1
|
Huang L, Xiao Y, Yang L, Ren S. The development for emerging biomarkers of lymphangioleiomyomatosis. Orphanet J Rare Dis 2024; 19:445. [PMID: 39614360 PMCID: PMC11605962 DOI: 10.1186/s13023-024-03455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, slowly progressing, low-grade metastatic tumor primarily affecting women. Currently, vascular endothelial growth factor-D (VEGF-D) is the only validated diagnostic biomarker, enabling diagnosis of LAM without the need for lung biopsy in appropriate clinical settings. However, VEGF-D concentrations are normal in about 30% of patients, rendering it insufficient for diagnosing all cases of LAM. There remains a need to identify more non-invasive, safe, sensitive, and specific biomarkers associated with LAM. Therefore, it is imperative to explore novel non-invasive, safe, and specific diagnostic methods for LAM. This article aims to review biomarkers associated with LAM, including potential biomarkers newly discovered or showing advancements in classical biomarkers widely used in LAM, and discuss their application in LAM diagnosis, assessment of disease severity, prediction of treatment response, and prognosis. (LAM) 、,。,-D (VEGF-D) , LAM。, 30% VEGF-D , LAM 。 LAM 、、。,、 LAM 。 LAM , LAM , LAM 、、。.
Collapse
Affiliation(s)
- Liting Huang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Ying Xiao
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Lulu Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China
| | - Siying Ren
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, 410011, China.
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Gou Q, Chen H, Chen M, Shi J, Jin J, Liu Q, Hou Y. Inhibition of CK2/ING4 Pathway Facilitates Non-Small Cell Lung Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304068. [PMID: 37870169 PMCID: PMC10700192 DOI: 10.1002/advs.202304068] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Immune cells can protect against tumor progression by killing cancer cells, while aberrant expression of the immune checkpoint protein PD-L1 (programmed death ligand 1) in cancer cells facilitates tumor immune escape and inhibits anti-tumor immunotherapy. As a serine/threonine kinase, CK2 (casein kinase 2) regulates tumor progression by multiple pathways, while it is still unclear the effect of CK2 on tumor immune escape. Here it is found that ING4 induced PD-L1 autophagic degradation and inhibites non-small cell lung cancer (NSCLC) immune escape by increasing T cell activity. However, clinical analysis suggests that high expression of CK2 correlates with low ING4 protein level in NSCLC. Further analysis shows that CK2 induce ING4-S150 phosphorylation leading to ING4 ubiquitination and degradation by JFK ubiquitin ligase. In contrast, CK2 gene knockout increases ING4 protein stability and T cell activity, subsequently, inhibites NSCLC immune escape. Furthermore, the combined CK2 inhibitor with PD-1 antibody effectively enhances antitumor immunotherapy. These findings provide a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
- School of medicineJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Huiqing Chen
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Mingjun Chen
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Juanjuan Shi
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Jianhua Jin
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
| | - Qian Liu
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine of Wujin People's Hospital (the Wujin Clinical College of Xuzhou Medical University)changzhouJiangsu213017P. R. China
| | - Yongzhong Hou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| |
Collapse
|
3
|
Huan J, Grivas P, Birch J, Hansel DE. Emerging Roles for Mammalian Target of Rapamycin (mTOR) Complexes in Bladder Cancer Progression and Therapy. Cancers (Basel) 2022; 14:1555. [PMID: 35326708 PMCID: PMC8946148 DOI: 10.3390/cancers14061555] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway regulates important cellular functions. Aberrant activation of this pathway, either through upstream activation by growth factors, loss of inhibitory controls, or molecular alterations, can enhance cancer growth and progression. Bladder cancer shows high levels of mTOR activity in approximately 70% of urothelial carcinomas, suggesting a key role for this pathway in this cancer. mTOR signaling initiates through upstream activation of phosphatidylinositol 3 kinase (PI3K) and protein kinase B (AKT) and results in activation of either mTOR complex 1 (mTORC1) or mTOR complex 2 (mTORC2). While these complexes share several key protein components, unique differences in their complex composition dramatically alter the function and downstream cellular targets of mTOR activity. While significant work has gone into analysis of molecular alterations of the mTOR pathway in bladder cancer, this has not yielded significant benefit in mTOR-targeted therapy approaches in urothelial carcinoma to date. New discoveries regarding signaling convergence onto mTOR complexes in bladder cancer could yield unique insights the biology and targeting of this aggressive disease. In this review, we highlight the functional significance of mTOR signaling in urothelial carcinoma and its potential impact on future therapy implications.
Collapse
Affiliation(s)
- Jianya Huan
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Petros Grivas
- Division of Medical Oncology, Department of Medicine, University of Washington School of Medicine, Fred Hutchinson Cancer Research Center, Seattle Cancer Care Alliance, Seattle, WA 98195, USA;
| | - Jasmine Birch
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| | - Donna E. Hansel
- Department of Pathology & Laboratory Medicine, Oregon Health & Science University, Portland, OR 97239, USA; (J.H.); (J.B.)
| |
Collapse
|
4
|
Li X, Li N, Li B, Feng Y, Zhou D, Chen G. Noncoding RNAs and RNA-binding proteins in diabetic wound healing. Bioorg Med Chem Lett 2021; 50:128311. [PMID: 34438011 DOI: 10.1016/j.bmcl.2021.128311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022]
Abstract
Poor wound healing is a common complication in diabetic patients. It often leads to intractable infections and lower limb amputations and is associated with cardiovascular morbidity and mortality. NcRNAs, which can regulate gene expression, have emerged as important regulators of various physiological processes. Herein, we summarize the diverse roles of ncRNAs in the key stages of diabetic wound healing, including inflammation, angiogenesis, re-epithelialization, and extracellular matrix remodeling. Meanwhile, the potential use of ncRNAs as novel therapeutic targets for wound healing in diabetic patients is also discussed. In addition, we summarize the role of RNA-binding proteins (RBPs) in the regulation of gene expression and signaling pathways during skin repair, which may provide opportunities for therapeutic intervention for this potentially devastating disease. However, so far, research on the modulated drug based on ncRNAs that lead to significantly altered gene expression in diabetic patients is scarce. We have compiled some drugs that may be able to modulate ncRNAs, which significantly regulate the gene expression in diabetic patients.
Collapse
Affiliation(s)
- Xue Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Bingxin Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China; State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China; Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, People's Republic of China.
| |
Collapse
|
5
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
6
|
Abdelwahab EMM, Bovari-Biri J, Smuk G, Harko T, Fillinger J, Moldvay J, Krymskaya VP, Pongracz JE. Normalization of Enzyme Expression and Activity Regulating Vitamin A Metabolism Increases RAR-Beta Expression and Reduces Cellular Migration and Proliferation in Diseases Caused by Tuberous Sclerosis Gene Mutations. Front Oncol 2021; 11:644592. [PMID: 34178631 PMCID: PMC8226169 DOI: 10.3389/fonc.2021.644592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/25/2021] [Indexed: 11/15/2022] Open
Abstract
Background Mutation in a tuberous sclerosis gene (TSC1 or 2) leads to continuous activation of the mammalian target of rapamycin (mTOR). mTOR activation alters cellular including vitamin A metabolism and retinoic acid receptor beta (RARβ) expression. The goal of the present study was to investigate the molecular connection between vitamin A metabolism and TSC mutation. We also aimed to investigate the effect of the FDA approved drug rapamycin and the vitamin A metabolite retinoic acid (RA) in cell lines with TSC mutation. Methods Expression and activity of vitamin A associated metabolic enzymes and RARβ were assessed in human kidney angiomyolipoma derived cell lines, primary lymphangioleiomyomatosis (LAM) tissue derived LAM cell lines. RARβ protein levels were also tested in primary LAM lung tissue sections. TaqMan arrays, enzyme activities, qRT-PCRs, immunohistochemistry, immunofluorescent staining, and western blotting were performed and analysed. The functional effects of retinoic acid (RA) and rapamycin were tested in a scratch and a BrDU assay to assess cell migration and proliferation. Results Metabolic enzyme arrays revealed a general deregulation of many enzymes involved in vitamin A metabolism including aldehyde dehydrogenases (ALDHs), alcohol dehydrogenases (ADHs) and Cytochrome P450 2E1 (CYP2E1). Furthermore, RARβ downregulation was a characteristic feature of all TSC-deficient cell lines and primary tissues. Combination of the two FDA approved drugs -RA for acute myeloid leukaemia and rapamycin for TSC mutation- normalised ALDH and ADH expression and activity, restored RARβ expression and reduced cellular proliferation and migration. Conclusion Deregulation of vitamin A metabolizing enzymes is a feature of TSC mutation. RA can normalize RARβ levels and limit cell migration but does not have a significant effect on proliferation. Based on our data, translational studies could confirm whether combination of RA with reduced dosage of rapamycin would have more beneficial effects to higher dosage of rapamycin monotherapy meanwhile reducing adverse effects of rapamycin for patients with TSC mutation.
Collapse
Affiliation(s)
| | - Judit Bovari-Biri
- Departments of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| | - Gabor Smuk
- Department of Pathology, University of Pecs, Pecs, Hungary
| | - Tunde Harko
- Department of Pathology, Semmelweis University, Budapest, Hungary
| | - Janos Fillinger
- Department of Pathology, Semmelweis University, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Judit Moldvay
- Department of Pathology, Semmelweis University, Budapest, Hungary.,Department of Pulmonology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Vera P Krymskaya
- Pulmonary, Allergy and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Judit E Pongracz
- Departments of Pharmaceutical Biotechnology, University of Pecs, Pecs, Hungary.,Szentagothai Research Centre, University of Pecs, Pecs, Hungary
| |
Collapse
|
7
|
Shen Y, Xu G, Huang H, Wang K, Wang H, Lang M, Gao H, Zhao S. Sequential Release of Small Extracellular Vesicles from Bilayered Thiolated Alginate/Polyethylene Glycol Diacrylate Hydrogels for Scarless Wound Healing. ACS NANO 2021; 15:6352-6368. [PMID: 33723994 DOI: 10.1021/acsnano.0c07714] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Excessive scar formation has adverse physiological and psychological effects on patients; therefore, a therapeutic strategy for rapid wound healing and reduced scar formation is urgently needed. Herein, bilayered thiolated alginate/PEG diacrylate (BSSPD) hydrogels were fabricated for sequential release of small extracellular vesicles (sEVs), which acted in different wound healing phases, to achieve rapid and scarless wound healing. The sEVs secreted by bone marrow derived mesenchymal stem cells (B-sEVs) were released from the lower layer of the hydrogels to promote angiogenesis and collagen deposition by accelerating fibroblast and endothelial cell proliferation and migration during the early inflammation and proliferation phases, while sEVs secreted by miR-29b-3p-enriched bone marrow derived mesenchymal stem cells were released from the upper layer of the hydrogels and suppressed excessive capillary proliferation and collagen deposition during the late proliferation and maturation phases. In a full-thickness skin defect model of rats and rabbit ears, the wound repair rate, angiogenesis, and collagen deposition were evaluated at different time points after treatment with BSSPD loaded with B-sEVs. Interestingly, during the end of the maturation phase in the in vivo model, tissues in the groups treated with BSSPD loaded with sEVs for sequential release (SR-sEVs@BSSPD) exhibited a more uniform vascular structure distribution, more regular collagen arrangement, and lower volume of hyperplastic scar tissue than tissues in the other groups. Hence, SR-sEVs@BSSPD based on skin repair phases was successfully designed and has considerable potential as a cell-free therapy for scarless wound healing.
Collapse
Affiliation(s)
- Yifan Shen
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Guanzhe Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Internet of Things Research Center, Advanced Institute of Information Technology, Peking University, Hangzhou 311200, China
| | - Huanxuan Huang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kaiyang Wang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Hui Wang
- Green Chemical Engineering Technology Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hong Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Shichang Zhao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
8
|
Tratnjek L, Jeruc J, Romih R, Zupančič D. Vitamin A and Retinoids in Bladder Cancer Chemoprevention and Treatment: A Narrative Review of Current Evidence, Challenges and Future Prospects. Int J Mol Sci 2021; 22:3510. [PMID: 33805295 PMCID: PMC8036787 DOI: 10.3390/ijms22073510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the tenth most common cancer worldwide with a high recurrence rate, morbidity and mortality. Therefore, chemoprevention and improved treatment of BC are of paramount importance. Epidemiological studies suggest that adequate vitamin A intake may be associated with reduced BC risk. In addition, retinoids, natural and synthetic derivatives of vitamin A, are intensively studied in cancer research due to their antioxidant properties and their ability to regulate cell growth, differentiation, and apoptosis. Findings from in vivo and in vitro models of BC show great potential for the use of retinoids in the chemoprevention and treatment of BC. However, translation to the clinical practice is limited. In this narrative review we discuss: (i) vitamin A and retinoid metabolism and retinoic acid signalling, (ii) the pathobiology of BC and the need for chemoprevention, (iii) the epidemiological evidence for the role of dietary vitamin A in BC, (iv) mechanistic insights obtained from in vivo and in vitro models, (v) clinical trials of retinoids and the limitations of retinoid use, (vi) novel systems of retinoid delivery, and (vii) components of retinoid signalling pathways as potential novel therapeutic targets.
Collapse
Affiliation(s)
- Larisa Tratnjek
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Jera Jeruc
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Rok Romih
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| | - Daša Zupančič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (L.T.); (R.R.)
| |
Collapse
|
9
|
Evans JF, Obraztsova K, Lin SM, Krymskaya VP. CrossTORC and WNTegration in Disease: Focus on Lymphangioleiomyomatosis. Int J Mol Sci 2021; 22:ijms22052233. [PMID: 33668092 PMCID: PMC7956553 DOI: 10.3390/ijms22052233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
The mechanistic target of rapamycin (mTOR) and wingless-related integration site (Wnt) signal transduction networks are evolutionarily conserved mammalian growth and cellular development networks. Most cells express many of the proteins in both pathways, and this review will briefly describe only the key proteins and their intra- and extracellular crosstalk. These complex interactions will be discussed in relation to cancer development, drug resistance, and stem cell exhaustion. This review will also highlight the tumor-suppressive tuberous sclerosis complex (TSC) mutated, mTOR-hyperactive lung disease of women, lymphangioleiomyomatosis (LAM). We will summarize recent advances in the targeting of these pathways by monotherapy or combination therapy, as well as future potential treatments.
Collapse
|
10
|
Abstract
Retinoic acid (RA), the biologically active metabolite of vitamin A, regulates a vast spectrum of biological processes, such as cell differentiation, proliferation, apoptosis, and morphogenesis. microRNAs (miRNAs) play a crucial role in regulating gene expression by binding to messenger RNA (mRNA) which leads to mRNA degradation and/or translational repression. Like RA, miRNAs regulate multiple biological processes, including proliferation, differentiation, apoptosis, neurogenesis, tumorigenesis, and immunity. In fact, RA regulates the expression of many miRNAs to exert its biological functions. miRNA and RA regulatory networks have been studied in recent years. In this manuscript, we summarize literature that highlights the impact of miRNAs in RA-regulated molecular networks included in the PubMed.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Atharva Piyush Rohatgi
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|