1
|
Leow SS, Khoo JS, Lee WK, Hoh CC, Fairus S, Sambanthamurthi R, Hayes KC. RNA-Seq transcriptome profiling of Nile rat livers reveals novel insights on the anti-diabetic mechanisms of Water-Soluble Palm Fruit Extract. J Appl Genet 2024; 65:867-895. [PMID: 38890243 DOI: 10.1007/s13353-024-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Water-Soluble Palm Fruit Extract (WSPFE) has been shown to confer anti-diabetic effects in the Nile rat (NR) (Arvicanthis niloticus). Liquid and powder WSPFE both deterred diabetes onset in NRs fed a high-carbohydrate (hiCHO) diet, but the liquid form provided better protection. In this study, NRs were fed either a hiCHO diet or the same diet added with liquid or powder WSPFE. Following feeding of the diets for 8 weeks, random blood glucose levels were measured to categorize NRs as either diabetes-resistant or diabetes-susceptible, based on a cut-off value of 75 mg/dL. Livers were then obtained for Illumina HiSeq 4000 paired end RNA-sequencing (RNA-Seq) and the data were mapped to the reference genome. Consistent with physiological and biochemical parameters, the gene expression data obtained indicated that WSPFE was associated with protection against diabetes. Among hepatic genes upregulated by WSPFE versus controls, were genes related to insulin-like growth factor binding protein, leptin receptor, and processes of hepatic metabolism maintenance, while those downregulated were related to antigen binding, immunoglobulin receptor, inflammation- and cancer-related processes. WSPFE supplementation thus helped inhibit diabetes progression in NRs by increasing insulin sensitivity and reducing both the inflammatory effects of a hiCHO diet and the related DNA-damage compensatory mechanisms contributing to liver disease progression. In addition, the genetic permissiveness of susceptible NRs to develop diabetes was potentially associated with dysregulated compensatory mechanisms involving insulin signaling and oxidative stress over time. Further studies on other NR organs associated with diabetes and its complications are warranted.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Jia-Shiun Khoo
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Academy of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
2
|
Luan H, Wang T, Li F, Sun S, Wang Z, Zhao X, Kong F, Hu T, Liu Y, Zhang J, Liu X, Wang H, Meng X, Li C, Zhang J, Ji S, Hui L, Nie S, Wang Y, Li Z. IGSF9 promotes tumor invasion and metastasis through GSK-3β/β-catenin mediated EMT in lung cancer. Neoplasia 2024; 58:101067. [PMID: 39383800 PMCID: PMC11492623 DOI: 10.1016/j.neo.2024.101067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 10/03/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
We previously reported that immunoglobulin superfamily member 9 (IGSF9) as a tumor specific immune checkpoint promoted the tumor immune escape, however, as an adhesion molecule, whether IGSF9 promotes tumor invasion and metastasis has not been reported. Here, the full length, the intracellular domain (ID) not extracellular domain (ECD) of IGSF9 could alter tumor cell morphology from a flat and polygonal shape to elongated strips, suggesting that IGSF9 signal pathway has the potential to mediate epithelial-to-mesenchymal transition (EMT). Real-time PCR and western blotting also showed that the mesenchymal markers were significantly up-regulated, and the epithelial markers were significantly down-regulated in IGSF9 and IGSF9-ID groups. Meanwhile, immunofluorescence showed that β-catenin was clearly translocated into the nucleus in IGSF9 and IGSF9-ID groups. The in vitro and in vivo data showed that IGSF9, IGSF9-ID and ECD could promote tumor invasion and metastasis. Mechanistically, IGSF9-ID could recruit GSK-3β to result in the accumulation and nuclear translocation of β-catenin to trigger EMT. Anti-IGSF9 could significantly inhibit the invasion and metastasis, and IGSF9 is an effective candidate for lung cancer therapy.
Collapse
Affiliation(s)
- Huiwen Luan
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264099, PR China
| | - Fangmin Li
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Shuang Sun
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Laboratory Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264099, PR China
| | - Zhenbo Wang
- Department of Binzhou Medical University Hospital, Binzhou, Shandong 256600, PR China
| | - Xinyu Zhao
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Feng Kong
- Shandong Institute of Clinical Medicine, Shandong Provincial Hospital, Jinan, Shandong 250021, PR China
| | - Tao Hu
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong 264099, PR China
| | - Yifan Liu
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Juan Zhang
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xiaoli Liu
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Hongying Wang
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Xianhui Meng
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Chunling Li
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Jiashen Zhang
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Shuhao Ji
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Lijun Hui
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Siman Nie
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China
| | - Yaopeng Wang
- Department of Thoracic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong 266011, PR China.
| | - Zunling Li
- Shandong Key Lab of Complex Medical Intelligence and Aging, Shandong Medicine and Health Key Lab of Respiratory Infection and Tumor Immunity, Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong 264003, PR China.
| |
Collapse
|
3
|
van Eekeren LE, de Mast Q, Meeder EMG, Navas A, Groenendijk AL, Blaauw MJT, Vos WAJW, Vadaq N, Dos Santos JC, Rutten J, Riksen NP, van Lunzen J, Weijers G, Netea MG, van der Ven AJAM, Tjwa ETTL, Joosten LAB. Plasma proteomic signatures of liver steatosis and fibrosis in people living with HIV: a cross-sectional study. EBioMedicine 2024; 109:105407. [PMID: 39426127 PMCID: PMC11513669 DOI: 10.1016/j.ebiom.2024.105407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Insights into the mechanisms driving metabolic dysfunction-associated steatotic liver disease (MASLD) in people living with HIV (PLHIV) remain limited. Plasma proteomics holds promise for biomarker discovery and the elucidation of biological mechanisms. METHODS We performed cross-sectional analyses on data from 1036 virally suppressed PLHIV using antiretroviral treatment (ART) from the Dutch multi-centre 2000HIV cohort. Participants underwent transient elastography to assess liver steatosis (controlled attenuation parameter (CAP) ≥263 dB/m) and -fibrosis (liver stiffness measurement (LSM) ≥7.0 kPa). Plasma protein concentrations (n = 2367) (Olink® Explore Panel) were compared between PLHIV with vs. without liver steatosis and PLHIV with vs. without fibrosis. Enriched pathways (using GO, KEGG and Reactome libraries) and correlations with clinical characteristics were assessed, and analyses were stratified by BMI category. In addition, concentrations of 242 proteins were compared between individuals ("controls") with and without liver steatosis (ratio of methylene:methylene and water >5.6% on magnetic resonance spectroscopy) from a separate cohort (300-OB), all having a BMI >26 kg/m2. FINDINGS Steatosis and fibrosis were associated with 67/2367 (2.2%) and 17/2367 (0.7%) differentially expressed proteins (DEP), respectively, enriched in mostly metabolic pathways. Immunoglobulin superfamily member 9 (IGSF9) was amongst the top DEP associated with both steatosis and fibrosis. Stratifying by BMI revealed 8/2367 DEP associated with steatosis in lean- and 12/2367 DEP in overweight/obese individuals, with two shared DEP (IGSF9 and GHR). Conversely, protein signatures of overweight/obese PLHIV (32/242 DEP) and overweight/obese HIV-uninfected individuals (32/242 DEP) exhibited substantial overlap with 16 shared DEP. Notably, DEP correlated with HIV characteristics in lean individuals but not in overweight/obese PLHIV. INTERPRETATION Lean and overweight/obese PLHIV exhibit distinct proteomic signatures associated with liver steatosis, with the former being more strongly correlated with HIV-specific factors and ART. In addition, we identified a protein, IGSF9, strongly related to liver fibrosis and steatosis across BMI categories. FUNDING The 2000HIV study is funded by ViiV Healthcare.
Collapse
Affiliation(s)
- Louise E van Eekeren
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Elise M G Meeder
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Adriana Navas
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Albert L Groenendijk
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Centre, the Netherlands
| | - Marc J T Blaauw
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | | | - Nadira Vadaq
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jéssica C Dos Santos
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Joost Rutten
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Jan van Lunzen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gert Weijers
- Medical UltraSound Imaging Centre (MUSIC), Division of Medical Imaging, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Metabolism and Immunology, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - André J A M van der Ven
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Eric T T L Tjwa
- Department of Gastroenterology and Hepatology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Liang W, Zhang Y, Guo Y, Zhang P, Jin J, Guan H, Li Y. FLNA overexpression promotes papillary thyroid cancer aggression via the FAK/AKT signaling pathway. Endocr Connect 2024; 13:e240034. [PMID: 38614124 PMCID: PMC11103747 DOI: 10.1530/ec-24-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 04/15/2024]
Abstract
Background Filamin A (FLNA) is a member of the filamin family and has been found to be critical for the progression of several cancers. However, its biological function in papillary thyroid cancer (PTC) remains largely unexplored. Methods Data from The Cancer Genome Atlas (TCGA) databases were utilized to analyze the FLNA expression level and its influence on the clinical implications of patients with PTC. Gene Expression Omnibus (GEO) and qRT-PCR was used to verify the expression levels of FLNA in PTC. Kaplan-Meier survival analysis was conducted to evaluate the prognostic value of FLNA in PTC. Transwell assays and wound healing were performed to examine the biological function of FLNA knockdown in PTC cells. Gene set enrichment analysis (GSEA) and Western blotting were conducted to investigate the potential mechanisms underlying the role of FLNA in PTC progression. In addition, the relationship between FLNA expression and the tumor immune microenvironment (TME) in PTC was explored. Results FLNA was significantly upregulated in PTC tissues. High expression levels of FLNA was correlated with advanced TNM stage, T stage, and N stage, as well as poor disease-free interval (DFI) and progression-free interval (PFI) time in PTC patients. Moreover, we found that FLNA knockdown inhibited the migration and invasion of PTC cells. Mechanistically, FLNA knockdown inhibited epithelial-mesenchymal transition (EMT) in PTC and affected the activation of the FAK/AKT signaling pathway. In addition, FLNA expression was associated with TME in PTC. Conclusion FLNA may be regarded as a new therapeutic target for PTC patients.
Collapse
Affiliation(s)
- Weiwei Liang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yilin Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Guo
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Pengyuan Zhang
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jiewen Jin
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hongyu Guan
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanbing Li
- Department of Endocrinology and Diabetes Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Eladwy RA, Alsherbiny MA, Chang D, Fares M, Li CG, Bhuyan DJ. The postbiotic sodium butyrate synergizes the antiproliferative effects of dexamethasone against the AGS gastric adenocarcinoma cells. Front Nutr 2024; 11:1372982. [PMID: 38533461 PMCID: PMC10963608 DOI: 10.3389/fnut.2024.1372982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/28/2024] Open
Abstract
A growing body of literature underlines the fundamental role of gut microbiota in the occurrence, treatment, and prognosis of cancer. In particular, the activity of gut microbial metabolites (also known as postbiotics) against different cancer types has been recently reported in several studies. However, their in-depth molecular mechanisms of action and potential interactions with standard chemotherapeutic drugs remain to be fully understood. This research investigates the antiproliferative activities of postbiotics- short-chain fatty acid (SCFA) salts, specifically magnesium acetate (MgA), sodium propionate (NaP), and sodium butyrate (NaB), against the AGS gastric adenocarcinoma cells. Furthermore, the potential synergistic interactions between the most active SCFA salt-NaB and the standard drug dexamethasone (Dex) were explored using the combination index model. The molecular mechanisms of the synergy were investigated using reactive oxygen species (ROS), flow cytometry and biochemometric and liquid chromatography-mass spectrometry (LC-MS)-driven proteomics analyses. NaB exhibited the most significant inhibitory effect (p < 0.05) among the tested SCFA salts against the AGS gastric cancer cells. Additionally, Dex and NaB exhibited strong synergy at a 2:8 ratio (40 μg/mL Dex + 2,400 μg/mL NaB) with significantly greater inhibitory activity (p < 0.05) compared to the mono treatments against the AGS gastric cancer cells. MgA and NaP reduced ROS production, while NaB exhibited pro-oxidative properties. Dex displayed antioxidative effects, and the combination of Dex and NaB (2,8) demonstrated a unique pattern, potentially counteracting the pro-oxidative effects of NaB, highlighting an interaction. Dex and NaB individually and in combination (Dex:NaB 40:2400 μg/mL) induced significant changes in cell populations, suggesting a shift toward apoptosis (p < 0.0001). Analysis of dysregulated proteins in the AGS cells treated with the synergistic combination revealed notable downregulation of the oncogene TNS4, suggesting a potential mechanism for the observed antiproliferative effects. These findings propose the potential implementation of NaB as an adjuvant therapy with Dex. Further investigations into additional combination therapies, in-depth studies of the molecular mechanisms, and in vivo research will provide deeper insights into the use of these postbiotics in cancer, particularly in gastric malignancies.
Collapse
Affiliation(s)
- Radwa A Eladwy
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- Department of Pharmacology, Faculty of Pharmacy, Egyptian Russian University, Badr City, Egypt
| | | | - Dennis Chang
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Mohamed Fares
- School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
| | - Chun-Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Deep Jyoti Bhuyan
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
- School of Science, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
6
|
Hu HH, Wang SQ, Shang HL, Lv HF, Chen BB, Gao SG, Chen XB. Roles and inhibitors of FAK in cancer: current advances and future directions. Front Pharmacol 2024; 15:1274209. [PMID: 38410129 PMCID: PMC10895298 DOI: 10.3389/fphar.2024.1274209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that exhibits high expression in various tumors and is associated with a poor prognosis. FAK activation promotes tumor growth, invasion, metastasis, and angiogenesis via both kinase-dependent and kinase-independent pathways. Moreover, FAK is crucial for sustaining the tumor microenvironment. The inhibition of FAK impedes tumorigenesis, metastasis, and drug resistance in cancer. Therefore, developing targeted inhibitors against FAK presents a promising therapeutic strategy. To date, numerous FAK inhibitors, including IN10018, defactinib, GSK2256098, conteltinib, and APG-2449, have been developed, which have demonstrated positive anti-tumor effects in preclinical studies and are undergoing clinical trials for several types of tumors. Moreover, many novel FAK inhibitors are currently in preclinical studies to advance targeted therapy for tumors with aberrantly activated FAK. The benefits of FAK degraders, especially in terms of their scaffold function, are increasingly evident, holding promising potential for future clinical exploration and breakthroughs. This review aims to clarify FAK's role in cancer, offering a comprehensive overview of the current status and future prospects of FAK-targeted therapy and combination approaches. The goal is to provide valuable insights for advancing anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Hui-Hui Hu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - Hai-Li Shang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Hui-Fang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
| | - Bei-Bei Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| | - She-Gan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Xiao-Bing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Henan Engineering Research Center of Precision Therapy of Gastrointestinal Cancer and Zhengzhou Key Laboratory for Precision Therapy of Gastrointestinal Cancer, Zhengzhou, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
Liu Y, Wang H, Zhao X, Zhang J, Zhao Z, Lian X, Zhang J, Kong F, Hu T, Wang T, Li X, Wang L, Wang D, Li C, Luan H, Liu X, Wang C, Jiang Y, Li X, Li F, Ji S, Wang Y, Li Z. Targeting the Immunoglobulin IGSF9 Enhances Antitumor T-cell Activity and Sensitivity to Anti-PD-1 Immunotherapy. Cancer Res 2023; 83:3385-3399. [PMID: 37506192 DOI: 10.1158/0008-5472.can-22-3115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/14/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
Immune checkpoints modulate the immune response and represent important immunotherapy targets for cancer treatment. However, as many tumors are resistant to current immune checkpoint inhibitors, the discovery of novel immune checkpoints could facilitate the development of additional immunotherapeutic strategies to improve patient responses. Here, we identified increased expression of the adhesion molecule immunoglobulin superfamily member 9 (IGSF9) in tumor cells and tumor-infiltrating immune cells across multiple cancer types. IGSF9 overexpression or knockout in tumor cells did not alter cell proliferation in vitro or tumor growth in immunocompromised mice. Alternatively, IGSF9 deficient tumor cells lost the ability to suppress T-cell proliferation and exhibited reduced growth in immunocompetent mice. Similarly, growth of tumor cells was reduced in IGSF9 knockout syngeneic and humanized mice, accompanied by increased tumor-infiltrating T cells. Mechanistically, the extracellular domain (ECD) of IGSF9 bound to T cells and inhibited their proliferation and activation, and the tumor-promoting effect of IGSF9 ECD was reversed by CD3+ T-cell depletion. Anti-IGSF9 antibody treatment inhibited tumor growth and enhanced the antitumor efficacy of anti-programmed cell death protein 1 immunotherapy. Single-cell RNA sequencing revealed tumor microenvironment remodeling from tumor promoting to tumor suppressive following anti-IGSF9 treatment. Together, these results indicate that IGSF9 promotes tumor immune evasion and is a candidate immune checkpoint target. SIGNIFICANCE IGSF9 is an immune checkpoint regulator that suppresses T-cell activation in cancer and can be targeted to stimulate antitumor immunity and inhibit tumor growth.
Collapse
Affiliation(s)
- Yifan Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Hongying Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xinyu Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Jiashen Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Shandong Agricultural University, Taian, Shandong, P.R. China
| | - Zhiling Zhao
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xia Lian
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Feng Kong
- Shandong Institute of Clinical Medicine, Shandong Provincial Hospital, Jinan, Shandong, P.R. China
| | - Tao Hu
- Department of thoracic surgery, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, P.R. China
| | - Ting Wang
- Department of Pathology, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai, Shandong, P.R. China
| | - Xiaohua Li
- Yantai Central Blood Station, Yantai, Shandong, P.R. China
| | - Lei Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Dapeng Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Chunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Huiwen Luan
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xiaoli Liu
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Chunyan Wang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Yun Jiang
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Xiaomin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Fangmin Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Shuhao Ji
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| | - Yaopeng Wang
- Department of thoracic surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, Shandong, P.R. China
| | - Zunling Li
- Department of Biochemistry and Molecular Biology, Shandong Tumor Immunotherapy Research Innovation Team, Binzhou Medical University, Yantai, Shandong, P.R. China
| |
Collapse
|
8
|
Wang J, Xue Y, He Y, Quan H, Zhang J, Gao YQ. Characterization of network hierarchy reflects cell state specificity in genome organization. Genome Res 2023; 33:247-260. [PMID: 36828586 PMCID: PMC10069467 DOI: 10.1101/gr.277206.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/31/2023] [Indexed: 02/26/2023]
Abstract
Dynamic chromatin structure acts as the regulator of transcription program in crucial processes including cancer and cell development, but a unified framework for characterizing chromatin structural evolution remains to be established. Here, we performed graph inferences on Hi-C data sets and derived the chromatin contact networks. We discovered significant decreases in information transmission efficiencies in chromatin of colorectal cancer (CRC) and T-cell acute lymphoblastic leukemia (T-ALL) compared to corresponding normal controls through graph statistics. Using network embedding in the Poincaré disk, the hierarchy depths of chromatin from CRC and T-ALL patients were found to be significantly shallower compared to their normal controls. A reverse trend of change in chromatin structure was observed during early embryo development. We found tissue-specific conservation of hierarchy order in chromatin contact networks. Our findings reveal the top-down hierarchy of chromatin organization, which is significantly attenuated in cancer.
Collapse
Affiliation(s)
- Jingyao Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yue Xue
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yueying He
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hui Quan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jun Zhang
- Changping Laboratory, Beijing, 102206, China
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; .,Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, 100871, China.,Changping Laboratory, Beijing, 102206, China
| |
Collapse
|