1
|
Sun J, Li J, Xing Y, Leng H, Chen W, Zhang Y, Chen X. Accurately sensing analysis of active adenine DNA glycosylase (MutY) via the high identification/excision capability to specific base-mismatches of dsDNA chains. Int J Biol Macromol 2025; 306:141789. [PMID: 40054823 DOI: 10.1016/j.ijbiomac.2025.141789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/23/2025] [Accepted: 03/04/2025] [Indexed: 05/11/2025]
Abstract
Adenine DNA glycosylase (MutY) is a crucial member of DNA glycosylase family, and the abnormal expression of the human MutY homologs is associated with the pathogenesis of various diseases, therefore, convenient and cost-effective assessing the activity of MutY holds significant biological and medical importance. Herein, the precise identification/excision capacity of MutY to mismatched G-A base pair of dsDNA chains and the DNA-template-dependant fluorescence behaviors of copper nano cluster (CuNCs) was exploited for the accurate sensing of active MutY. Hairpin DNA with G-A base mismatch was excised by MutY to produce dsDNA chains with repetitive AAT-TTA base pairs. The newly formed dsDNA provided more active sites for the growth of CuNCs compared to the original hairpin DNA, resulting in the significantly enhanced fluorescence of final CuNCs. MutY was accurately quantified with a detection limit of 9.98 nmol L-1. The developed sensing protocol exhibited excellent selectivity toward MutY over various ions, neutral biomolecules, and protein species. Most importantly, The sensing system is capable to distinguish the active MutY from other MutY homologs with low activity, e.g., de-[4Fe4S] cluster MutY (DIS-MutY), and the practicality was well demonstrated by detecting active MutY contents in various cell lysates.
Collapse
Affiliation(s)
- Jingqi Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jiaxin Li
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yanzhi Xing
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Han Leng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Wei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yanfeng Zhang
- Intelligent Policing Key Laboratory of Sichuan Province, Sichuan Police College, Luzhou 646000, China.
| | - Xuwei Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
2
|
Yamada A, Kondo T. Hereditary Colorectal Cancer: Clinical Implications of Genomic Medicine and Precision Oncology. J Anus Rectum Colon 2025; 9:167-178. [PMID: 40302859 PMCID: PMC12035340 DOI: 10.23922/jarc.2025-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/17/2025] [Indexed: 05/02/2025] Open
Abstract
Approximately 10% of colorectal cancer (CRC) cases occur in the context of hereditary cancer-predisposing conditions caused by germline pathogenic variants (PVs) in cancer predisposition genes, with Lynch syndrome and familial adenomatous polyposis at the top of the list. Although the identification of hereditary CRC has traditionally relied on clinical characteristics, including familial accumulation, multiple and early onset of CRC and other related cancers, and the presence of gastrointestinal polyposis, more comprehensive approaches, such as universal tumor screening and universal germline testing, have recently been employed. From a technical standpoint, next-generation sequencing has enabled genome-wide analysis of genetic alterations in germline and somatic settings. Taking advantage of this technology, germline multigene panel testing has been utilized in genetic testing, which leads to the identification of PVs, not only in well-known hereditary CRC genes but also in rare causal genes, moderate-risk genes, and high-risk genes previously not linked to CRC predisposition. In addition, comprehensive genomic profiling and companion diagnostics for solid tumors occasionally yield unexpected hereditary CRC diagnoses. Thus, more hereditary CRCs have been identified not based on clinical phenotypes but rather by comprehensive approaches or as secondary findings of treatment drug testing. In this review, we discuss the impact of recent advances in genomic medicine on the clinical aspects of hereditary CRC, which has promoted an understanding of the entire landscape of genetic predisposition to CRC.
Collapse
Affiliation(s)
- Atsushi Yamada
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
| | - Tomohiro Kondo
- Department of Clinical Oncology, Kyoto University Hospital, Kyoto, Japan
- Department of Real-World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
3
|
Trasviña-Arenas CH, Dissanayake UC, Tamayo N, Hashemian M, Lin WJ, Demir M, Hoyos-Gonzalez N, Fisher AJ, Cisneros GA, Horvath MP, David SS. Structure of human MUTYH and functional profiling of cancer-associated variants reveal an allosteric network between its [4Fe-4S] cluster cofactor and active site required for DNA repair. Nat Commun 2025; 16:3596. [PMID: 40234396 PMCID: PMC12000561 DOI: 10.1038/s41467-025-58361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
MUTYH is a clinically important DNA glycosylase that thwarts mutations by initiating base-excision repair at 8-oxoguanine (OG):A lesions. The roles for its [4Fe-4S] cofactor in DNA repair remain enigmatic. Functional profiling of cancer-associated variants near the [4Fe-4S] cofactor reveals that most variations abrogate both retention of the cofactor and enzyme activity. Surprisingly, R241Q and N238S retained the metal cluster and bound substrate DNA tightly, but were completely inactive. We determine the crystal structure of human MUTYH bound to a transition state mimic and this shows that Arg241 and Asn238 build an H-bond network connecting the [4Fe-4S] cluster to the catalytic Asp236 that mediates base excision. The structure of the bacterial MutY variant R149Q, along with molecular dynamics simulations of the human enzyme, support a model in which the cofactor functions to position and activate the catalytic Asp. These results suggest that allosteric cross-talk between the DNA binding [4Fe-4S] cofactor and the base excision site of MUTYH regulate its DNA repair function.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Department of Chemistry, University of California, Davis, CA, USA
- Research Center on Aging, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Upeksha C Dissanayake
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Nikole Tamayo
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Mohammad Hashemian
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | | | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA.
| | - Martin P Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA, USA.
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA.
| |
Collapse
|
4
|
Esperon P, Neffa F, Pavicic W, Spirandelli F, Alvarez K, Mullins MJ, Rossi BM, Góngora E Silva RF, Vaccaro C, Lopéz-Köstner F, Rugeles J, Valle AD, Dominguez-Valentin M. A comprehensive characterization of the spectrum of MUTYH germline pathogenic variants in Latin America. Fam Cancer 2024; 23:507-513. [PMID: 38687439 DOI: 10.1007/s10689-024-00382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/22/2024] [Indexed: 05/02/2024]
Abstract
MUTYH-Associated Polyposis (MAP) is caused by biallelic pathogenic germline variants in the MUTYH gene. However, individuals harboring monoallelic MUTYH pathogenic variants in the presence of a positive family history have been reported to have a twofold increased risk of colorectal cancer (CRC) and extra colonic cancers. Our aim was to characterize the spectrum of monoallelic and biallelic germline MUTYH pathogenic variants in Latin American patients and to describe their clinical and genetic characteristics. Patients were identified from eight high-risk genetic cancer centers of five Latin American countries. Statistical analysis was performed using the two-sided P test using the Vassarstats statistical tools. Statistical significance was set at a p value ≤ 0.05. Of the 105 unrelated patients with cancer or colorectal polyposis, 84.8% and 15.2% carried pathogenic monoallelic and biallelic MUTYH variants, respectively. The most common pathogenic variants were p.Gly396Asp and p.Tyr179Cys (55% and 23%, respectively). The mean age at first diagnosis was 48.29 years (range 31-71) and 49.90 years (range 27-87) in biallelic and monoallelic MUTYH patients, respectively. CRC was the only cancer diagnosed in patients with biallelic MUTYH pathogenic variants (75%), while breast cancer (46.1%) was more common than CRC (24.7%) in individuals with monoallelic MUTYH pathogenic variants. We reported a high frequency of European founder variants in our diverse population. Some phenotypic differences from current studies were identified, such as a higher breast cancer burden in monoallelic carriers and a complete absence of extra-colon tumors in biallelic patients.
Collapse
Affiliation(s)
- Patricia Esperon
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay.
- Molecular Genetic Unit, School of Chemistry, Universidad de la República, Montevideo, Uruguay.
| | - Florencia Neffa
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | - Walter Pavicic
- Programa de Cáncer Hereditario (Pro.Can.He.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), Hospital Italiano de Buenos Aires (HIBA), Instituto Universitario Hospital Italiano de Buenos Aires (IUHI)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Karin Alvarez
- Clínica Universidad de los Andes, Chile, Programa Cáncer Heredo Familiar, Santiago, Chile
| | - María José Mullins
- Departamento de Oncología, Centro de la Mama, Programa de Asesoría Genética en Oncología, Clínica Alemana, Santiago, Chile
| | - Benedito Mauro Rossi
- Hospital Beneficência Portuguesa, São Paulo, Brazil
- Hospital Sírio-Libanês, São Paulo, Brazil
| | | | - Carlos Vaccaro
- Instituto de Medicina Traslacional e Ingenieria Biomedica (IMTIB, CONICET), Buenos Aires, Argentina
| | | | - Jorge Rugeles
- Clínica IMAT Oncomedica Auna, Monteria, Colombia
- Grupo de investigación Oncogen, GenoCOL/Upqua SAS, Bogotá, Colombia
| | - Adriana Della Valle
- Hospital Fuerzas Armadas, Grupo Colaborativo Uruguayo, Investigación de Afecciones Oncológicas Hereditarias (GCU), Montevideo, Uruguay
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute of Cancer Research, The Norwegian Radium Hospital, 0379, Oslo, Norway
| |
Collapse
|
5
|
Thet M, Plazzer JP, Capella G, Latchford A, Nadeau EAW, Greenblatt MS, Macrae F. Phenotype Correlations With Pathogenic DNA Variants in the MUTYH Gene: A Review of Over 2000 Cases. Hum Mutat 2024; 2024:8520275. [PMID: 40225933 PMCID: PMC11918913 DOI: 10.1155/2024/8520275] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 07/20/2024] [Accepted: 08/09/2024] [Indexed: 04/15/2025]
Abstract
MUTYH-associated polyposis (MAP) is an autosomal recessive disorder where the inheritance of constitutional biallelic pathogenic MUTYH variants predisposes a person to the development of adenomas and colorectal cancer (CRC). It is also associated with extracolonic and extraintestinal manifestations that may overlap with the phenotype of familial adenomatous polyposis (FAP). Currently, there are discrepancies in the literature regarding whether certain phenotypes are truly associated with MAP. This narrative review is aimed at exploring the phenotypic spectrum of MAP to better characterize the MAP phenotype. Literature search was conducted to identify articles reporting on MAP-specific phenotypes. Clinical data from 2109 MAP patients identified from the literature showed that 1123 patients (53.2%) had CRC. Some patients with CRC had no associated adenomas, suggesting that adenomas are not an obligatory component of MAP. Carriers of the two missense founder variants, and possibly truncating variants, had an increased cancer risk when compared to those who carry other pathogenic variants. It has been suggested that somatic G:C > T:A transversions are a mutational signature of MAP and could be used as a biomarker in screening and identifying patients with atypical MAP, or in associating certain phenotypes with MAP. The extracolonic and extraintestinal manifestations that have been associated with MAP include duodenal adenomas, duodenal cancer, fundic gland polyps, gastric cancer, ovarian cancer, bladder cancer, and skin cancer. The association of breast cancer and endometrial cancer with MAP remains disputed. Desmoid tumors and congenital hypertrophy of the retinal pigment epithelium (CHRPEs) are rarely reported in MAP but have long been seen in FAP patients and thus could act as a distinguishing feature between the two. This collection of MAP phenotypes will assist in the assessment of pathogenic MUTYH variants using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) Variant Interpretation Guidelines and ultimately improve patient care.
Collapse
Affiliation(s)
- Monica Thet
- Melbourne Medical SchoolThe University of Melbourne, Parkville, Victoria, Australia
- Department of MedicineUniversity of MelbourneRoyal Melbourne Hospital, Parkville, Australia
- Department of Colorectal Medicine and GeneticsRoyal Melbourne Hospital, Parkville, Australia
| | - John-Paul Plazzer
- Department of Colorectal Medicine and GeneticsRoyal Melbourne Hospital, Parkville, Australia
| | - Gabriel Capella
- Hereditary Cancer ProgramCatalan Institute of OncologyIDIBELLHospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Andrew Latchford
- Polyposis RegistrySt Mark's Hospital, Harrow, UK
- Department of Surgery and CancerImperial College, London, UK
| | - Emily A. W. Nadeau
- Department of MedicineUniversity of VermontLarner College of Medicine, Burlington, Vermont, USA
| | - Marc S. Greenblatt
- Department of MedicineUniversity of VermontLarner College of Medicine, Burlington, Vermont, USA
| | - Finlay Macrae
- Department of MedicineUniversity of MelbourneRoyal Melbourne Hospital, Parkville, Australia
- Department of Colorectal Medicine and GeneticsRoyal Melbourne Hospital, Parkville, Australia
| |
Collapse
|
6
|
Kővári B, Carneiro F, Lauwers GY. Epithelial tumours of the stomach. MORSON AND DAWSON'S GASTROINTESTINAL PATHOLOGY 2024:227-286. [DOI: 10.1002/9781119423195.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Fernández Aceñero MJ, Díaz del Arco C. Hereditary Gastrointestinal Tumor Syndromes: When Risk Comes with Your Genes. Curr Issues Mol Biol 2024; 46:6440-6471. [PMID: 39057027 PMCID: PMC11275188 DOI: 10.3390/cimb46070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
Despite recent campaigns for screening and the latest advances in cancer therapy and molecular biology, gastrointestinal (GI) neoplasms remain among the most frequent and lethal human tumors. Most GI neoplasms are sporadic, but there are some well-known familial syndromes associated with a significant risk of developing both benign and malignant GI tumors. Although some of these entities were described more than a century ago based on clinical grounds, the increasing molecular information obtained with high-throughput techniques has shed light on the pathogenesis of several of them. The vast amount of information gained from next-generation sequencing has led to the identification of some high-risk genetic variants, although others remain to be discovered. The opportunity for genetic assessment and counseling in these families has dramatically changed the management of these syndromes, though it has also resulted in significant psychological distress for the affected patients, especially those with indeterminate variants. Herein, we aim to summarize the most relevant hereditary cancer syndromes involving the stomach and colon, with an emphasis on new molecular findings, novel entities, and recent changes in the management of these patients.
Collapse
Affiliation(s)
- María Jesús Fernández Aceñero
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| | - Cristina Díaz del Arco
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Pathology, Hospital Clínico San Carlos, Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain
| |
Collapse
|
8
|
Thet M, Plazzer JP, Capella G, Latchford A, Nadeau EA, Greenblatt MS, Macrae F. Phenotype correlations with pathogenic DNA variants in the MUTYH gene. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307143. [PMID: 38798681 PMCID: PMC11118659 DOI: 10.1101/2024.05.15.24307143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
MUTYH -associated polyposis (MAP) is an autosomal recessive disorder where the inheritance of constitutional biallelic pathogenic MUTYH variants predisposes a person to the development of adenomas and colorectal cancer (CRC). It is also associated with extracolonic and extraintestinal manifestations that may overlap with the phenotype of familial adenomatous polyposis (FAP). Currently, there are discrepancies in the literature regarding whether certain phenotypes are truly associated with MAP. This narrative review aims to explore the phenotypic spectrum of MAP to better characterise the MAP phenotype. A literature search was conducted to identify articles reporting on MAP-specific phenotypes. Clinical data from 2109 MAP patients identified from the literature showed that 1123 patients (53.2%) had CRC. Some patients with CRC had no associated adenomas, suggesting that adenomas are not an obligatory component of MAP. Carriers of the two missense founder variants, and possibly truncating variants, had an increased cancer risk when compared to those who carry other pathogenic variants. It has been suggested that somatic G:C>T:A transversions are a mutational signature of MAP, and could be used as a biomarker in screening and identifying patients with atypical MAP, or in associating certain phenotypes with MAP. The extracolonic and extraintestinal manifestations that have been associated with MAP include duodenal adenomas, duodenal cancer, fundic gland polyps, gastric cancer, ovarian cancer, bladder cancer and skin cancer. The association of breast cancer and endometrial cancer with MAP remains disputed. Desmoids and Congenital Hypertrophy of the Retinal Pigment Epithelium (CHRPEs) are rarely reported in MAP, but have long been seen in FAP patients, and thus could act as a distinguishing feature between the two. This collection of MAP phenotypes will assist in the assessment of pathogenic MUTYH variants using the American College of Medical Genetics and the Association for Molecular Pathology (ACMG/AMP) Variant Interpretation Guidelines, and ultimately improve patient care.
Collapse
|
9
|
Saunders EJ, Dadaev T, Brook MN, Wakerell S, Govindasami K, Rageevakumar R, Hussain N, Osborne A, Keating D, Lophatananon A, Muir KR, Darst BF, Conti DV, Haiman CA, Antoniou AC, Eeles RA, Kote-Jarai Z. Identification of Genes with Rare Loss of Function Variants Associated with Aggressive Prostate Cancer and Survival. Eur Urol Oncol 2024; 7:248-257. [PMID: 38458890 DOI: 10.1016/j.euo.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 02/09/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND Prostate cancer (PrCa) is a substantial cause of mortality among men globally. Rare germline mutations in BRCA2 have been validated robustly as increasing risk of aggressive forms with a poorer prognosis; however, evidence remains less definitive for other genes. OBJECTIVE To detect genes associated with PrCa aggressiveness, through a pooled analysis of rare variant sequencing data from six previously reported studies in the UK Genetic Prostate Cancer Study (UKGPCS). DESIGN, SETTING, AND PARTICIPANTS We accumulated a cohort of 6805 PrCa cases, in which a set of ten candidate genes had been sequenced in all samples. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We examined the association between rare putative loss of function (pLOF) variants in each gene and aggressive classification (defined as any of death from PrCa, metastatic disease, stage T4, or both stage T3 and Gleason score ≥8). Secondary analyses examined staging phenotypes individually. Cox proportional hazards modelling and Kaplan-Meier survival analyses were used to further examine the relationship between mutation status and survival. RESULTS AND LIMITATIONS We observed associations between PrCa aggressiveness and pLOF mutations in ATM, BRCA2, MSH2, and NBN (odds ratio = 2.67-18.9). These four genes and MLH1 were additionally associated with one or more secondary analysis phenotype. Carriers of germline mutations in these genes experienced shorter PrCa-specific survival (hazard ratio = 2.15, 95% confidence interval 1.79-2.59, p = 4 × 10-16) than noncarriers. CONCLUSIONS This study provides further support that rare pLOF variants in specific genes are likely to increase aggressive PrCa risk and may help define the panel of informative genes for screening and treatment considerations. PATIENT SUMMARY By combining data from several previous studies, we have been able to enhance knowledge regarding genes in which inherited mutations would be expected to increase the risk of more aggressive PrCa. This may, in the future, aid in the identification of men at an elevated risk of dying from PrCa.
Collapse
Affiliation(s)
- Edward J Saunders
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Tokhir Dadaev
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Mark N Brook
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Sarah Wakerell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Koveela Govindasami
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Reshma Rageevakumar
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Nafisa Hussain
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Andrea Osborne
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | - Diana Keating
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK
| | | | - Kenneth R Muir
- Division of Population Health, University of Manchester, Manchester, UK
| | - Burcu F Darst
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David V Conti
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Christopher A Haiman
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Antonis C Antoniou
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK; The Royal Marsden NHS Foundation Trust, London, UK
| | - Zsofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.
| |
Collapse
|
10
|
Sanchez-Mete L, Mosciatti L, Casadio M, Vittori L, Martayan A, Stigliano V. MUTYH-associated polyposis: Is it time to change upper gastrointestinal surveillance? A single-center case series and a literature overview. World J Gastrointest Oncol 2023; 15:1891-1899. [DOI: 10.4251/wjgo.v15.i11.1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The presence of Spigelman stage (SS) IV duodenal polyposis is considered the most significant risk factor for duodenal cancer in patients with MUTYH-associated polyposis (MAP). However, advanced SS disease is rarely reported in MAP patients, and no clear recommendations on small bowel (SB) surveillance have been proposed in this patient setting.
AIM To research more because that case reports of duodenal cancers in MAP suggest that they may develop in the absence of advanced benign SS disease and often involve the distal portion of the duodenum.
METHODS We describe a series of MAP patients followed up at the Regina Elena National Cancer Institute of Rome (Italy). A literature overview on previously reported SB cancers in MAP is also provided.
RESULTS We identified two (6%) SB adenocarcinomas with no previous history of duodenal polyposis. Our observations, supported by literature evidence, suggest that the formula for staging duodenal polyposis and predicting risk factors for distal duodenum and jejunal cancer may need to be adjusted to take this into account rather than focusing solely on the presence or absence of SS IV disease.
CONCLUSION Our study emphasizes the need for further studies to define appropriate upper gastrointestinal surveillance programs in MAP patients.
Collapse
Affiliation(s)
- Lupe Sanchez-Mete
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Lorenzo Mosciatti
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Marco Casadio
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Luigi Vittori
- Department of Radiological, Oncological and Pathological Sciences, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Aline Martayan
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| | - Vittoria Stigliano
- Gastroenterology and Digestive Endoscopy, Regina Elena National Cancer Institute, IRCCS, Rome 00144, Italy
| |
Collapse
|
11
|
Ouedraogo ZG, Ceruti F, Lepage M, Gay-Bellile M, Uhrhammer N, Ponelle-Chachuat F, Bidet Y, Privat M, Cavaillé M. Detection Rate and Spectrum of Pathogenic Variations in a Cohort of 83 Patients with Suspected Hereditary Risk of Kidney Cancer. Genes (Basel) 2023; 14:1991. [PMID: 38002934 PMCID: PMC10671640 DOI: 10.3390/genes14111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/20/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Hereditary predisposition to cancer affects about 3-5% of renal cancers. Testing criteria have been proposed in France for genetic testing of non-syndromic renal cancer. Our study explores the detection rates associated with our testing criteria. Using a comprehensive gene panel including 8 genes related to renal cancer and 50 genes related to hereditary predisposition to other cancers, we evaluated the detection rate of pathogenic variants in a cohort of 83 patients with suspected renal cancer predisposition. The detection rate was 7.2% for the renal cancer genes, which was 2.41-fold higher than the estimated 3% proportion of unselected kidney cases with inherited risk. Pathogenic variants in renal cancer genes were observed in 44.5% of syndromic cases, and in 2.7% of non-syndromic cases. Incidental findings were observed in CHEK2, MSH2, MUTYH and WRN. CHEK2 was associated with renal cancer (OR at 7.14; 95% CI 1.74-29.6; p < 0.003) in our study in comparison to the gnomAD control population. The detection rate in renal cancer genes was low in non-syndromic cases. Additional causal mechanisms are probably involved, and further research is required to find them. A study of the management of renal cancer risk for CHEK2 pathogenic variant carriers is needed.
Collapse
Affiliation(s)
- Zangbéwendé Guy Ouedraogo
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Service de Biochimie et Génétique Moléculaire, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France
- Université Clermont Auvergne, CNRS, Inserm, iGReD, 63001 Clermont-Ferrand, France
| | - Florian Ceruti
- Service d’Urologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France;
| | - Mathis Lepage
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| | - Mathilde Gay-Bellile
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| | - Nancy Uhrhammer
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| | - Flora Ponelle-Chachuat
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| | - Yannick Bidet
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| | - Maud Privat
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| | - Mathias Cavaillé
- Département d’Oncogénétique, Centre Jean Perrin, 63011 Clermont-Ferrand, France; (Z.G.O.); (M.L.); (M.G.-B.); (M.P.)
- Université Clermont Auvergne, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Ng AS, Chan DKH. Commonalities and differences in the mutational signature and somatic driver mutation landscape across solid and hollow viscus organs. Oncogene 2023; 42:2713-2724. [PMID: 37573406 PMCID: PMC10491491 DOI: 10.1038/s41388-023-02802-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023]
Abstract
Advances in sequencing have revealed a highly variegated landscape of mutational signatures and somatic driver mutations in a range of normal tissues. Normal tissues accumulate mutations at varying rates ranging from 11 per cell per year in the liver, to 1879 per cell per year in the bladder. In addition, some normal tissues are also comprised of a large proportion of cells which possess driver mutations while appearing phenotypically normal, as in the oesophagus where a majority of cells harbour driver mutations. Individual tissue proliferation and mutation rate, unique mutagenic stimuli, and local tissue architecture contribute to this highly variegated landscape which confounds the functional characterization of driver mutations found in normal tissue. In particular, our understanding of the relationship between normal tissue somatic mutations and tumour initiation or future cancer risk remains poor. Here, we describe the mutational signatures and somatic driver mutations in solid and hollow viscus organs, highlighting unique characteristics in a tissue-specific manner, while simultaneously seeking to describe commonalities which can bring forward a basic unified theory on the role of these driver mutations in tumour initiation. We discuss novel findings which can be used to inform future research in this field.
Collapse
Affiliation(s)
- Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Dedrick Kok Hong Chan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Division of Colorectal Surgery, University Surgical Cluster, National University Hospital, Singapore, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
13
|
Zhu LH, Dong J, Li WL, Kou ZY, Yang J. Genotype-Phenotype Correlations in Autosomal Dominant and Recessive APC Mutation-Negative Colorectal Adenomatous Polyposis. Dig Dis Sci 2023:10.1007/s10620-023-07890-9. [PMID: 36862359 DOI: 10.1007/s10620-023-07890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
The most prevalent type of intestinal polyposis, colorectal adenomatous polyposis (CAP), is regarded as a precancerous lesion of colorectal cancer with obvious genetic characteristics. Early screening and intervention can significantly improve patients' survival and prognosis. The adenomatous polyposis coli (APC) mutation is believed to be the primary cause of CAP. There is, however, a subset of CAP with undetectable pathogenic mutations in APC, known as APC (-)/CAP. The genetic predisposition to APC (-)/CAP has largely been associated with germline mutations in some susceptible genes, including the human mutY homologue (MUTYH) gene and the Nth-like DNA glycosylase 1 (NTHL1) gene, and DNA mismatch repair (MMR) can cause autosomal recessive APC (-)/CAP. Furthermore, autosomal dominant APC (-)/CAP could occur as a result of DNA polymerase epsilon (POLE)/DNA polymerase delta 1 (POLD1), axis inhibition protein 2 (AXIN2), and dual oxidase 2 (DUOX2) mutations. The clinical phenotypes of these pathogenic mutations vary greatly depending on their genetic characteristics. Therefore, in this study, we present a comprehensive review of the association between autosomal recessive and dominant APC (-)/CAP genotypes and clinical phenotypes and conclude that APC (-)/CAP is a disease caused by multiple genes with different phenotypes and interaction exists in the pathogenic genes.
Collapse
Affiliation(s)
- Li-Hua Zhu
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jian Dong
- Department of Internal Medicine-Oncology, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Wen-Liang Li
- Colorectal Cancer Clinical Research Center, Third Affiliated Hospital, Kunming Medical University, Kunming, 650118, China
| | - Zhi-Yong Kou
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China
| | - Jun Yang
- Department of Oncology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, China.
| |
Collapse
|
14
|
Yang F, Lian Q, Ni B, Qiu X, He Y, Zou X, He F, Chen W. MUTYH is a potential prognostic biomarker and correlates with immune infiltrates in hepatocellular carcinoma. LIVER RESEARCH 2022; 6:258-268. [PMID: 39957908 PMCID: PMC11791856 DOI: 10.1016/j.livres.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Background Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide. The development of biomarkers for early detection and monitoring of HCC has not shown significant progress. Meanwhile, the second adenomatous polyposis-related gene, MUTYH, which encodes a DNA glycosylase, has been observed in its contribution to oxidative DNA damage repair. Abnormal expression of MUTYH can reduce cell survival rate. Therefore, this study investigated the usefulness of MUTYH in diagnosing and prognosis HCC. Materials and methods Using The Cancer Genome Atlas (TCGA) data, we analyzed the prognostic value of MUTYH in HCC. We used logistic regression, Wilcoxon signed-rank test, and Kruskal-Wallis test to examine MUTYH expression concerning clinical-pathologic characteristics. Univariate and multivariate Cox regression methods and Kaplan-Meier analysis were applied to determine the related prognostic factors of HCC. The enrichment analysis (GSEA) was used to determine the critical pathways associated with MUTYH. The single-sample gene set enrichment analysis (ssGSEA) was conducted to examine the correlation between MUTYH expression and cancer immune infiltration. Results The higher expression of MUTYH in HCC patients was associated with a poorer overall survival rate and a shorter disease-specific survival rate. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that all differentially expressed genes (DEGs) between the high and low expression levels of MUTYH significantly enriched in the trace ligand-receptor interaction, cell cycle, oocyte meiosis, gap junction, and DNA replication. Group analysis revealed the signals of their open access. The neuron system, M phase, DNA repair, Rho GTPase effector, and cell cycle checkpoints were significantly enriched. ssGSEA showed a positive correlation between MUTYH expression and the infiltration levels of Th2 cells, NK cells, and T helper cells. Moreover, a negative correlation was found between MUTYH expression and the infiltration levels of dendritic cells (DCs) and cytotoxic cells. Conclusions MUTYH expression levels were positively correlated with immune checkpoint gene expression levels in HCC tissues. The expression level of MUTYH was related to the prognosis of HCC and the immune infiltration of HCC.
Collapse
Affiliation(s)
- Fan Yang
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
- Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qinghai Lian
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Beibei Ni
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiusheng Qiu
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yizhan He
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaoguang Zou
- Department of Infectious Diseases, The First People's Hospital of Kashi, Kashi, Xinjiang, China
| | - Fangping He
- Department of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wenjie Chen
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Cell-gene Therapy Translational Medicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
15
|
Styk J, Buglyó G, Pös O, Csók Á, Soltész B, Lukasz P, Repiská V, Nagy B, Szemes T. Extracellular Nucleic Acids in the Diagnosis and Progression of Colorectal Cancer. Cancers (Basel) 2022; 14:3712. [PMID: 35954375 PMCID: PMC9367600 DOI: 10.3390/cancers14153712] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Colorectal cancer (CRC) is the 3rd most common malignant neoplasm worldwide, with more than two million new cases diagnosed yearly. Despite increasing efforts in screening, many cases are still diagnosed at a late stage, when mortality is high. This paper briefly reviews known genetic causes of CRC (distinguishing between sporadic and familial forms) and discusses potential and confirmed nucleic acid biomarkers obtainable from liquid biopsies, classified by their molecular features, focusing on clinical relevance. We comment on advantageous aspects such as better patient compliance due to blood sampling being minimally invasive, the possibility to monitor mutation characteristics of sporadic and hereditary CRC in a disease showing genetic heterogeneity, and using up- or down-regulated circulating RNA markers to reveal metastasis or disease recurrence. Current difficulties and thoughts on some possible future directions are also discussed. We explore current evidence in the field pointing towards the introduction of personalized CRC management.
Collapse
Affiliation(s)
- Jakub Styk
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Gergely Buglyó
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Ondrej Pös
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
| | - Ádám Csók
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Beáta Soltész
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Peter Lukasz
- Department of Surgery, Transplantation and Gastroenterology, Semmelweis University, 1082 Budapest, Hungary;
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia;
- Medirex Group Academy, n.p.o., 949 05 Nitra, Slovakia
| | - Bálint Nagy
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.B.); (Á.C.); (B.S.)
| | - Tomáš Szemes
- Comenius University Science Park, Comenius University, 841 04 Bratislava, Slovakia; (O.P.); (B.N.); (T.S.)
- Geneton Ltd., 841 04 Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, 842 05 Bratislava, Slovakia
| |
Collapse
|