D.)
- Washington National Primate Research Center, Seattle, WA 98195, USA
- Swedish Collegium for Advanced Study, 752 38 Uppsala, Sweden
- Institute of Computer Science, Polish Academy of Sciences, 01-248 Warsaw, Poland
| |
Collapse
|
14
|
Wang K, Kumar US, Sadeghipour N, Massoud TF, Paulmurugan R. A Microfluidics-Based Scalable Approach to Generate Extracellular Vesicles with Enhanced Therapeutic MicroRNA Loading for Intranasal Delivery to Mouse Glioblastomas. ACS NANO 2021; 15:18327-18346. [PMID: 34723509 DOI: 10.1021/acsnano.1c07587] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles derived from different cell sources, are used as promising nanovesicles for delivering therapeutic microRNAs (miRNAs) and drugs in cancer therapy. However, their clinical translation is limited by the quantity, size heterogeneity, and drug or small RNA loading efficiency. Herein, we developed a scalable microfluidic platform that can load therapeutic miRNAs (antimiRNA-21 and miRNA-100) and drugs while controlling the size of microfluidically processed EVs (mpEVs) using a pressure-based disruption and reconstitution process. We prepared mpEVs of optimal size using microvesicles isolated from neural stem cells engineered to overexpress CXCR4 receptor and characterized them for charge and miRNA loading efficiency. Since the delivery of therapeutic miRNAs to brain cancer is limited by the blood-brain barrier (BBB), we adopted intranasal administration of miRNA-loaded CXCR4-engineered mpEVs in orthotopic GBM mouse models and observed a consistent pattern of mpEVs trafficking across the nasal epithelia, bypassing the BBB into the intracranial compartment. In addition, the CXCR4-engineered mpEVs manifested selective tropism toward GBMs by stromal-derived factor-1 chemotaxis to deliver their miRNA cargo. The delivered miRNAs sensitized GBM cells to temozolomide, resulting in prominent tumor regression, and improved the overall survival of mice. A simple and efficient approach of packaging miRNAs in mpEVs using microfluidics, combined with a noninvasive nose-to-brain delivery route presents far-reaching potential opportunities to improve GBM therapy in clinical practice.
Collapse
Affiliation(s)
- Kai Wang
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Uday S Kumar
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Negar Sadeghipour
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California 94304, United States
| |
Collapse
|
15
|
Lavogina D, Laasfeld T, Vardja M, Lust H, Jaal J. Viability fingerprint of glioblastoma cell lines: roles of mitotic, proliferative, and epigenetic targets. Sci Rep 2021; 11:20338. [PMID: 34645858 PMCID: PMC8514540 DOI: 10.1038/s41598-021-99630-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/24/2021] [Indexed: 01/03/2023] Open
Abstract
Despite the use of multimodal treatment combinations, the prognosis of glioblastoma (GB) is still poor. To prevent rapid tumor recurrence, targeted strategies for the treatment of GB are widely sought. Here, we compared the efficacy of focused modulation of a set of signaling pathways in two GB cell lines, U-251 MG and T98-G, using a panel of thirteen compounds targeting cell cycle progression, proliferation, epigenetic modifications, and DNA repair mechanism. In parallel, we tested combinations of these compounds with temozolomide and lomustine, the standard chemotherapy agents used in GB treatment. Two major trends were found: within individual compounds, the lowest IC50 values were exhibited by the Aurora kinase inhibitors, whereas in the case of mixtures, the addition of DNA methyltransferase 1 inhibitor azacytidine to lomustine proved the most beneficial. The efficacy of cell cycle-targeting compounds was further augmented by combination with radiation therapy using two different treatment regimes. The potency of azacytidine and lomustine mixtures was validated using a unique assay pipeline that utilizes automated imaging and machine learning-based data analysis algorithm for assessment of cell number and DNA damage extent. Based on our results, the combination of azacytidine and lomustine should be tested in GB clinical trials.
Collapse
Affiliation(s)
- Darja Lavogina
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Tõnis Laasfeld
- grid.10939.320000 0001 0943 7661Institute of Chemistry, University of Tartu, Tartu, Estonia ,grid.10939.320000 0001 0943 7661Department of Computer Science, University of Tartu, Tartu, Estonia
| | - Markus Vardja
- grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| | - Helen Lust
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia
| | - Jana Jaal
- grid.10939.320000 0001 0943 7661Institute of Clinical Medicine, University of Tartu, L. Puusepa 8, 50406 Tartu, Estonia ,grid.412269.a0000 0001 0585 7044Department of Radiotherapy and Oncological Therapy, Tartu University Hospital, Tartu, Estonia
| |
Collapse
|
16
|
Abstract
ABSTRACT High-grade gliomas are among the deadliest of all cancers despite standard treatments, and new therapeutic strategies are needed to improve patient outcome. Targeting the altered metabolic state of tumors with traditional chemotherapeutic agents has a history of success, and our increased understanding of cellular metabolism in the past 2 decades has reinvigorated the concept of novel metabolic therapies in brain tumors. Here we highlight metabolic alterations in advanced gliomas and their translation into clinical trials using both novel agents and already established drugs repurposed for cancer treatment in an effort to improve outcome for these deadly diseases.
Collapse
Affiliation(s)
- Andrew J. Scott
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Costas A. Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109; Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI 48109; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109
| | - Daniel R. Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109; University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
17
|
Lombard A, Digregorio M, Delcamp C, Rogister B, Piette C, Coppieters N. The Subventricular Zone, a Hideout for Adult and Pediatric High-Grade Glioma Stem Cells. Front Oncol 2021; 10:614930. [PMID: 33575218 PMCID: PMC7870981 DOI: 10.3389/fonc.2020.614930] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/09/2020] [Indexed: 12/23/2022] Open
Abstract
Both in adult and children, high-grade gliomas (WHO grades III and IV) account for a high proportion of death due to cancer. This poor prognosis is a direct consequence of tumor recurrences occurring within few months despite a multimodal therapy consisting of a surgical resection followed by chemotherapy and radiotherapy. There is increasing evidence that glioma stem cells (GSCs) contribute to tumor recurrences. In fact, GSCs can migrate out of the tumor mass and reach the subventricular zone (SVZ), a neurogenic niche persisting after birth. Once nested in the SVZ, GSCs can escape a surgical intervention and resist to treatments. The present review will define GSCs and describe their similarities with neural stem cells, residents of the SVZ. The architectural organization of the SVZ will be described both for humans and rodents. The migratory routes taken by GSCs to reach the SVZ and the signaling pathways involved in their migration will also be described hereafter. In addition, we will debate the advantages of the microenvironment provided by the SVZ for GSCs and how this could contribute to tumor recurrences. Finally, we will discuss the clinical relevance of the SVZ in adult GBM and pediatric HGG and the therapeutic advantages of targeting that neurogenic region in both clinical situations.
Collapse
Affiliation(s)
- Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Clément Delcamp
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium.,Department of Pediatrics, Division of Hematology-Oncology, CHU of Liège, Liège, Belgium
| | - Natacha Coppieters
- Laboratory of Nervous System Disorders and Therapy, Groupement Interdisciplinaire de Génoprotéomique Appliquée (GIGA)-Neurosciences Research Centre, University of Liège, Liège, Belgium
| |
Collapse
|
18
|
Dedobbeleer M, Willems E, Lambert J, Lombard A, Digregorio M, Lumapat PN, Di Valentin E, Freeman S, Goffart N, Scholtes F, Rogister B. MKP1 phosphatase is recruited by CXCL12 in glioblastoma cells and plays a role in DNA strand breaks repair. Carcinogenesis 2020; 41:417-429. [PMID: 31504251 DOI: 10.1093/carcin/bgz151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/10/2019] [Accepted: 08/29/2019] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and aggressive primary tumor in the central nervous system. Previously, the secretion of CXCL12 in the brain subventricular zones has been shown to attract GBM cells and protect against irradiation. However, the exact molecular mechanism behind this radioprotection is still unknown. Here, we demonstrate that CXCL12 modulates the phosphorylation of MAP kinases and their regulator, the nuclear MAP kinase phosphatase 1 (MKP1). We further show that MKP1 is able to decrease GBM cell death and promote DNA repair after irradiation by regulating major apoptotic players, such as Jun-N-terminal kinase, and by stabilizing the DNA repair protein RAD51. Increases in MKP1 levels caused by different corticoid treatments should be reexamined for GBM patients, particularly during their radiotherapy sessions, in order to prevent or to delay the relapses of this tumor.
Collapse
Affiliation(s)
- Matthias Dedobbeleer
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Estelle Willems
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Jeremy Lambert
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Marina Digregorio
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Paul Noel Lumapat
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | | | - Stephen Freeman
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium
| | - Nicolas Goffart
- The T&P Bohnenn Laboratory for Neuro-Oncology, Department of Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - Felix Scholtes
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurosurgery, CHU of Liège, Liège, Belgium
| | - Bernard Rogister
- Laboratory of Nervous System Diseases and Therapy, GIGA-Neuroscience, University of Liège, Liège, Belgium.,Department of Neurology, CHU of Liège, Liège, Belgium
| |
Collapse
|
19
|
Lin X, Xiang X, Hao L, Wang T, Lai Y, Abudoureyimu M, Zhou H, Feng B, Chu X, Wang R. The role of Aurora-A in human cancers and future therapeutics. Am J Cancer Res 2020; 10:2705-2729. [PMID: 33042612 PMCID: PMC7539775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023] Open
Abstract
Aurora-A is a mitotic serine/threonine-protein kinase and an oncogene. In normal cells, Aurora-A appears from G2 phase and localizes at the centrosome, where it participates in centrosome replication, isolation and maturation. Aurora-A also maintains Golgi apparatus structure and spindle assembly. Aurora-A undergoes ubiquitination-mediated degradation after the cell division phase. Aurora-A is abnormally expressed in tumor cells and promotes cell proliferation by regulating mitotic substrates, such as PP1, PLK1, TPX2, and LAST2, and affects other molecules through a non-mitotic pathway to promote cell invasion and metastasis. Some molecules in tumor cells also indirectly act on Aurora-A to regulate tumor cells. Aurora-A also mediates resistance to chemotherapy and radiotherapy and is involved in tumor immunotherapy. Clinical trials of Aurora-A molecular inhibitors are currently underway, and clinical transformation is just around the corner.
Collapse
Affiliation(s)
- Xinrong Lin
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiaosong Xiang
- Affiliated Jinling Hospital Research Institution of General Surgery, Medical School of Nanjing UniversityNanjing, China
| | - Liping Hao
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Ting Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Yongting Lai
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, First School of Clinical Medicine, Southern Medical UniversityNanjing, China
| | - Mubalake Abudoureyimu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Hao Zhou
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Bing Feng
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Xiaoyuan Chu
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| | - Rui Wang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing UniversityNanjing, China
| |
Collapse
|
20
|
Mortezaee K. CXCL12/CXCR4 axis in the microenvironment of solid tumors: A critical mediator of metastasis. Life Sci 2020; 249:117534. [PMID: 32156548 DOI: 10.1016/j.lfs.2020.117534] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023]
Abstract
Tumors are dynamic tissue masses, so requiring continuous exposure to the host cells, nurturing them into pave a path for tumor growth and metastasis. C-X-C chemokine ligand 12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) is the key signaling for such aim. Gathering knowledge about the activity within this axis would deepen our insight into the utmost importance this signaling taken to attract and cross-connect multiple cells within the tumor microenvironment (TME) aiming for tumor progression and metastasis. The concept behind this review is to underscore the multi-tasking roles taken by CXCL12/CXCR4 signaling in tumor metastasis, and to also suggest some strategies to target the activities within this axis.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| |
Collapse
|
21
|
Zhou W, Wahl DR. Metabolic Abnormalities in Glioblastoma and Metabolic Strategies to Overcome Treatment Resistance. Cancers (Basel) 2019; 11:cancers11091231. [PMID: 31450721 PMCID: PMC6770393 DOI: 10.3390/cancers11091231] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/07/2019] [Accepted: 08/16/2019] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor and is nearly universally fatal. Targeted therapy and immunotherapy have had limited success in GBM, leaving surgery, alkylating chemotherapy and ionizing radiation as the standards of care. Like most cancers, GBMs rewire metabolism to fuel survival, proliferation, and invasion. Emerging evidence suggests that this metabolic reprogramming also mediates resistance to the standard-of-care therapies used to treat GBM. In this review, we discuss the noteworthy metabolic features of GBM, the key pathways that reshape tumor metabolism, and how inhibiting abnormal metabolism may be able to overcome the inherent resistance of GBM to radiation and chemotherapy.
Collapse
Affiliation(s)
- Weihua Zhou
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Wahl
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|