1
|
Wu X, Liu B, Deng SZ, Xiong T, Dai L, Cheng B. Disulfidptosis-related immune patterns predict prognosis and characterize the tumor microenvironment in oral squamous cell carcinoma. BMC Oral Health 2025; 25:180. [PMID: 39894803 PMCID: PMC11789412 DOI: 10.1186/s12903-024-05279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/29/2024] [Indexed: 02/04/2025] Open
Abstract
BACKGROUND Establishing a prognostic risk model based on immunological and disulfidptosis signatures enables precise prognosis prediction of oral squamous cell carcinoma (OSCC). METHODS Differentially expressed immune and disulfidptosis genes were identified in OSCC and normal tissues. We examined the model's clinical applicability and its relationship to immune cell infiltration. Additionally, the risk score, ssGSEA, ESTIMATE, and CIBERSORT were used to evaluate the intrinsic molecular subtypes, immunological checkpoints, abundances of tumor-infiltrating immune cell types and proportions between the two risk groups. GO-KEGG and GSVA analyses were performed to identify enriched pathways. RESULTS We analyzed the correlation immune genes based on the 14 disulfidptosis-related genes, and found 379 disulfidptosis-related immune genes (DRIGs). After univariate Cox regression we obtained 30 DRIGs and least absolute shrinkage and selection operator (LASSO) regression to reduce the number of genes to 16. Finally we created a nine-DRIGs risk model, of which four were upregulated and five were downregulated. The analysis results showed that disulfidptosis was tightly related to immune cells, immunological-related pathways, the tumor microenvironment (TME), immune checkpoints, human leukocyte antigen (HLA), and tumor mutational burden (TMB). The nomogram, integrating the risk score and clinical factors, accurately predicted overall survival. CONCLUSIONS This novel risk model highlights the role of disulfidptosis-related immune genes in OSCC prognosis. With this model, we can more accurately predict the prognosis of patients with OSCC, as well as assess the potential effects of their TME and immunotherapy.
Collapse
Affiliation(s)
- Xuechen Wu
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Boxin Liu
- Department of Blood Transfusion, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tengteng Xiong
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China
| | - Lin Dai
- Department of Stomatology, Wuhan No.1 Hospital, Wuhan, China.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
2
|
Zhang Y, He Q. The role of SELENBP1 and its epigenetic regulation in carcinogenic progression. Front Genet 2022; 13:1027726. [PMID: 36386843 PMCID: PMC9663989 DOI: 10.3389/fgene.2022.1027726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
The initiation and progression of cancer is modulated through diverse genetic and epigenetic modifications. The epigenetic machinery regulates gene expression through intertwined DNA methylation, histone modifications, and miRNAs without affecting their genome sequences. SELENBP1 belongs to selenium-binding proteins and functions as a tumor suppressor. Its expression is significantly downregulated and correlates with carcinogenic progression and poor survival in various cancers. The role of SELENBP1 in carcinogenesis has not been fully elucidated, and its epigenetic regulation remains poorly understood. In this review, we summarize recent findings on the function and regulatory mechanisms of SELENBP1 during carcinogenic progression, with an emphasis on epigenetic mechanisms. We also discuss the potential cancer treatment targeting epigenetic modification of SELENBP1, either alone or in combination with selenium-containing compounds or dietary selenium.
Collapse
|
3
|
Loh JK, Wang ML, Cheong SK, Tsai FT, Huang SH, Wu JR, Yang YP, Chiou SH, Ong AHK. The study of cancer cell in stromal environment through induced pluripotent stem cell-derived mesenchymal stem cells. J Chin Med Assoc 2022; 85:821-830. [PMID: 35666590 DOI: 10.1097/jcma.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The development of mesenchymal stem cells (MSCs) has gained reputation from its therapeutic potential in stem cell regeneration, anti-inflammation, tumor suppression, and drug delivery treatment. Previous studies have shown MSCs have both promoting and suppressing effects against cancer cells. While the limitation of obtaining a large quantity of homologous MSCs for studies and treatment remains a challenge, an alternative approach involving the production of MSCs derived from induced pluripotent stem cells (iPSCs; induced MSCs [iMSCs]) may be a promising prospect given its ability to undergo prolonged passage and with similar therapeutic profiles as that of their MSC counterparts. However, the influence of iMSC in the interaction of cancer cells remains to be explored as such studies are not well established. In this study, we aim to differentiate iPSCs into MSC-like cells as a potential substitute for adult MSCs and evaluate its effect on non-small-cell lung cancer (NSCLC). METHODS iMSCs were derived from iPSCs and validated with reference to the International Society of Cellular Therapy guidelines on MSC criteria. To create a stromal environment, the conditioned medium (CM) of iMSCs was harvested and applied for coculturing of NSCLC of H1975 at different concentrations. The H1975 was then harvested for RNA extraction and subjected to next-generation sequencing (NGS) for analysis. RESULTS The morphology of iMSCs-CM-treated H1975 was different from an untreated H1975. Our NGS data suggest the occurrence of apoptotic events and the presence of cytokines from H1975's RNA that are treated with iMSCs-CM. CONCLUSION Our results have shown that iMSCs may suppress the growth of H1975 by releasing proapoptotic cytokines into coculture media. Using iPSC-derived MSC models allows a deeper study of tumor cross talk between MSC and cancer cells that can be applied for potential future cancer therapy.
Collapse
Affiliation(s)
- Jit-Kai Loh
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shu-Huei Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
4
|
Shao X, Chen Y, Wang W, Du W, Zhang X, Cai M, Bing S, Cao J, Xu X, Yang B, He Q, Ying M. Blockade of deubiquitinase YOD1 degrades oncogenic PML/RARα and eradicates acute promyelocytic leukemia cells. Acta Pharm Sin B 2022; 12:1856-1870. [PMID: 35847510 PMCID: PMC9279643 DOI: 10.1016/j.apsb.2021.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/06/2021] [Accepted: 09/28/2021] [Indexed: 11/26/2022] Open
Abstract
In most acute promyelocytic leukemia (APL) cells, promyelocytic leukemia (PML) fuses to retinoic acid receptor α (RARα) due to chromosomal translocation, thus generating PML/RARα oncoprotein, which is a relatively stable oncoprotein for degradation in APL. Elucidating the mechanism regulating the stability of PML/RARα may help to degrade PML/RARα and eradicate APL cells. Here, we describe a deubiquitinase (DUB)-involved regulatory mechanism for the maintenance of PML/RARα stability and develop a novel pharmacological approach to degrading PML/RARα by inhibiting DUB. We utilized a DUB siRNA library to identify the ovarian tumor protease (OTU) family member deubiquitinase YOD1 as a critical DUB of PML/RARα. Suppression of YOD1 promoted the degradation of PML/RARα, thus inhibiting APL cells and prolonging the survival time of APL cell-bearing mice. Subsequent phenotypic screening of small molecules allowed us to identify ubiquitin isopeptidase inhibitor I (G5) as the first YOD1 pharmacological inhibitor. As expected, G5 notably degraded PML/RARα protein and eradicated APL, particularly drug-resistant APL cells. Importantly, G5 also showed a strong killing effect on primary patient-derived APL blasts. Overall, our study not only reveals the DUB-involved regulatory mechanism on PML/RARα stability and validates YOD1 as a potential therapeutic target for APL, but also identifies G5 as a YOD1 inhibitor and a promising candidate for APL, particularly drug-resistant APL treatment.
Collapse
|
5
|
Gianni’ M, Goracci L, Schlaefli A, Di Veroli A, Kurosaki M, Guarrera L, Bolis M, Foglia M, Lupi M, Tschan MP, Cruciani G, Terao M, Garattini E. Role of cardiolipins, mitochondria, and autophagy in the differentiation process activated by all-trans retinoic acid in acute promyelocytic leukemia. Cell Death Dis 2022; 13:30. [PMID: 35013142 PMCID: PMC8748438 DOI: 10.1038/s41419-021-04476-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022]
Abstract
The role played by lipids in the process of granulocytic differentiation activated by all-trans retinoic acid (ATRA) in Acute-Promyelocytic-Leukemia (APL) blasts is unknown. The process of granulocytic differentiation activated by ATRA in APL blasts is recapitulated in the NB4 cell-line, which is characterized by expression of the pathogenic PML-RARα fusion protein. In the present study, we used the NB4 model to define the effects exerted by ATRA on lipid homeostasis. Using a high-throughput lipidomic approach, we demonstrate that exposure of the APL-derived NB4 cell-line to ATRA causes an early reduction in the amounts of cardiolipins, a major lipid component of the mitochondrial membranes. The decrease in the levels of cardiolipins results in a concomitant inhibition of mitochondrial activity. These ATRA-dependent effects are causally involved in the granulocytic maturation process. In fact, the ATRA-induced decrease of cardiolipins and the concomitant dysfunction of mitochondria precede the differentiation of retinoid-sensitive NB4 cells and the two phenomena are not observed in the retinoid-resistant NB4.306 counterparts. In addition, ethanolamine induced rescue of the mitochondrial dysfunction activated by cardiolipin deficiency inhibits ATRA-dependent granulocytic differentiation and induction of the associated autophagic process. The RNA-seq studies performed in parental NB4 cells and a NB4-derived cell population, characterized by silencing of the autophagy mediator, ATG5, provide insights into the mechanisms underlying the differentiating action of ATRA. The results indicate that ATRA causes a significant down-regulation of CRLS1 (Cardiolipin-synthase-1) and LPCAT1 (Lysophosphatidylcholine-Acyltransferase-1) mRNAs which code for two enzymes catalyzing the last steps of cardiolipin synthesis. ATRA-dependent down-regulation of CRLS1 and LPCAT1 mRNAs is functionally relevant, as it is accompanied by a significant decrease in the amounts of the corresponding proteins. Furthermore, the decrease in CRLS1 and LPCAT1 levels requires activation of the autophagic process, as down-regulation of the two proteins is blocked in ATG5-silenced NB4-shATG5 cells.
Collapse
Affiliation(s)
- Maurizio Gianni’
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Laura Goracci
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anna Schlaefli
- grid.5734.50000 0001 0726 5157Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland
| | - Alessandra Di Veroli
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Mami Kurosaki
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Luca Guarrera
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Marco Bolis
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy ,grid.419922.5Functional Cancer Genomics Laboratory, Institute of Oncology Research, USI, University of Southern Switzerland, 6500 Bellinzona, Switzerland ,grid.419765.80000 0001 2223 3006Bioinformatics Core Unit Institute of Oncology Research, Swiss Institute of Bioinformatics, 1000 Lausanne, Switzerland
| | - Marika Foglia
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Monica Lupi
- grid.4527.40000000106678902Department of Oncology, Istituto di Ricerche Farmacologiche “Mario Negri” IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Mario P. Tschan
- grid.5734.50000 0001 0726 5157Institute of Pathology, University of Bern, Murtenstrasse 31, CH-3008 Bern, Switzerland
| | - Gabriele Cruciani
- grid.9027.c0000 0004 1757 3630Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Mineko Terao
- grid.4527.40000000106678902Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156, Milano, Italy.
| |
Collapse
|
6
|
Suganuma E, Sato S, Honda S, Nakazawa A. All trans retinoic acid alleviates coronary stenosis by regulating smooth muscle cell function in a mouse model of Kawasaki disease. Sci Rep 2021; 11:13856. [PMID: 34226641 PMCID: PMC8257698 DOI: 10.1038/s41598-021-93459-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/22/2021] [Indexed: 12/17/2022] Open
Abstract
Coronary artery (CA) stenosis is a detrimental and often life-threatening sequela in Kawasaki disease (KD) patients with coronary artery aneurysm (CAA). Therapeutic strategies for these patients have not yet been established. All-trans-retinoic acid (atRA) is a modulator of smooth muscle cell functions. The purpose of this study was to investigate the effect of atRA on CA stenosis in a mouse model of KD. Lactobacillus casei cell wall extract (LCWE) was intraperitoneally injected into 5-week-old male C57BL/6 J mice to induce CA stenosis. Two weeks later, the mice were orally administered atRA (30 mg/kg) 5 days per week for 14 weeks (LCWE + atRA group, n = 7). Mice in the untreated group (LCWE group, n = 6) received corn oil alone. Control mice were injected with phosphate-buffered saline (PBS, n = 5). Treatment with atRA significantly suppressed CA inflammation (19.3 ± 2.8 vs 4.4 ± 2.8, p < 0.0001) and reduced the incidence of CA stenosis (100% vs 18.5%, p < 0.05). In addition, atRA suppressed the migration of human coronary artery smooth muscle cells (HCASMCs) induced by platelet-derived growth factor subunit B homodimer (PDGF-BB). In conclusion, atRA dramatically alleviated CA stenosis by suppressing SMC migration. Therefore, it is expected to have clinical applications preventing CA stenosis in KD patients with CAA.
Collapse
Affiliation(s)
- Eisuke Suganuma
- Division of Infectious Diseases and Immunology, Allergy, Saitama Children's Medical Center, 1-2 Shintoshin Chuou-ku Saitama-shi, Saitama, 330-8777, Japan.
| | - Satoshi Sato
- Division of Infectious Diseases and Immunology, Allergy, Saitama Children's Medical Center, 1-2 Shintoshin Chuou-ku Saitama-shi, Saitama, 330-8777, Japan
| | - Satoko Honda
- Division of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| | - Atsuko Nakazawa
- Division of Clinical Research, Saitama Children's Medical Center, Saitama, Japan
| |
Collapse
|
7
|
Kotipalli A, Banerjee R, Kasibhatla SM, Joshi R. Analysis of H3K4me3-ChIP-Seq and RNA-Seq data to understand the putative role of miRNAs and their target genes in breast cancer cell lines. Genomics Inform 2021; 19:e17. [PMID: 34261302 PMCID: PMC8261273 DOI: 10.5808/gi.21020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022] Open
Abstract
Breast cancer is one of the leading causes of cancer in women all over the world and accounts for ~25% of newly observed cancers in women. Epigenetic modifications influence differential expression of genes through non-coding RNA and play a crucial role in cancer regulation. In the present study, epigenetic regulation of gene expression by in-silico analysis of histone modifications using chromatin immunoprecipitation sequencing (ChIP-Seq) has been carried out. Histone modification data of H3K4me3 from one normal-like and four breast cancer cell lines were used to predict miRNA expression at the promoter level. Predicted miRNA promoters (based on ChIP-Seq) were used as a probe to identify gene targets. Five triple-negative breast cancer (TNBC)‒specific miRNAs (miR153-1, miR4767, miR4487, miR6720, and miR-LET7I) were identified and corresponding 13 gene targets were predicted. Eight miRNA promoter peaks were predicted to be differentially expressed in at least three breast cancer cell lines (miR4512, miR6791, miR330, miR3180-3, miR6080, miR5787, miR6733, and miR3613). A total of 44 gene targets were identified based on the 3′-untranslated regions of downregulated mRNA genes that contain putative binding targets to these eight miRNAs. These include 17 and 15 genes in luminal-A type and TNBC respectively, that have been reported to be associated with breast cancer regulation. Of the remaining 12 genes, seven (A4GALT, C2ORF74, HRCT1, ZC4H2, ZNF512, ZNF655, and ZNF608) show similar relative expression profiles in large patient samples and other breast cancer cell lines thereby giving insight into predicted role of H3K4me3 mediated gene regulation via the miRNA-mRNA axis.
Collapse
Affiliation(s)
- Aneesh Kotipalli
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Ruma Banerjee
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Sunitha Manjari Kasibhatla
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| | - Rajendra Joshi
- HPC-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune 411008, India
| |
Collapse
|
8
|
The S100 Protein Family as Players and Therapeutic Targets in Pulmonary Diseases. Pulm Med 2021; 2021:5488591. [PMID: 34239729 PMCID: PMC8214497 DOI: 10.1155/2021/5488591] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2+ homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.
Collapse
|
9
|
Zhang Y, Yang X, Zhu XL, Bai H, Wang ZZ, Zhang JJ, Hao CY, Duan HB. S100A gene family: immune-related prognostic biomarkers and therapeutic targets for low-grade glioma. Aging (Albany NY) 2021; 13:15459-15478. [PMID: 34148033 PMCID: PMC8221329 DOI: 10.18632/aging.203103] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the better prognosis given by surgical resection and chemotherapy in low-grade glioma (LGG), progressive transformation is still a huge concern. In this case, the S100A gene family, being capable of regulating inflammatory responses, can promote tumor development. METHODS The analysis was carried out via ONCOMINE, GEPIA, cBioPortal, String, GeneMANIA, WebGestalt, LinkedOmics, TIMER, CGGA, R 4.0.2 and immunohistochemistry. RESULTS S100A2, S100A6, S100A10, S100A11, and S100A16 were up-regulated and S100A1 and S100A13 were down-regulated in LGG compared to normal tissues. S100A3, S100A4, S100A8, and S100A9 expression was up-regulated during the progression of glioma grade. In addition, genetic variation of the S100A family was high in LGG, and the S100A family genes mostly function through IL-17 signaling pathway, S100 binding protein, and inflammatory responses. The TIMER database also revealed a relationship between gene expression and immune cell infiltration. High expression of S100A2, S100A3, S100A4, S100A6, S100A8, S100A9, S100A10, S100A11, S100A13, and S100A16 was significantly associated with poor prognosis in LGG patients. S100A family genes S100A2, S100A3, S100A6, S100A10, and S100A11 may be prognosis-related genes in LGG, and were significantly associated with IDH mutation and 1p19q codeletion. The immunohistochemical staining results also confirmed that S100A2, S100A3, S100A6, S100A10, and S100A11 expression was upregulated in LGG. CONCLUSION The S100A family plays a vital role in LGG pathogenesis, presumably facilitating LGG progression via modulating inflammatory state and immune cell infiltration.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xin Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Xiao-Lin Zhu
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hao Bai
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Zhuang-Zhuang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Jun-Jie Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Chun-Yan Hao
- Department of Geriatrics, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China
| | - Hu-Bin Duan
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, P.R. China.,Department of Neurosurgery, Lvliang People's Hospital, Lvliang 033000, Shanxi, P.R. China
| |
Collapse
|
10
|
Cole L, Kurscheid S, Nekrasov M, Domaschenz R, Vera DL, Dennis JH, Tremethick DJ. Multiple roles of H2A.Z in regulating promoter chromatin architecture in human cells. Nat Commun 2021; 12:2524. [PMID: 33953180 PMCID: PMC8100287 DOI: 10.1038/s41467-021-22688-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Chromatin accessibility of a promoter is fundamental in regulating transcriptional activity. The histone variant H2A.Z has been shown to contribute to this regulation, but its role has remained poorly understood. Here, we prepare high-depth maps of the position and accessibility of H2A.Z-containing nucleosomes for all human Pol II promoters in epithelial, mesenchymal and isogenic cancer cell lines. We find that, in contrast to the prevailing model, many different types of active and inactive promoter structures are observed that differ in their nucleosome organization and sensitivity to MNase digestion. Key aspects of an active chromatin structure include positioned H2A.Z MNase resistant nucleosomes upstream or downstream of the TSS, and a MNase sensitive nucleosome at the TSS. Furthermore, the loss of H2A.Z leads to a dramatic increase in the accessibility of transcription factor binding sites. Collectively, these results suggest that H2A.Z has multiple and distinct roles in regulating gene expression dependent upon its location in a promoter.
Collapse
Affiliation(s)
- Lauren Cole
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Sebastian Kurscheid
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Maxim Nekrasov
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Renae Domaschenz
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Daniel L Vera
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
- Department of Genetics, Blavatnik Institute, Paul F. Glenn Center for Biology of Aging Research, Harvard Medical School, Boston, MA, USA
| | - Jonathan H Dennis
- College of Arts and Sciences, Department of Biological Sciences, Florida State University, Tallahassee, FL, USA.
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
11
|
Garattini E. Meet Our Editorial Board Member. LETT DRUG DES DISCOV 2021. [DOI: 10.2174/157018081802210224092046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Enrico Garattini
- Head of the Laboratory of Molecular Biology Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| |
Collapse
|
12
|
Retinoic Acid Sensitivity of Triple-Negative Breast Cancer Cells Characterized by Constitutive Activation of the notch1 Pathway: The Role of Rarβ. Cancers (Basel) 2020; 12:cancers12103027. [PMID: 33081033 PMCID: PMC7650753 DOI: 10.3390/cancers12103027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease that lacks effective therapeutic options. In this study, we profile eighteen TNBC cell lines for their sensitivity to the anti-proliferative action of all-trans retinoic acid (ATRA). The only three cell lines (HCC-1599, MB-157 and MDA-MB-157) endowed with ATRA-sensitivity are characterized by genetic aberrations of the NOTCH1-gene, causing constitutive activation of the NOTCH1 γ-secretase product, N1ICD. N1ICD renders HCC-1599, MB-157 and MDA-MB-157 cells sensitive not only to ATRA, but also to γ-secretase inhibitors (DAPT; PF-03084014). Combinations of ATRA and γ-secretase inhibitors produce additive/synergistic effects in vitro and in vivo. RNA-sequencing studies of HCC-1599 and MB-157 cells exposed to ATRA and DAPT and ATRA+DAPT demonstrate that the two compounds act on common gene sets, some of which belong to the NOTCH1 pathway. ATRA inhibits the growth of HCC-1599, MB-157 and MDA-MB-157 cells via RARα, which up-regulates several retinoid target-genes, including RARβ. RARβ is a key determinant of ATRA anti-proliferative activity, as its silencing suppresses the effects exerted by the retinoid. In conclusion, we demonstrate that ATRA exerts a significant anti-tumor action only in TNBC cells showing constitutive NOTCH1 activation. Our results support the design of clinical trials involving combinations between ATRA and γ-secretase inhibitors for the treatment of this TNBC subtype.
Collapse
|
13
|
All-Trans Retinoic Acid Prevented Vein Grafts Stenosis by Inhibiting Rb-E2F Mediated Cell Cycle Progression and KLF5-RARα Interaction in Human Vein Smooth Muscle Cells. Cardiovasc Drugs Ther 2020; 35:103-111. [PMID: 33044585 DOI: 10.1007/s10557-020-07089-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Vein graft failure (VGF) is an important limitation for coronary artery bypass graft (CABG) surgery. Inhibition of the excessive proliferation and migration of venous smooth muscle cells (SMCs) is an effective strategy to alleviate VGF during the CABG perioperative period. In the present study, we aimed to explore the role and potential mechanism of all-trans retinoic acid (ATRA) on preventing vein grafts stenosis. METHODS The autogenous vein grafts model was established in the right jugular artery of rabbits. Immunohistochemistry staining and western blot assays were used to detected the protein expression, while real-time PCR assay was applied for mRNAs expression detection. The interaction between proteins was identified by co-immunoprecipitation assay. The Cell Counting Kit-8 and wound-healing assays were used to investigate the role of ATRA on human umbilical vein smooth muscle cells (HUVSMCs) function. Cell cycle progression was identified by flow cytometry assay. RESULTS Vein graft stenosis and SMCs hyperproliferation were confirmed in vein grafts by histological and Ki-67 immunohistochemistry assays. Treatment of ATRA (10 mg/kg/day) significantly mitigated the stenosis extent of vein grafts, demonstrated by the decreased thickness of intima-media, and decreased Ki-67 expression. ATRA could repress the PDGF-bb-induced excessive proliferation and migration of HUVSMCs, which was mediated by Rb-E2F dependent cell cycle inhibition. Meanwhile, ATRA could reduce the interaction between KLF5 and RARα, thereby inhibiting the function of cis-elements of KLF5. KLF5-induced inducible nitric oxide synthase (iNOS) expression activation could be significantly inhibited by ATRA. CONCLUSIONS These results suggested that ATRA treatment may represent an effective prevention and therapy avenue for VGF.
Collapse
|
14
|
Du Y, Zhang MJ, Li LL, Xu XL, Chen H, Feng YB, Li Y, Peng XQ, Chen FH. ATPR triggers acute myeloid leukaemia cells differentiation and cycle arrest via the RARα/LDHB/ERK-glycolysis signalling axis. J Cell Mol Med 2020; 24:6952-6965. [PMID: 32391634 PMCID: PMC7299716 DOI: 10.1111/jcmm.15353] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukaemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. 4‐Amino‐2‐trifluoromethyl‐phenyl retinate (ATPR), a novel all‐trans retinoic acid (ATRA) derivative designed and synthesized by our team, has been proven to show superior anticancer effect compared with ATRA on various cancers. However, its potential effect on AML remains largely unknown. Lactate dehydrogenase B (LDHB) is the key glycolytic enzyme that catalyses the interconversion between pyruvate and lactate. Currently, little is known about the role of LDHB in AML. In this study, we found that ATPR showed antileukaemic effects with RARα dependent in AML cells. LDHB was aberrantly overexpressed in human AML peripheral blood mononuclear cell (PBMC) and AML cell lines. A lentiviral vector expressing LDHB‐targeting shRNA was constructed to generate a stable AML cells with low expression of LDHB. The effect of LDHB knockdown on differentiation and cycle arrest of AML cells was assessed in vitro and vivo, including involvement of Raf/MEK/ERK signalling. Finally, these data suggested that ATPR showed antileukaemic effects by RARα/LDHB/ ERK‐glycolysis signalling axis. Further studies should focus on the underlying leukaemia‐promoting mechanisms and investigate LDHB as a therapeutic target.
Collapse
Affiliation(s)
- Yan Du
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Mei-Ju Zhang
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lan-Lan Li
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xiao-Lin Xu
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Hao Chen
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yu-Bin Feng
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yan Li
- Department of Pharmacy, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Qin Peng
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Fei-Hu Chen
- School of Pharmacy, Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, Anhui Medical University, Hefei, China.,Institute for Liver Disease of Anhui Medical University, Anhui Medical University, Hefei, China
| |
Collapse
|
15
|
Bolis M, Paroni G, Fratelli M, Vallerga A, Guarrera L, Zanetti A, Kurosaki M, Garattini SK, Gianni’ M, Lupi M, Pattini L, Barzago MM, Terao M, Garattini E. All-Trans Retinoic Acid Stimulates Viral Mimicry, Interferon Responses and Antigen Presentation in Breast-Cancer Cells. Cancers (Basel) 2020; 12:cancers12051169. [PMID: 32384653 PMCID: PMC7281473 DOI: 10.3390/cancers12051169] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/27/2020] [Accepted: 05/02/2020] [Indexed: 12/16/2022] Open
Abstract
All-trans retinoic acid (ATRA), a recognized differentiating agent, has significant potential in the personalized/stratified treatment of breast cancer. The present study reports on the molecular mechanisms underlying the anti-tumor activity of ATRA in breast cancer. The work is based on transcriptomic experiments performed on ATRA-treated breast cancer cell-lines, short-term tissue cultures of patient-derived mammary-tumors and a xenograft model. ATRA upregulates gene networks involved in interferon-responses, immune-modulation and antigen-presentation in retinoid-sensitive cells and tumors characterized by poor immunogenicity. ATRA-dependent upregulation of these gene networks is caused by a viral mimicry process, involving the activation of endogenous retroviruses. ATRA induces a non-canonical type of viral mimicry, which results in increased expression of the IRF1 (Interferon Responsive Factor 1) transcription factor and the DTX3L (Deltex-E3-Ubiquitin-Ligase-3L) downstream effector. Functional knockdown studies indicate that IRF1 and DTX3L are part of a negative feedback loop controlling ATRA-dependent growth inhibition of breast cancer cells. The study is of relevance from a clinical/therapeutic perspective. In fact, ATRA stimulates processes controlling the sensitivity to immuno-modulatory drugs, such as immune-checkpoint-inhibitors. This suggests that ATRA and immunotherapeutic agents represent rational combinations for the personalized treatment of breast cancer. Remarkably, ATRA-sensitivity seems to be relatively high in immune-cold mammary tumors, which are generally resistant to immunotherapy.
Collapse
Affiliation(s)
- Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
- Functional Cancer Genomics Laboratory, Institute of Oncology Research, USI, University of Southern Switzerland, 6500 Bellinzona, Switzerland
- Bioinformatics Core Unit Institute of Oncology Research, Swiss Institute of Bioinformatics, 1000 Lausanne, Switzerland
| | - Gabriela Paroni
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Arianna Vallerga
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Luca Guarrera
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Adriana Zanetti
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Silvio Ken Garattini
- Department of Oncology, Azienda Ospedaliera di Udine, DAME, Dipartimento di Area Medica Università degli Studi di Udine, 33100 Udine, Italy;
| | - Maurizio Gianni’
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Monica Lupi
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via La Masa 19, 20156 Milano, Italy;
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, 20156 Milano, Italy;
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, 20156 Milano, Italy; (M.B.); (G.P.); (M.F.); (A.V.); (L.G.); (A.Z.); (M.K.); (M.G.); (M.M.B.); (M.T.)
- Correspondence: ; Tel.: +39-02-3901-4533
| |
Collapse
|
16
|
Hua X, Zhang H, Jia J, Chen S, Sun Y, Zhu X. Roles of S100 family members in drug resistance in tumors: Status and prospects. Biomed Pharmacother 2020; 127:110156. [PMID: 32335300 DOI: 10.1016/j.biopha.2020.110156] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chemotherapy and targeted therapy can significantly improve survival rates in cancer, but multiple drug resistance (MDR) limits the efficacy of these approaches. Understanding the molecular mechanisms underlying MDR is crucial for improving drug efficacy and clinical outcomes of patients with cancer. S100 proteins belong to a family of calcium-binding proteins and have various functions in tumor development. Increasing evidence demonstrates that the dysregulation of various S100 proteins contributes to the development of drug resistance in tumors, providing a basis for the development of predictive and prognostic biomarkers in cancer. Therefore, a combination of biological inhibitors or sensitizers of dysregulated S100 proteins could enhance therapeutic responses. In this review, we provide a detailed overview of the mechanisms by which S100 family members influence resistance of tumors to cancer treatment, with a focus on the development of effective strategies for overcoming MDR.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing, 210009, China.
| | - Hongming Zhang
- Department of Respiratory Medicine, Yancheng Third People's Hospital, Southeast University Medical College, Yancheng, 224000, China.
| | - Jinfang Jia
- Southeast University Medical College, Nanjing, 210009, China.
| | - Shanshan Chen
- Southeast University Medical College, Nanjing, 210009, China.
| | - Yue Sun
- Southeast University Medical College, Nanjing, 210009, China.
| | - Xiaoli Zhu
- Southeast University Medical College, Nanjing, 210009, China; Department of Respiratory Medicine, Zhongda Hospital of Southeast University Medical College, Nanjing, 210009, China.
| |
Collapse
|
17
|
Ite K, Yonezawa K, Kitanishi K, Shimizu N, Unno M. Optimal Mutant Model of Human S100A3 Protein Citrullinated at Arg51 by Peptidylarginine Deiminase Type III and Its Solution Structural Properties. ACS OMEGA 2020; 5:4032-4042. [PMID: 32149230 PMCID: PMC7057681 DOI: 10.1021/acsomega.9b03618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/29/2020] [Indexed: 05/30/2023]
Abstract
S100A3 protein, a member of the EF-hand-type Ca2+-binding S100 protein family, undergoes a Ca2+-/Zn2+-induced structural change to a tetrameric state upon specific citrullination of R51 in human hair cuticular cells. To elucidate the underlying mechanism, we prepared recombinant mutant S100A3 proteins, including R51A, R51C, R51E, R51K, and R51Q, as potential models of post-translationally modified S100A3 and evaluated their biophysical and biochemical properties relative to wild-type (WT) S100A3 and WT citrullinated in vitro. Size exclusion chromatography (SEC) showed that R51Q formed a tetramer in the presence of Ca2+, while Ca2+ titration monitored by Trp fluorescence indicated that R51Q had Ca2+-binding properties similar to those of citrullinated S1003A. We therefore concluded that R51Q is the optimal mutant model of post-translationally modified S100A3. We compared the solution structure of WT S100A3 and the R51Q mutant in the absence and presence of Ca2+ and Zn2+ by SEC-small-angle X-ray scattering. The radius of gyration of R51Q in the metal-free state was almost the same as that of WT; however, it increased by ∼1.5-fold in the presence of Ca2+/Zn2+, indicating a large expansion in molecular size. By contrast, addition of Ca2+/Zn2+ to WT led to nonspecific aggregation in SEC analysis and dynamic light scattering, suggesting that citrullination of S100A3 is essential for stabilization of the Ca2+-/Zn2+-bound state. These findings will lead to the further development of structural analyses for the Ca2+-/Zn2+-bound S100A3.
Collapse
Affiliation(s)
- Kenji Ite
- Graduate
School of Science and Engineering, Ibaraki
University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- Frontier
Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Naka, Ibaraki 319-1106, Japan
| | - Kento Yonezawa
- High
Energy Accelerator Research Organization, Institute of Materials Structure
Science, 1-1 Ohho, Tsukuba, Ibaraki 300-3256, Japan
| | - Kenichi Kitanishi
- Graduate
School of Science and Engineering, Ibaraki
University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- Frontier
Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Naka, Ibaraki 319-1106, Japan
| | - Nobutaka Shimizu
- High
Energy Accelerator Research Organization, Institute of Materials Structure
Science, 1-1 Ohho, Tsukuba, Ibaraki 300-3256, Japan
| | - Masaki Unno
- Graduate
School of Science and Engineering, Ibaraki
University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
- Frontier
Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
18
|
Xu A, Zhang N, Cao J, Zhu H, Yang B, He Q, Shao X, Ying M. Post-translational modification of retinoic acid receptor alpha and its roles in tumor cell differentiation. Biochem Pharmacol 2020; 171:113696. [DOI: 10.1016/j.bcp.2019.113696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
|