1
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
2
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
3
|
Shehaj I, Krajnak S, Almstedt K, Degirmenci Y, Herzog S, Lebrecht A, Linz VC, Schwab R, Stewen K, Brenner W, Hasenburg A, Schmidt M, Heimes AS. BRCA1, BRCA2 and PALB2 mRNA Expression as Prognostic Markers in Patients with Early Breast Cancer. Biomedicines 2024; 12:1361. [PMID: 38927568 PMCID: PMC11202204 DOI: 10.3390/biomedicines12061361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/15/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer (BC) poses a challenge in establishing new treatment strategies and identifying new prognostic and predictive markers due to the extensive genetic heterogeneity of BC. Very few studies have investigated the impact of mRNA expression of these genes on the survival of BC patients. METHODS We examined the impact of the mRNA expression of breast cancer gene type 1 (BRCA1), breast cancer gene type 2 (BRCA2), and partner and localizer of BRCA2 (PALB2) on the metastasis-free survival (MFS) of patients with early BC using microarray gene expression analysis. RESULTS The study was performed in a cohort of 461 patients with a median age of 62 years at initial diagnosis. The median follow-up time was 147 months. We could show that the lower expression of BRCA1 and BRCA2 is significantly associated with longer MFS (p < 0.050). On the contrary, the lower expression of PALB2 was correlated with a shorter MFS (p = 0.049). Subgroup survival analysis identified the prognostic influence of mRNA expression for BRCA1 among patients with luminal-B-like BC and for BRCA2 and PALB2 in the subset of patients with luminal-A-like BC (p < 0.050). CONCLUSIONS According to our observations, BRCA1, BRCA2, and PALB2 expression might become valuable biomarkers of disease progression.
Collapse
Affiliation(s)
- Ina Shehaj
- Department of Obstetrics and Gynecology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany (M.S.); (A.-S.H.)
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abdulkareem AA, Shirah BH, Bagabir HA, Haque A, Naseer MI. Whole exome sequencing of a novel homozygous missense variant in PALB2 gene leading to Fanconi anaemia complementation group. Biomed Rep 2024; 20:67. [PMID: 38476606 PMCID: PMC10928473 DOI: 10.3892/br.2024.1756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Partner and localiser of BRCA2 (PALB2), also known as FANCN, is a key tumour suppressor gene in maintaining genome integrity. Monoallelic mutations of PALB2 are associated with breast and overian cancers, while bi-allelic mutations cause Fanconi anaemia (FA). In the present study, whole exome sequencing (WES) identified a novel homozygous missense variant, NM_024675.3: c.3296C>G (p.Thr1099Arg) in PALB2 gene (OMIM: 610355) that caused FA with mild pulmonary valve stenosis and dysmorphic and atypical features, including lymphangiectasia, non-immune hydrops fetalis and right-sided pleural effusion in a preterm female baby. WES results were further validated by Sanger sequencing. WES improves the screening and detection of novel and causative genetic variants to improve management of disease. To the best of our knowledge, the present study is the first reported FA case in a Saudi family with phenotypic atypical FA features. The results support the role of PALB2 gene and pathogenic variants that may cause clinical presentation of FA. Furthermore, the present results may establish a disease database, providing a groundwork for understanding the key genomic regions to control diseases resulting from consanguinity.
Collapse
Affiliation(s)
- Angham Abdulrhman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Faculty of Science, Department of Biochemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Bader H. Shirah
- Department of Neuroscience, King Faisal Specialist Hospital and Research Centre, Jeddah 11211, Saudi Arabia
| | - Hala Abubaker Bagabir
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Rabigh 25732, Saudi Arabia
| | - Absarul Haque
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
5
|
Nagy G, Diabate M, Banerjee T, Adamovich AI, Smith N, Jeon H, Dhar S, Liu W, Burgess K, Chung D, Starita LM, Parvin JD. Multiplexed assay of variant effect reveals residues of functional importance in the BRCA1 coiled-coil and serine cluster domains. PLoS One 2023; 18:e0293422. [PMID: 37917606 PMCID: PMC10621863 DOI: 10.1371/journal.pone.0293422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023] Open
Abstract
Delineating functionally normal variants from functionally abnormal variants in tumor suppressor proteins is critical for cancer surveillance, prognosis, and treatment options. BRCA1 is a protein that has many variants of uncertain significance which are not yet classified as functionally normal or abnormal. In vitro functional assays can be used to identify the functional impact of a variant when the variant has not yet been categorized through clinical observation. Here we employ a homology-directed repair (HDR) reporter assay to evaluate over 300 missense and nonsense BRCA1 variants between amino acid residues 1280 and 1576, which encompasses the coiled-coil and serine cluster domains. Functionally abnormal variants tended to cluster in residues known to interact with PALB2, which is critical for homology-directed repair. Multiplexed results were confirmed by singleton assay and by ClinVar database variant interpretations. Comparison of multiplexed results to designated benign or likely benign or pathogenic or likely pathogenic variants in the ClinVar database yielded 100% specificity and 100% sensitivity of the multiplexed assay. Clinicians can reference the results of this functional assay for help in guiding cancer treatment and surveillance options. These results are the first to evaluate this domain of BRCA1 using a multiplexed approach and indicate the importance of this domain in the DNA repair process.
Collapse
Affiliation(s)
- Gregory Nagy
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Mariame Diabate
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Aleksandra I. Adamovich
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Nahum Smith
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Hyeongseon Jeon
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Shruti Dhar
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Wenfang Liu
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Katherine Burgess
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Dongjun Chung
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington and Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Jeffrey D. Parvin
- Department of Biomedical Informatics, The Ohio State University Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
6
|
Kinose Y, Xu H, Kim H, Kumar S, Shan X, George E, Wang X, Medvedev S, Ferman B, Gitto SB, Whicker M, D’Andrea K, Wubbenhorst B, Hallberg D, O’Connor M, Schwartz LE, Hwang WT, Nathanson KL, Mills GB, Velculescu VE, Wang TL, Brown EJ, Drapkin R, Simpkins F. Dual blockade of BRD4 and ATR/WEE1 pathways exploits ARID1A loss in clear cell ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-3314138. [PMID: 37841875 PMCID: PMC10571599 DOI: 10.21203/rs.3.rs-3314138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ARID1A, an epigenetic tumor suppressor, is the most common gene mutation in clear-cell ovarian cancers (CCOCs). CCOCs are often resistant to standard chemotherapy and lack effective therapies. We hypothesized that ARID1A loss would increase CCOC cell dependency on chromatin remodeling and DNA repair pathways for survival. We demonstrate that combining BRD4 inhibitor (BRD4i) with DNA damage response inhibitors (ATR or WEE1 inhibitors; e.g. BRD4i-ATRi) was synergistic at low doses leading to decreased survival, and colony formation in CCOC in an ARID1A dependent manner. BRD4i-ATRi caused significant tumor regression and increased overall survival in ARID1AMUT but not ARID1AWT patient-derived xenografts. Combination BRD4i-ATRi significantly increased γH2AX, and decreased RAD51 foci and BRCA1 expression, suggesting decreased ability to repair DNA double-strand-breaks (DSBs) by homologous-recombination in ARID1AMUT cells, and these effects were greater than monotherapies. These studies demonstrate BRD4i-ATRi is an effective treatment strategy that capitalizes on synthetic lethality with ARID1A loss in CCOC.
Collapse
Affiliation(s)
- Yasuto Kinose
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Haineng Xu
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyin Shan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erin George
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaolei Wang
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah B. Gitto
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark O’Connor
- AstraZeneca, R&D Oncology, Cambridge, United Kingdom
| | - Lauren E. Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian-Li Wang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
7
|
Hernández-Suárez B, Gillespie DA, Dejnaka E, Kupczyk P, Obmińska-Mrukowicz B, Pawlak A. Studying the DNA damage response pathway in hematopoietic canine cancer cell lines, a necessary step for finding targets to generate new therapies to treat cancer in dogs. Front Vet Sci 2023; 10:1227683. [PMID: 37655260 PMCID: PMC10467447 DOI: 10.3389/fvets.2023.1227683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/31/2023] [Indexed: 09/02/2023] Open
Abstract
Background Dogs present a significant opportunity for studies in comparative oncology. However, the study of cancer biology phenomena in canine cells is currently limited by restricted availability of validated antibody reagents and techniques. Here, we provide an initial characterization of the expression and activity of key components of the DNA Damage Response (DDR) in a panel of hematopoietic canine cancer cell lines, with the use of commercially available antibody reagents. Materials and methods The techniques used for this validation analysis were western blot, qPCR, and DNA combing assay. Results Substantial variations in both the basal expression (ATR, Claspin, Chk1, and Rad51) and agonist-induced activation (p-Chk1) of DDR components were observed in canine cancer cell lines. The expression was stronger in the CLBL-1 (B-cell lymphoma) and CLB70 (B-cell chronic lymphocytic leukemia) cell lines than in the GL-1 (B-cell leukemia) cell line, but the biological significance of these differences requires further investigation. We also validated methodologies for quantifying DNA replication dynamics in hematopoietic canine cancer cell lines, and found that the GL-1 cell line presented a higher replication fork speed than the CLBL-1 cell line, but that both showed a tendency to replication fork asymmetry. Conclusion These findings will inform future studies on cancer biology, which will facilitate progress in developing novel anticancer therapies for canine patients. They can also provide new knowledge in human oncology.
Collapse
Affiliation(s)
- Beatriz Hernández-Suárez
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - David A. Gillespie
- Facultad de Medicina, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - Ewa Dejnaka
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Piotr Kupczyk
- Division of General and Experimental Pathology, Department of Clinical and Experimental Pathology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Bożena Obmińska-Mrukowicz
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Aleksandra Pawlak
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
8
|
Tsyganov MM, Sorokovikova SS, Lutzkaya EA, Ibragimova MK. Mutations of BRCA1, BRCA2, and PALB2 Genes in Breast Tumor Tissue: Relationship with the Effectiveness of Neoadjuvant Chemotherapy and Disease Prognosis. Genes (Basel) 2023; 14:1554. [PMID: 37628606 PMCID: PMC10454606 DOI: 10.3390/genes14081554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
It has been shown that the loss of function of the BRCA1, BRCA2, and PALB2 genes due to a number of hereditary mutations or chromosomal aberrations can affect the effectiveness of chemotherapy treatment and disease prognosis in patients with various types of cancer, and in particular in breast cancer. Thus, the aim of the work was to evaluate the predictive and prognostic potential of DNA copy number aberrations and mutations in the BRCA1, BRCA2, and PALB2 genes in breast tumors. MATERIALS AND METHODS The study included 66 patients with breast cancer. DNA copy number aberrations (CNA) were assessed by high-density CytoScanHD™ Array micro matrix analysis. Gene mutations were assessed by sequencing on the MiSeq™ Sequencing System using the Accel-Amplicon BRCA1, BRCA2, and PALB2 Panel. RESULTS It has been established that the presence of a normal copy number of PALB2 is associated with a lack of response to chemotherapy in Taxotere-containing treatment regimens (p = 0.05). In addition, the presence of a PALB2 deletion is associated with 100% metastatic survival rates (log-rank test p = 0.04). As a result of sequencing, 25 mutations were found in the BRCA1 gene, 42 mutations in BRCA2, and 27 mutations in the PALB2 gene. The effect of mutations on the effectiveness of treatment is controversial, but an effect on the survival of patients with breast cancer has been shown. So, in the presence of pathogenic mutations in the BRCA2 gene, 100% metastatic survival is observed (log-rank test p = 0.05), as well as in the elimination of PALB2 mutations during treatment (log-rank test p = 0.07). CONCLUSION Currently, there is little data on the effect of chromosomal aberrations and mutations in the BRCA1/2 and PALB2 genes on the effectiveness of treatment and prognosis of the disease. At the same time, the study of these genes has great potential for testing focused on a personalized approach to the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Matvey M. Tsyganov
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (S.S.S.); (E.A.L.); (M.K.I.)
- Faculty of Medicine and Biology, Siberian State Medical University, 2, Moskovsky Trakt, 634050 Tomsk, Russia
| | - Sofia S. Sorokovikova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (S.S.S.); (E.A.L.); (M.K.I.)
- Biological Institute, National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| | - Elizaveta A. Lutzkaya
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (S.S.S.); (E.A.L.); (M.K.I.)
| | - Marina K. Ibragimova
- Department of Experimental Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 5, Kooperativny Street, 634050 Tomsk, Russia; (S.S.S.); (E.A.L.); (M.K.I.)
- Faculty of Medicine and Biology, Siberian State Medical University, 2, Moskovsky Trakt, 634050 Tomsk, Russia
- Biological Institute, National Research Tomsk State University, 36, Lenin Avenue, 634050 Tomsk, Russia
| |
Collapse
|
9
|
Rogers CB, Kram RE, Lin K, Myers CL, Sobeck A, Hendrickson EA, Bielinsky AK. Fanconi anemia-associated chromosomal radial formation is dependent on POLθ-mediated alternative end joining. Cell Rep 2023; 42:112428. [PMID: 37086407 DOI: 10.1016/j.celrep.2023.112428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/25/2023] [Accepted: 04/07/2023] [Indexed: 04/23/2023] Open
Abstract
Activation of the Fanconi anemia (FA) pathway after treatment with mitomycin C (MMC) is essential for preventing chromosome translocations termed "radials." When replication forks stall at MMC-induced interstrand crosslinks (ICLs), the FA pathway is activated to orchestrate ICL unhooking and repair of the DNA break intermediates. However, in FA-deficient cells, how ICL-associated breaks are resolved in a manner that leads to radials is unclear. Here, we demonstrate that MMC-induced radials are dependent on DNA polymerase theta (POLθ)-mediated alternative end joining (A-EJ). Specifically, we show that radials observed in FANCD2-/- cells are dependent on POLθ and DNA ligase III and occur independently of classical non-homologous end joining. Furthermore, treatment of FANCD2-/- cells with POLθ inhibitors abolishes radials and leads to the accumulation of breaks co-localizing with common fragile sites. Uniformly, these observations implicate A-EJ in radial formation and provide mechanistic insights into the treatment of FA pathway-deficient cancers with POLθ inhibitors.
Collapse
Affiliation(s)
- Colette B Rogers
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rachel E Kram
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kevin Lin
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alexandra Sobeck
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
10
|
Eek Mariampillai A, Hauge S, Øynebråten I, Rødland GE, Corthay A, Syljuåsen RG. Caspase activation counteracts interferon signaling after G2 checkpoint abrogation by ATR inhibition in irradiated human cancer cells. Front Oncol 2022; 12:981332. [PMID: 36387237 PMCID: PMC9650454 DOI: 10.3389/fonc.2022.981332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022] Open
Abstract
Recent studies suggest that inhibition of the ATR kinase can potentiate radiation-induced antitumor immune responses, but the extent and mechanisms of such responses in human cancers remain scarcely understood. We aimed to assess whether the ATR inhibitors VE822 and AZD6738, by abrogating the G2 checkpoint, increase cGAS-mediated type I IFN response after irradiation in human lung cancer and osteosarcoma cell lines. Supporting that the checkpoint may prevent IFN induction, radiation-induced IFN signaling declined when the G2 checkpoint arrest was prolonged at high radiation doses. G2 checkpoint abrogation after co-treatment with radiation and ATR inhibitors was accompanied by increased radiation-induced IFN signaling in four out of five cell lines tested. Consistent with the hypothesis that the cytosolic DNA sensor cGAS may detect DNA from ruptured micronuclei after G2 checkpoint abrogation, cGAS co-localized with micronuclei, and depletion of cGAS or STING abolished the IFN responses. Contrastingly, one lung cancer cell line showed no increase in IFN signaling despite irradiation and G2 checkpoint abrogation. This cell line showed a higher level of the exonuclease TREX1 than the other cell lines, but TREX1 depletion did not enhance IFN signaling. Rather, addition of a pan-caspase inhibitor restored the IFN response in this cell line and also increased the responses in the other cell lines. These results show that treatment-induced caspase activation can suppress the IFN response after co-treatment with radiation and ATR inhibitors. Caspase activation thus warrants further consideration as a possible predictive marker for lack of IFN signaling.
Collapse
Affiliation(s)
- Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Inger Øynebråten
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Alexandre Corthay
- Tumor Immunology Lab, Department of Pathology, Oslo University Hospital, Oslo, Norway
- Hybrid Technology Hub – Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Randi G. Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- *Correspondence: Randi G. Syljuåsen,
| |
Collapse
|
11
|
Abe A, Imoto I, Ueki A, Nomura H, Kanao H. Moderate-Risk Genes for Hereditary Ovarian Cancers Involved in the Homologous Recombination Repair Pathway. Int J Mol Sci 2022; 23:11790. [PMID: 36233090 PMCID: PMC9570179 DOI: 10.3390/ijms231911790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/17/2022] Open
Abstract
Approximately 20% of cases of epithelial ovarian cancer (EOC) are hereditary, sharing many causative genes with breast cancer. The lower frequency of EOC compared to breast cancer makes it challenging to estimate absolute or relative risk and verify the efficacy of risk-reducing surgery in individuals harboring germline pathogenic variants (GPV) in EOC predisposition genes, particularly those with relatively low penetrance. Here, we review the molecular features and hereditary tumor risk associated with several moderate-penetrance genes in EOC that are involved in the homologous recombination repair pathway, i.e., ATM, BRIP1, NBN, PALB2, and RAD51C/D. Understanding the molecular mechanisms underlying the expression and function of these genes may elucidate trends in the development and progression of hereditary tumors, including EOC. A fundamental understanding of the genes driving EOC can help us accurately estimate the genetic risk of developing EOC and select appropriate prevention and treatment strategies for hereditary EOC. Therefore, we summarize the functions of the candidate predisposition genes for EOC and discuss the clinical management of individuals carrying GPV in these genes.
Collapse
Affiliation(s)
- Akiko Abe
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Issei Imoto
- Aichi Cancer Center Research Institute, Nagoya 464-8681, Japan
| | - Arisa Ueki
- Clinical Genetic Oncology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Hidetaka Nomura
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| | - Hiroyuki Kanao
- Department of Gynecologic Oncology, Cancer Institute Hospital of JFCR, Tokyo 135-8550, Japan
| |
Collapse
|
12
|
Foo TK, Xia B. BRCA1-Dependent and Independent Recruitment of PALB2-BRCA2-RAD51 in the DNA Damage Response and Cancer. Cancer Res 2022; 82:3191-3197. [PMID: 35819255 PMCID: PMC9481714 DOI: 10.1158/0008-5472.can-22-1535] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/22/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
The BRCA1-PALB2-BRCA2 axis plays essential roles in the cellular response to DNA double-strand breaks (DSB), maintenance of genome integrity, and suppression of cancer development. Upon DNA damage, BRCA1 is recruited to DSBs, where it facilitates end resection and recruits PALB2 and its associated BRCA2 to load the central recombination enzyme RAD51 to initiate homologous recombination (HR) repair. In recent years, several BRCA1-independent mechanisms of PALB2 recruitment have also been reported. Collectively, these available data illustrate a series of hierarchical, context-dependent, and cooperating mechanisms of PALB2 recruitment that is critical for HR and therapy response either in the presence or absence of BRCA1. Here, we review these BRCA1-dependent and independent mechanisms and their importance in DSB repair, cancer development, and therapy. As BRCA1-mutant cancer cells regain HR function, for which PALB2 is generally required, and become resistant to targeted therapies, such as PARP inhibitors, targeting BRCA1-independent mechanisms of PALB2 recruitment represents a potential new avenue to improve treatment of BRCA1-mutant tumors.
Collapse
Affiliation(s)
- Tzeh Keong Foo
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Bing Xia
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey and Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
13
|
Functional assessment of missense variants of uncertain significance in the cancer susceptibility gene PALB2. NPJ Breast Cancer 2022; 8:86. [PMID: 35853885 PMCID: PMC9296472 DOI: 10.1038/s41523-022-00454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 07/05/2022] [Indexed: 11/10/2022] Open
Abstract
Germline PALB2 pathogenic variants are associated with an increased lifetime risk for breast, pancreatic, and ovarian cancer. However, the interpretation of the pathogenicity of numerous PALB2 missense variants of uncertain significance (VUSs) identified in germline genetic testing remains a challenge. Here we selected ten potentially pathogenic PALB2 VUSs identified in 2279 Chinese patients with breast cancer and evaluated their impacts on PALB2 function by systematic functional assays. We showed that three PALB2 VUSs p.K16M [c.47 A > T], p.L24F [c.72 G > C], and p.L35F [c.103 C > T] in the coiled-coil domain impaired PALB2-mediated homologous recombination. The p.L24F and p.L35F variants partially disrupted BRCA1-PALB2 interactions, reduced RAD51 foci formation in response to DNA damage, abrogated ionizing radiation-induced G2/M checkpoint maintenance, and conferred increased sensitivity to olaparib and cisplatin. The p.K16M variant presented mild effects on BRCA1-PALB2 interactions and RAD51 foci formation. Altogether, we identify two novel PALB2 VUSs, p.L24F and p.L35F, that compromise PALB2 function and may increase cancer risk. These two variants display marked olaparib and cisplatin sensitivity and may help predict response to targeted therapy in the clinical treatment of patients with these variants.
Collapse
|
14
|
Functions of Breast Cancer Predisposition Genes: Implications for Clinical Management. Int J Mol Sci 2022; 23:ijms23137481. [PMID: 35806485 PMCID: PMC9267387 DOI: 10.3390/ijms23137481] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Approximately 5–10% of all breast cancer (BC) cases are caused by germline pathogenic variants (GPVs) in various cancer predisposition genes (CPGs). The most common contributors to hereditary BC are BRCA1 and BRCA2, which are associated with hereditary breast and ovarian cancer (HBOC). ATM, BARD1, CHEK2, PALB2, RAD51C, and RAD51D have also been recognized as CPGs with a high to moderate risk of BC. Primary and secondary cancer prevention strategies have been established for HBOC patients; however, optimal preventive strategies for most hereditary BCs have not yet been established. Most BC-associated CPGs participate in DNA damage repair pathways and cell cycle checkpoint mechanisms, and function jointly in such cascades; therefore, a fundamental understanding of the disease drivers in such cascades can facilitate the accurate estimation of the genetic risk of developing BC and the selection of appropriate preventive and therapeutic strategies to manage hereditary BCs. Herein, we review the functions of key BC-associated CPGs and strategies for the clinical management in individuals harboring the GPVs of such genes.
Collapse
|
15
|
Lavoro A, Scalisi A, Candido S, Zanghì GN, Rizzo R, Gattuso G, Caruso G, Libra M, Falzone L. Identification of the most common BRCA alterations through analysis of germline mutation databases: Is droplet digital PCR an additional strategy for the assessment of such alterations in breast and ovarian cancer families? Int J Oncol 2022; 60:58. [PMID: 35383859 PMCID: PMC8997337 DOI: 10.3892/ijo.2022.5349] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/24/2022] [Indexed: 11/06/2022] Open
Abstract
Breast and ovarian cancer represent two of the most common tumor types in females worldwide. Over the years, several non‑modifiable and modifiable risk factors have been associated with the onset and progression of these tumors, including age, reproductive factors, ethnicity, socioeconomic status and lifestyle factors, as well as family history and genetic factors. Of note, BRCA1 and BRCA2 are two tumor suppressor genes with a key role in DNA repair processes, whose mutations may induce genomic instability and increase the risk of cancer development. Specifically, females with a family history of breast or ovarian cancer harboring BRCA1/2 germline mutations have a 60‑70% increased risk of developing breast cancer and a 15‑40% increased risk for ovarian cancer. Different databases have collected the most frequent germline mutations affecting BRCA1/2. Through the analysis of such databases, it is possible to identify frequent hotspot mutations that may be analyzed with next‑generation sequencing (NGS) and novel innovative strategies. In this context, NGS remains the gold standard method for the assessment of BRCA1/2 mutations, while novel techniques, including droplet digital PCR (ddPCR), may improve the sensitivity to identify such mutations in the hereditary forms of breast and ovarian cancer. On these bases, the present study aimed to provide an update of the current knowledge on the frequency of BRCA1/2 mutations and cancer susceptibility, focusing on the diagnostic potential of the most recent methods, such as ddPCR.
Collapse
Affiliation(s)
- Alessandro Lavoro
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Aurora Scalisi
- Italian League Against Cancer, Section of Catania, I‑95122 Catania, Italy
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Guido Nicola Zanghì
- Department of General Surgery and Medical‑Surgical Specialties, Policlinico‑Vittorio Emanuele Hospital, University of Catania, I‑95123 Catania, Italy
| | - Roberta Rizzo
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Gattuso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Giuseppe Caruso
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, I‑95123 Catania, Italy
| | - Luca Falzone
- Epidemiology and Biostatistics Unit, National Cancer Institute IRCCS Fondazione 'G. Pascale', I‑80131 Naples, Italy
| |
Collapse
|
16
|
Zhou L, Xiang J, He Y. Research progress on the association between environmental pollutants and the resistance mechanism of PARP inhibitors in ovarian cancer. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49491-49506. [PMID: 34370190 DOI: 10.1007/s11356-021-15852-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The occurrence and progression of ovarian cancer are closely related to genetics and environmental pollutants. Poly(ADP-ribose) polymerase (PARP) inhibitors have been a major breakthrough in the history of ovarian cancer treatment. PARP is an enzyme responsible for post-translational modification of proteins and repair of single-stranded DNA damage. PARP inhibitors can selectively inhibit PARP function, resulting in a synthetic lethal effect on tumor cells defective in homologous recombination repair. However, with large-scale application, drug resistance also inevitably appears. For PARP inhibitors, the diversity and complexity of drug resistance mechanisms have always been difficult problems in clinical treatment. Herein, we mainly summarized the research progress of DNA damage repair and drug resistance mechanisms related to PARP inhibitors and the impact of environmental pollutants on DNA damage repair to aid the development prospects and highlight urgent problems to be solved.
Collapse
Affiliation(s)
- Lina Zhou
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Jiangdong Xiang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200080, People's Republic of China
| | - Yinyan He
- Department of Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
17
|
Foo TK, Vincelli G, Huselid E, Her J, Zheng H, Simhadri S, Wang M, Huo Y, Li T, Yu X, Li H, Zhao W, Bunting SF, Xia B. ATR/ATM-mediated phosphorylation of BRCA1 T1394 promotes homologous recombinational repair and G2/M checkpoint maintenance. Cancer Res 2021; 81:4676-4684. [PMID: 34301763 PMCID: PMC8448966 DOI: 10.1158/0008-5472.can-20-2723] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 06/22/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
BRCA1 maintains genome integrity and suppresses tumorigenesis by promoting homologous recombination (HR)-mediated repair of DNA double strand breaks (DSB) and DNA damage-induced cell cycle checkpoints. Phosphorylation of BRCA1 by ATM, ATR, CHK2, CDK, and PLK1 kinases has been reported to regulate its functions. Here we show that ATR and ATM-mediated phosphorylation of BRCA1 on T1394, a highly conserved but functionally uncharacterized site, is a key modification for its function in the DNA damage response. Following DNA damage, T1394 phosphorylation ensured faithful repair of DSBs by promoting HR and preventing single strand annealing, a deletion-generating repair process. BRCA1 T1394 phosphorylation further safeguarded chromosomal integrity by maintaining the G2/M checkpoint. Moreover, multiple patient-derived BRCA1 variants of unknown significance were shown to affect T1394 phosphorylation. These results establish an important regulatory mechanism of BRCA1 function in the DNA damage response and may have implications in the development or prognosis of BRCA1-associated cancers.
Collapse
Affiliation(s)
- Tzeh K Foo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | | | - Eric Huselid
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Joonyoung Her
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | | | | | - Meiling Wang
- The University of Texas Health Science Center at San Antonio
| | - Yanying Huo
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| | - Tao Li
- Department of Medicine/Population Sciences, Rutgers Cancer Institute of New Jersey
| | | | - Hong Li
- Center for advanced proteomics, Rutgers, The State University of New Jersey
| | - Weixing Zhao
- Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio
| | - Samuel F Bunting
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey
| | - Bing Xia
- Radiation Oncology, Rutgers Cancer Institute of New Jersey
| |
Collapse
|
18
|
Andreassen PR, Seo J, Wiek C, Hanenberg H. Understanding BRCA2 Function as a Tumor Suppressor Based on Domain-Specific Activities in DNA Damage Responses. Genes (Basel) 2021; 12:genes12071034. [PMID: 34356050 PMCID: PMC8307705 DOI: 10.3390/genes12071034] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/23/2021] [Accepted: 06/29/2021] [Indexed: 01/14/2023] Open
Abstract
BRCA2 is an essential genome stability gene that has various functions in cells, including roles in homologous recombination, G2 checkpoint control, protection of stalled replication forks, and promotion of cellular resistance to numerous types of DNA damage. Heterozygous mutation of BRCA2 is associated with an increased risk of developing cancers of the breast, ovaries, pancreas, and other sites, thus BRCA2 acts as a classic tumor suppressor gene. However, understanding BRCA2 function as a tumor suppressor is severely limited by the fact that ~70% of the encoded protein has not been tested or assigned a function in the cellular DNA damage response. Remarkably, even the specific role(s) of many known domains in BRCA2 are not well characterized, predominantly because stable expression of the very large BRCA2 protein in cells, for experimental purposes, is challenging. Here, we review what is known about these domains and the assay systems that are available to study the cellular roles of BRCA2 domains in DNA damage responses. We also list criteria for better testing systems because, ultimately, functional assays for assessing the impact of germline and acquired mutations identified in genetic screens are important for guiding cancer prevention measures and for tailored cancer treatments.
Collapse
Affiliation(s)
- Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
- Correspondence: ; Tel.: +1-(513)-636-0499
| | - Joonbae Seo
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Constanze Wiek
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
| | - Helmut Hanenberg
- Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, 40225 Düsseldorf, Germany; (C.W.); (H.H.)
- Department of Pediatrics III, Children’s Hospital, University of Duisburg-Essen, 45122 Essen, Germany
| |
Collapse
|
19
|
Royfman R, Whiteley E, Noe O, Morand S, Creeden J, Stanbery L, Hamouda D, Nemunaitis J. BRCA1/2 signaling and homologous recombination deficiency in breast and ovarian cancer. Future Oncol 2021; 17:2817-2830. [PMID: 34058833 DOI: 10.2217/fon-2021-0072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Patients who have mutations of the genes BRCA1 or BRCA2 are at an increased risk for developing breast and ovarian cancer. BRCA1/2 function as tumor suppressor genes, responsible for regulating DNA repair, and play an essential role in homologous recombination. Mutation of BRCA1/2 results in homologous recombination deficiency and genomic instability which drives oncogenesis and cancer proliferation. Recently, BRCA1/2 gene expression has been implicated in regulating immune response. Here we discuss the signaling pathway of BRCA1/2 in relation to breast and ovarian cancer, with emphasis on how dysregulation facilitates the path to malignancy and current treatment options.
Collapse
Affiliation(s)
- Rachel Royfman
- University of Toledo Medical Center, Department of Internal Medicine, Toledo, OH 43614, USA
| | - Emma Whiteley
- University of Toledo Medical Center, Department of Internal Medicine, Toledo, OH 43614, USA
| | - Olivia Noe
- University of Toledo Medical Center, Department of Internal Medicine, Toledo, OH 43614, USA
| | - Susan Morand
- University of Toledo Medical Center, Department of Internal Medicine, Toledo, OH 43614, USA
| | - Justin Creeden
- University of Toledo Medical Center, Department of Internal Medicine, Toledo, OH 43614, USA
| | - Laura Stanbery
- Gradalis, Inc., Carrollton, Department of Medical Affairs, Carrollton, TX 75006, USA
| | - Danae Hamouda
- University of Toledo Medical Center, Department of Internal Medicine, Toledo, OH 43614, USA
| | - John Nemunaitis
- Gradalis, Inc., Carrollton, Department of Medical Affairs, Carrollton, TX 75006, USA
| |
Collapse
|
20
|
San Martin Alonso M, Noordermeer S. Untangling the crosstalk between BRCA1 and R-loops during DNA repair. Nucleic Acids Res 2021; 49:4848-4863. [PMID: 33755171 PMCID: PMC8136775 DOI: 10.1093/nar/gkab178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 01/13/2023] Open
Abstract
R-loops are RNA:DNA hybrids assembled during biological processes but are also linked to genetic instability when formed out of their natural context. Emerging evidence suggests that the repair of DNA double-strand breaks requires the formation of a transient R-loop, which eventually must be removed to guarantee a correct repair process. The multifaceted BRCA1 protein has been shown to be recruited at this specific break-induced R-loop, and it facilitates mechanisms in order to regulate R-loop removal. In this review, we discuss the different potential roles of BRCA1 in R-loop homeostasis during DNA repair and how these processes ensure faithful DSB repair.
Collapse
Affiliation(s)
- Marta San Martin Alonso
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sylvie M Noordermeer
- Leiden University Medical Center, Department of Human Genetics, Leiden, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
21
|
Huo Y, Selenica P, Mahdi AH, Pareja F, Kyker-Snowman K, Chen Y, Kumar R, Da Cruz Paula A, Basili T, Brown DN, Pei X, Riaz N, Tan Y, Huang YX, Li T, Barnard NJ, Reis-Filho JS, Weigelt B, Xia B. Genetic interactions among Brca1, Brca2, Palb2, and Trp53 in mammary tumor development. NPJ Breast Cancer 2021; 7:45. [PMID: 33893322 PMCID: PMC8065161 DOI: 10.1038/s41523-021-00253-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Inherited mutations in BRCA1, BRCA2, and PALB2 cause a high risk of breast cancer. Here, we conducted parallel conditional knockout (CKO) of Brca1, Palb2, and Brca2, individually and in combination, along with one copy of Trp53, in the mammary gland of nulliparous female mice. We observed a functional equivalence of the three genes in their basic tumor-suppressive activity, a linear epistasis of Palb2 and Brca2, but complementary roles of Brca1 and Palb2 in mammary tumor suppression, as combined ablation of either Palb2 or Brca2 with Brca1 led to delayed tumor formation. Whole-exome sequencing (WES) revealed both similarities and differences between Brca1 and Palb2 or Brca2 null tumors. Analyses of mouse mammary glands and cultured human cells showed that combined loss of BRCA1 and PALB2 led to high levels of reactive oxygen species (ROS) and increased apoptosis, implicating oxidative stress in the delayed tumor development in Brca1;Palb2 double CKO mice. The functional complementarity between BRCA1 and PALB2/BRCA2 and the role of ROS in tumorigenesis require further investigation.
Collapse
Affiliation(s)
- Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Amar H Mahdi
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Physiology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Fresia Pareja
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Kelly Kyker-Snowman
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Ying Chen
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Rahul Kumar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Centre for Brain Research, Indian Institute of Science (IISc), Bangalore, India
| | - Arnaud Da Cruz Paula
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Thais Basili
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David N Brown
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yongmei Tan
- Stomatological Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu-Xiu Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Tao Li
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Nicola J Barnard
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Jorge S Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
| |
Collapse
|
22
|
Hauge S, Eek Mariampillai A, Rødland GE, Bay LTE, Landsverk HB, Syljuåsen RG. Expanding roles of cell cycle checkpoint inhibitors in radiation oncology. Int J Radiat Biol 2021; 99:941-950. [PMID: 33877959 DOI: 10.1080/09553002.2021.1913529] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE Radiation-induced activation of cell cycle checkpoints have been of long-standing interest. The WEE1, CHK1 and ATR kinases are key factors in cell cycle checkpoint regulation and are essential for the S and G2 checkpoints. Here, we review the rationale for why inhibitors of WEE1, CHK1 and ATR could be beneficial in combination with radiation. CONCLUSIONS Combined treatment with radiation and inhibitors of these kinases results in checkpoint abrogation and subsequent mitotic catastrophe. This might selectively radiosensitize tumor cells, as they often lack the p53-dependent G1 checkpoint and therefore rely more on the G2 checkpoint to repair DNA damage. Further affecting the repair of radiation damage, inhibition of WEE1, CHK1 or ATR also specifically suppresses the homologous recombination repair pathway. Moreover, inhibition of these kinases can induce massive replication stress during S phase of the cell cycle, likely contributing to eliminate radioresistant S phase cells. Intriguingly, recent findings suggest that cell cycle checkpoint inhibitors in combination with radiation can also enhance anti-tumor immune effects. Altogether, the expanding knowledge about the functional roles of WEE1, CHK1 and ATR inhibitors support that they are promising candidates for use in combination with radiation treatment.
Collapse
Affiliation(s)
- Sissel Hauge
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Adrian Eek Mariampillai
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Gro Elise Rødland
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Lilli T E Bay
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Helga B Landsverk
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Randi G Syljuåsen
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Soni A, Mladenov E, Iliakis G. Proficiency in homologous recombination repair is prerequisite for activation of G 2-checkpoint at low radiation doses. DNA Repair (Amst) 2021; 101:103076. [PMID: 33640756 DOI: 10.1016/j.dnarep.2021.103076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/30/2020] [Accepted: 02/13/2021] [Indexed: 10/22/2022]
Abstract
Pathways of repair of DNA double strand breaks (DSBs) cooperate with DNA damage cell cycle checkpoints to safeguard genomic stability when cells are exposed to ionizing radiation (IR). It is widely accepted that checkpoints facilitate the function of DSB repair pathways. Whether DSB repair proficiency feeds back into checkpoint activation is less well investigated. Here, we study activation of the G2-checkpoint in cells deficient in homologous recombination repair (HRR) after exposure to low IR doses (∼1 Gy) in the G2-phase. We report that in the absence of functional HRR, activation of the G2-checkpoint is severely impaired. This response is specific for HRR, as cells deficient in classical non-homologous end joining (c-NHEJ) develop a similar or stronger G2-checkpoint than wild-type (WT) cells. Inhibition of ATM or ATR leaves largely unaffected residual G2-checkpoint in HRR-deficient cells, suggesting that the G2-checkpoint engagement of ATM/ATR is coupled to HRR. HRR-deficient cells show in G2-phase reduced DSB-end-resection, as compared to WT-cells or c-NHEJ mutants, confirming the reported link between resection and G2-checkpoint activation. Strikingly, at higher IR doses (≥4 Gy) HRR-deficient cells irradiated in G2-phase activate a weak but readily detectable ATM/ATR-dependent G2-checkpoint, whereas HRR-deficient cells irradiated in S-phase develop a stronger G2-checkpoint than WT-cells. We conclude that HRR and the ATM/ATR-dependent G2-checkpoint are closely intertwined in cells exposed to low IR-doses in G2-phase, where HRR dominates; they uncouple as HRR becomes suppressed at higher IR doses. Notably, this coupling is specific for cells irradiated in G2-phase, and cells irradiated in S-phase utilize a different mechanistic setup.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, 45122, Essen, Germany.
| |
Collapse
|
24
|
Liu PF, Zhuo ZL, Xie F, Wang S, Zhao XT. Four novel BRCA variants found in Chinese hereditary breast cancer patients by next-generation sequencing. Clin Chim Acta 2021; 516:55-63. [PMID: 33476590 DOI: 10.1016/j.cca.2021.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer is the most frequent cancer among women worldwide. Patients carrying mutations in breast cancer susceptibility genes like BRCA1 and BRCA2 (BRCA1/2) account for 5-10% of all breast cancer patients. Therefore, screening for susceptibility genes may reduce the incidence of breast cancer and improve prognosis. To provide evidence for mutation interpretation and targeted drug use in breast cancer patients, gene mutations were screened in 78 women diagnosed with sporadic breast cancer using a next-generation sequencing panel, confirmed by Sanger sequencing. Then the pathogenicity of the identified novel variants was explored using in vitro experiments including western blotting, co-immunoprecipitation and cell-migration assays. Four novel variants (BRCA2 L1390W, BRCA2 Glu432fs, BRCA1 P706L, and BRCA1 Cys882fs) were identified. BRCA2 Glu432fs decreased the expression of BRCA2 protein, enhanced cell migration and invasion ability, and prevented the protein from interacting with RAD51, resulting in a defect in the homologous recombination pathway. The identification of these novel BRCA variants and the confirmation of their pathogenicity have enriched the genetic database of breast cancer, especially in the Chinese population. Moreover, the variants are the genetic risk factors for hereditary breast cancer. Therefore, BRCA variant detection and genetic counseling for breast cancer patients are meaningful and important.
Collapse
Affiliation(s)
- Peng-Fei Liu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Zhong-Ling Zhuo
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| | - Fei Xie
- Breast Center, Peking University People's Hospital, Beijing, China.
| | - Shu Wang
- Breast Center, Peking University People's Hospital, Beijing, China.
| | - Xiao-Tao Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
25
|
García IA, Pansa MF, Pacciaroni ADV, García ME, Gonzalez ML, Oberti JC, Bocco JL, Carpinella MC, Barboza GE, Nicotra VE, Soria G. Synthetic Lethal Activity of Benzophenanthridine Alkaloids From Zanthoxylum coco Against BRCA1-Deficient Cancer Cells. Front Pharmacol 2020; 11:593845. [PMID: 33424604 PMCID: PMC7793782 DOI: 10.3389/fphar.2020.593845] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Several plants from South America show strong antitumoral properties based on anti-proliferative and/or pro-apoptotic activities. In this work we aimed to identify selective cytotoxic compounds that target BRCA1-deficient cancer cells by Synthetic Lethality (SL) induction. Using a high-throughput screening technology developed in our laboratory, we analyzed a collection of extracts from 46 native plant species from Argentina using a wide dose-response scheme. A highly selective SL-induction capacity was found in an alkaloidal extract from Zanthoxylum coco (Fam. Rutaceae). Bio-guided fractionation coupled to HPLC led to the identification of active benzophenanthridine alkaloids. The most potent SL activity was found with the compound oxynitidine, which showed a remarkably low relative abundance in the active fractions. Further validation experiments were performed using the commercially available and closely related analog nitidine, which showed SL-induction activity against various BRCA1-deficient cell lines with different genetic backgrounds, even in the nanomolar range. Exploration of the underlying mechanism of action using BRCA1-KO cells revealed AKT and topoisomerases as the potential targets responsible of nitidine-triggered SL-induction. Taken together, our findings expose an unforeseen therapeutic activity of alkaloids from Zanthoxylum-spp. that position them as novel lead molecules for drug discovery.
Collapse
Affiliation(s)
- Iris A García
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Florencia Pansa
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Adriana Del Valle Pacciaroni
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Manuela E García
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Laura Gonzalez
- Instituto de Investigaciones en Recursos Naturales y Sustentabilidad Jose Sanchez Labrador S.J., IRNASUS-CONICET, Córdoba, Argentina
| | - Juan Carlos Oberti
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - José Luís Bocco
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Maria Cecilia Carpinella
- Instituto de Investigaciones en Recursos Naturales y Sustentabilidad Jose Sanchez Labrador S.J., IRNASUS-CONICET, Córdoba, Argentina
| | - Gloria E Barboza
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Viviana E Nicotra
- Instituto Multidisciplinario de Biología Vegetal, IMBIV-CONICET, Córdoba, Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Gastón Soria
- Centro de Investigaciones en Bioquímica Clínica e Inmunología, CIBICI-CONICET, Córdoba, Argentina.,Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
26
|
Nepomuceno TC, Carvalho MA, Rodrigue A, Simard J, Masson JY, Monteiro ANA. PALB2 Variants: Protein Domains and Cancer Susceptibility. Trends Cancer 2020; 7:188-197. [PMID: 33139182 DOI: 10.1016/j.trecan.2020.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023]
Abstract
Since its discovery, partner and localizer of breast cancer 2 (BRCA2) (PALB2) has emerged as a major tumor suppressor gene linked to breast cancer (BC), pancreatic cancer (PC), and ovarian cancer (OC) susceptibility. Its protein product plays a pivotal role in the maintenance of genome integrity. Here we discuss the first functional evaluation of a large set of PALB2 missense variants of uncertain significance (VUSs). Assessment of 136 VUSs interrogating a range of PALB2 biological functions resulted in the identification of 15 variants with consistent loss of function across different assays. All loss-of-function variants are located at the PALB2 coiled coil (CC) or at the WD40 domain, highlighting the importance of modular domains mechanistically involved in the DNA damage response (DDR) and pinpointing their roles in tumor suppression.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil
| | - Marcelo A Carvalho
- Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rio de Janeiro 20230-130, Brazil; Instituto Federal do Rio de Janeiro (IFRJ), Rio de Janeiro 20270-021, Brazil
| | - Amélie Rodrigue
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Quebec City, QC G1R 3S3, Canada
| | - Jacques Simard
- Genomics Center, CHU de Quebec-Université Laval Research Center, Quebec City, QC, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center, HDQ Pavilion, Oncology Division, 9 McMahon, Quebec City, QC G1R 3S3, Canada; Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC G1V 0A6, Canada
| | - Alvaro N A Monteiro
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
27
|
Sadeghi F, Asgari M, Matloubi M, Ranjbar M, Karkhaneh Yousefi N, Azari T, Zaki-Dizaji M. Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: review of radiosensitivity assays. Biol Proced Online 2020; 22:23. [PMID: 33013205 PMCID: PMC7528506 DOI: 10.1186/s12575-020-00133-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/04/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND DNA repair pathways, cell cycle arrest checkpoints, and cell death induction are present in cells to process DNA damage and prevent genomic instability caused by various extrinsic and intrinsic ionizing factors. Mutations in the genes involved in these pathways enhances the ionizing radiation sensitivity, reduces the individual's capacity to repair DNA damages, and subsequently increases susceptibility to tumorigenesis. BODY BRCA1 and BRCA2 are two highly penetrant genes involved in the inherited breast cancer and contribute to different DNA damage pathways and cell cycle and apoptosis cascades. Mutations in these genes have been associated with hypersensitivity and genetic instability as well as manifesting severe radiotherapy complications in breast cancer patients. The genomic instability and DNA repair capacity of breast cancer patients with BRCA1/2 mutations have been analyzed in different studies using a variety of assays, including micronucleus assay, comet assay, chromosomal assay, colony-forming assay, γ -H2AX and 53BP1 biomarkers, and fluorescence in situ hybridization. The majority of studies confirmed the enhanced spontaneous & radiation-induced radiosensitivity of breast cancer patients compared to healthy controls. Using G2 micronucleus assay and G2 chromosomal assay, most studies have reported the lymphocyte of healthy carriers with BRCA1 mutation are hypersensitive to invitro ionizing radiation compared to non-carriers without a history of breast cancer. However, it seems this approach is not likely to be useful to distinguish the BRCA carriers from non-carrier with familial history of breast cancer. CONCLUSION In overall, breast cancer patients are more radiosensitive compared to healthy control; however, inconsistent results exist about the ability of current radiosensitive techniques in screening BRCA1/2 carriers or those susceptible to radiotherapy complications. Therefore, developing further radiosensitivity assay is still warranted to evaluate the DNA repair capacity of individuals with BRCA1/2 mutations and serve as a predictive factor for increased risk of cancer mainly in the relatives of breast cancer patients. Moreover, it can provide more evidence about who is susceptible to manifest severe complication after radiotherapy.
Collapse
Affiliation(s)
- Fatemeh Sadeghi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Digestive Diseases Research Institute, Digestive Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Asgari
- Rheumatology Research Center, Tehran University of Medical Sciences, Shariati Hospital, Kargar Ave, Tehran, Iran
| | - Mojdeh Matloubi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Ranjbar
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Karkhaneh Yousefi
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Azari
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Boonen RACM, Vreeswijk MPG, van Attikum H. Functional Characterization of PALB2 Variants of Uncertain Significance: Toward Cancer Risk and Therapy Response Prediction. Front Mol Biosci 2020; 7:169. [PMID: 33195396 PMCID: PMC7525363 DOI: 10.3389/fmolb.2020.00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
In recent years it has become clear that pathogenic variants in PALB2 are associated with a high risk for breast, ovarian and pancreatic cancer. However, the clinical relevance of variants of uncertain significance (VUS) in PALB2, which are increasingly identified through clinical genetic testing, is unclear. Here we review recent advances in the functional characterization of VUS in PALB2. A combination of assays has been used to assess the impact of PALB2 VUS on its function in DNA repair by homologous recombination, cell cycle regulation and the control of cellular levels of reactive oxygen species (ROS). We discuss the outcome of this comprehensive analysis of PALB2 VUS, which showed that VUS in PALB2’s Coiled-Coil (CC) domain can impair the interaction with BRCA1, whereas VUS in its WD40 domain affect PALB2 protein stability. Accordingly, the CC and WD40 domains of PALB2 represent hotspots for variants that impair PALB2 protein function. We also provide a future perspective on the high-throughput analysis of VUS in PALB2, as well as the functional characterization of variants that affect PALB2 RNA splicing. Finally, we discuss how results from these functional assays can be valuable for predicting cancer risk and responsiveness to cancer therapy, such as treatment with PARP inhibitor- or platinum-based chemotherapy.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
29
|
Mahdi AH, Huo Y, Chen Y, Selenica P, Sharma A, Merritt E, Barnard N, Chan C, Ganesan S, Reis-Filho JS, Weigelt B, De S, Xia B. Loss of the BRCA1-PALB2 interaction accelerates p53-associated tumor development in mice. Genes Dis 2020; 9:807-813. [PMID: 35782971 PMCID: PMC9243321 DOI: 10.1016/j.gendis.2020.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 11/18/2022] Open
Abstract
The BRCA1-PALB2-BRCA2 axis, or the BRCA pathway, plays key roles in genome stability maintenance and suppression of breast and several other cancers. Due to frequent p53 mutations in human BRCA1 breast cancers and mouse mammary tumors from Brca1, Brca2 and Palb2 conditional knockout models, it is often thought that p53 inactivation accelerates BRCA1/2 and PALB2-associated tumorigenesis. Here, we studied tumor development in mice with a mutation in Palb2 that disengages the PALB2-BRCA1 interaction in different Trp53 backgrounds. Rather than mammary tumors, Palb2 and Trp53 compound mutant mice developed, with greatly reduced latencies, lymphomas and sarcomas that are typically associated with germline Trp53 inactivation. Whole exome sequencing failed to identify any significant differences in genomic features between the same tumor types of Trp53 single mutant and Palb2;Trp53 compound mutant mice. These results suggest that loss of the BRCA pathway accelerates p53-associated tumor development, possibly without altering the fundamental tumorigenic processes.
Collapse
Affiliation(s)
- Amar H. Mahdi
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Yanying Huo
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
| | - Ying Chen
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Pier Selenica
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anchal Sharma
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Elise Merritt
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Nicola Barnard
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Chang Chan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Jorge S. Reis-Filho
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Britta Weigelt
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| | - Bing Xia
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08903, USA
- Corresponding author. Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.
| |
Collapse
|
30
|
Zhang Y, Shi Z, Zhou Y, Xiao Q, Wang H, Peng Y. Emerging Substrate Proteins of Kelch-like ECH Associated Protein 1 (Keap1) and Potential Challenges for the Development of Small-Molecule Inhibitors of the Keap1-Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) Protein–Protein Interaction. J Med Chem 2020; 63:7986-8002. [DOI: 10.1021/acs.jmedchem.9b01865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Zeyu Shi
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yujun Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Qiong Xiao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
- Department of Medicinal Chemistry, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongyue Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| | - Ying Peng
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1, Xiannongtan Street, Xicheng
District, Beijing 100050, China
| |
Collapse
|
31
|
Wu S, Zhou J, Zhang K, Chen H, Luo M, Lu Y, Sun Y, Chen Y. Molecular Mechanisms of PALB2 Function and Its Role in Breast Cancer Management. Front Oncol 2020; 10:301. [PMID: 32185139 PMCID: PMC7059202 DOI: 10.3389/fonc.2020.00301] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 02/20/2020] [Indexed: 12/31/2022] Open
Abstract
Partner and localizer of BRCA2 (PALB2) is vital for homologous recombination (HR) repair in response to DNA double-strand breaks (DSBs). PALB2 functions as a tumor suppressor and participates in the maintenance of genome integrity. In this review, we summarize the current knowledge of the biological roles of the multifaceted PALB2 protein and of its regulation. Moreover, we describe the link between PALB2 pathogenic variants (PVs) and breast cancer predisposition, aggressive clinicopathological features, and adverse clinical prognosis. We also refer to both the opportunities and challenges that the identification of PALB2 PVs provides in breast cancer genetic counseling and precision medicine.
Collapse
Affiliation(s)
- Shijie Wu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Sun
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiding Chen
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,The Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
32
|
Abdel-Ghany S, Mahfouz M, Ashraf N, Sabit H, Cevik E, El-Zawahri M. Gold nanoparticles induce G2/M cell cycle arrest and enhance the expression of E-cadherin in breast cancer cells. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1728553] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shaimaa Abdel-Ghany
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Mennatallah Mahfouz
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Nada Ashraf
- Department of Environmental Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
| | - Hussein Sabit
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Emre Cevik
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Mokhtar El-Zawahri
- Department of Medical and Pharmaceutical Biotechnology, College of Biotechnology, Misr University for Science and Technology, Giza, Egypt
- Center for Research and Development, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
33
|
Boonen RACM, Rodrigue A, Stoepker C, Wiegant WW, Vroling B, Sharma M, Rother MB, Celosse N, Vreeswijk MPG, Couch F, Simard J, Devilee P, Masson JY, van Attikum H. Functional analysis of genetic variants in the high-risk breast cancer susceptibility gene PALB2. Nat Commun 2019; 10:5296. [PMID: 31757951 PMCID: PMC6876638 DOI: 10.1038/s41467-019-13194-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/25/2019] [Indexed: 12/16/2022] Open
Abstract
Heterozygous carriers of germ-line loss-of-function variants in the DNA repair gene PALB2 are at a highly increased lifetime risk for developing breast cancer. While truncating variants in PALB2 are known to increase cancer risk, the interpretation of missense variants of uncertain significance (VUS) is in its infancy. Here we describe the development of a relatively fast and easy cDNA-based system for the semi high-throughput functional analysis of 48 VUS in human PALB2. By assessing the ability of PALB2 VUS to rescue the DNA repair and checkpoint defects in Palb2 knockout mouse embryonic stem (mES) cells, we identify various VUS in PALB2 that impair its function. Three VUS in the coiled-coil domain of PALB2 abrogate the interaction with BRCA1, whereas several VUS in the WD40 domain dramatically reduce protein stability. Thus, our functional assays identify damaging VUS in PALB2 that may increase cancer risk. PALB2 is an established breast cancer risk gene but the pathogenicity of many variants remains uncharacterised. Here, the authors present a cDNA-based system for the functional analysis of PALB2 variants of unknown significance.
Collapse
Affiliation(s)
- Rick A C M Boonen
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Amélie Rodrigue
- CHU de Québec-Université Laval Research Center, Oncology Division, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Chantal Stoepker
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Bas Vroling
- Bio-Prodict, Nijmegen, 6511 AA, The Netherlands
| | - Milan Sharma
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Nandi Celosse
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Maaike P G Vreeswijk
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Fergus Couch
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jacques Simard
- CHU de Québec-Université Laval Research Center, Oncology Division, Québec City, QC, G1R 3S3, Canada.,CHU de Québec Research Center, Endocrinology and Nephrology Division, Québec City, QC, G1V 4G2, Canada
| | - Peter Devilee
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.,Department of Pathology, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands
| | - Jean-Yves Masson
- CHU de Québec-Université Laval Research Center, Oncology Division, Québec City, QC, G1R 3S3, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, QC, G1V 0A6, Canada
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, The Netherlands.
| |
Collapse
|
34
|
Zhang L, Wang MJ, Wang W, Zhao JY, Wu JL, Liu YP, Zhu H, Qu JM, Zhou M. Identification of driver genes and somatic mutations in cell-free DNA of patients with pulmonary lymphangioleiomyomatosis. Int J Cancer 2019; 146:103-114. [PMID: 31199508 DOI: 10.1002/ijc.32511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Next-generation sequencing of cell-free circulating DNA (cfDNA) has emerged as promising technique for identifying minimally invasive genomic profiling of tumor cells recently. However, it remains relatively unknown in LAM disease. In our study, paired cfDNA and genomic DNA (gDNA) in blood samples were obtained from 23 LAM patients and seven healthy controls to explore mutations profiles of targeted 70 cancer-related genes. As results, log2-based allele frequencies of mutations in cfDNA were significantly different from those of gDNA. By comparing the mutual mutations identified both in cfDNA and gDNA, a significant correlation was also observed. After removing mutations in gDNA, distinct somatic mutation profiles of cfDNA were observed in LAM patients. Forty of 70 targeted genes had recurrent mutations, of which ATM, BRCA2 and APC showed the highest frequency. Based on the mutation, correlation network constructed of 40 mutated genes, 11 hub genes bearing intensive interactions were highlighted, including BRCA1, BRCA2, RAD50, RB1, NF1, APC, MLH3, ATM, PDGFRA, PALB2 and BLM. Expression of the hub genes showed significant clusters between LAM patients and controls and that RAD50 and BRCA2 had the strongest associations with subject phenotypes. Myogenesis and estrogen response were confirmed to be positively regulated in LAM patients. Collectively, our study provided a landscape of genomic alterations in LAM and discovered several potential driver genes, that is, BRCA2 and RAD50, which shed a substantial light on the clinical application of key molecular markers and potential therapy targets for precision diagnosis and treatment in the future.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University school of Medicine, Shanghai, China
| | - Ming-Jie Wang
- Research Laboratory of Clinical Virology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Wang
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital Huangpu District, Shanghai, China
| | - Jing-Ya Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University school of Medicine, Shanghai, China
| | - Jia-Liang Wu
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital Huangpu District, Shanghai, China
| | - Yan-Pu Liu
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital Huangpu District, Shanghai, China
| | - Hong Zhu
- Department of Respiration, Xiangshan Traditional Chinese Medicine Hospital Huangpu District, Shanghai, China
| | - Jie-Ming Qu
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University school of Medicine, Shanghai, China
| | - Min Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Respiratory Disease, Ruijin Hospital, Shanghai Jiaotong University school of Medicine, Shanghai, China
| |
Collapse
|