1
|
Qu T, Zhang C, Lu X, Dai J, He X, Li W, Han L, Yin D, Zhang E. 8q24 derived ZNF252P promotes tumorigenesis by driving phase separation to activate c-Myc mediated feedback loop. Nat Commun 2025; 16:1986. [PMID: 40011431 PMCID: PMC11865308 DOI: 10.1038/s41467-025-56879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025] Open
Abstract
As a well-known cancer risk region, the 8q24 locus is frequently amplified in a variety of solid tumors. Here we identify a pseudogene-derived oncogenic lncRNA, ZNF252P, which is upregulated in a variety of cancer types by copy number gain as well as c-Myc-mediated transcriptional activation. Mechanistically, ZNF252P binds and drives "phase separation" of HNRNPK and ILF3 protein in the nucleus and cytoplasm, respectively, to transcriptionally and posttranscriptionally activate c-Myc, thus forming a c-Myc/ZNF252P/c-Myc positive feedback loop. These findings expand the understanding of the relationship between genomic instability in the 8q24 region and tumorigenesis and clarify a regulatory mechanism involved in transcription and posttranscription from the perspective of RNA-mediated nuclear and cytoplasmic protein phase separation, which sheds light on the dialogue with the driver oncogene c-Myc. The pivotal regulatory axis of ZNF252P/c-Myc has potential as a promising biomarker and therapeutic target in cancer development.
Collapse
Affiliation(s)
- Tianyu Qu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Chang Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xiyi Lu
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Jiali Dai
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Xuezhi He
- Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Wei Li
- Department of Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, PR China
| | - Liang Han
- Department of Oncology, Xuzhou Central Hospital, Xuzhou School of Clinical Medicine of Nanjing Medical University, Xuzhou, Jiangsu, PR China.
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu, 210003, PR China.
| | - Erbao Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
2
|
Yuan Y, Tang Y, Fang Z, Wen J, Wicha MS, Luo M. Long Non-Coding RNAs: Key Regulators of Tumor Epithelial/Mesenchymal Plasticity and Cancer Stemness. Cells 2025; 14:227. [PMID: 39937018 PMCID: PMC11817775 DOI: 10.3390/cells14030227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of non-coding RNA molecules with transcripts longer than 200 bp, which were initially thought to be noise from genomic transcription without biological function. However, since the discovery of H19 in 1980 and Xist in 1990, increasing evidence has shown that lncRNAs regulate gene expression at epigenetic, transcriptional, and post-transcriptional levels through specific regulatory actions and are involved in the development of cancer and other diseases. Despite many lncRNAs being expressed at lower levels than those of protein-coding genes with less sequence conservation across species, lncRNAs have become an intense area of RNA research. They exert diverse biological functions such as inducing chromatin remodeling, recruiting transcriptional machinery, acting as competitive endogenous RNAs for microRNAs, and modulating protein-protein interactions. Epithelial-mesenchymal transition (EMT) is a developmental process, associated with embryonic development, wound healing, and cancer progression. In the context of oncogenesis, the EMT program is transiently activated and confers migratory/invasive and cancer stem cell (CSC) properties to tumor cells, which are crucial for malignant progression, metastasis, and therapeutic resistance. Accumulating evidence has revealed that lncRNAs play crucial roles in the regulation of tumor epithelial/mesenchymal plasticity (EMP) and cancer stemness. Here, we summarize the emerging roles and molecular mechanisms of lncRNAs in regulating tumor cell EMP and their effects on tumor initiation and progression through regulation of CSCs. We also discuss the potential of lncRNAs as diagnostic and prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Yun Tang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Zeng Fang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
| | - Jian Wen
- Department of Breast Surgery, The Fourth Affiliated Hospital of China Medical University, Shengyang 110032, China;
| | - Max S. Wicha
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ming Luo
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China; (Y.Y.); (Y.T.); (Z.F.)
- Division of Hematology & Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
3
|
Zhang S, Xing Z, Ke J. Using β-Elemene to reduce stemness and drug resistance in osteosarcoma: A focus on the AKT/FOXO1 signaling pathway and immune modulation. J Bone Oncol 2025; 50:100655. [PMID: 39850453 PMCID: PMC11755076 DOI: 10.1016/j.jbo.2024.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/25/2025] Open
Abstract
Objective Osteosarcoma, a highly malignant bone tumor, poses significant treatment challenges due to its propensity for stemness and drug resistance, particularly against doxorubicin (DOX). This study aims to investigate the mechanism by which β-elemene reduces the stemness of osteosarcoma stem cells and ultimately decreases DOX resistance by inhibiting the Akt/FoxO1 signaling pathway and activating a macrophage-mediated inflammatory microenvironment. Methods Osteosarcoma stem cells were isolated and induced for DOX resistance. In vitro and in vivo models were employed to assess β-elemene's impact on cell viability, stemness, and drug resistance. Bioinformatics analysis, flow cytometry, and immunofluorescence staining were used to evaluate signaling pathway activity and macrophage polarization. Additionally, an osteosarcoma xenograft mouse model was established to confirm the therapeutic effects of β-elemene. Results In vivo animal experiments demonstrated that β-elemene reduces osteosarcoma resistance. Bioinformatics analysis revealed that AKT1 is a key core gene in osteosarcoma progression, acting through the FOXO signaling pathway. Additionally, AKT inhibits immune cell infiltration in osteosarcoma and suppresses immune responses during osteosarcoma progression. β-elemene may influence osteosarcoma progression by mediating TP53 to regulate PTEN and subsequently AKT1. In vitro experiments showed that β-elemene promotes M1 macrophage activation by inhibiting the Akt/FoxO1 signaling axis, thereby reducing the stemness of osteosarcoma stem cells. Finally, in vivo animal experiments confirmed that β-elemene reduces osteosarcoma resistance by promoting M1 macrophage activation through inhibition of the Akt/FoxO1 signaling axis. Conclusion β-Elemene demonstrates promising potential in reducing osteosarcoma stemness and drug resistance via dual mechanisms: targeting the AKT/FOXO1 pathway and modulating the tumor immune microenvironment. These findings suggest β-elemene as a potential adjunct therapy for osteosarcoma, providing novel therapeutic strategies to overcome chemotherapy resistance and improve patient outcomes.
Collapse
Affiliation(s)
- Shaochun Zhang
- Orthopedics Department, The Central Hospital of Ezhou, Ezhou 436000, China
| | - Zhijie Xing
- Orthopedics Department, The Central Hospital of Ezhou, Ezhou 436000, China
| | - Jing Ke
- Department of Endocrinology, The Central Hospital of Ezhou, Ezhou 436000, China
| |
Collapse
|
4
|
Nourisa J, Passemiers A, Shakeri F, Omidi M, Helmholz H, Raimondi D, Moreau Y, Tomforde S, Schlüter H, Luthringer-Feyerabend B, Cyron CJ, Aydin RC, Willumeit-Römer R, Zeller-Plumhoff B. Gene regulatory network analysis identifies MYL1, MDH2, GLS, and TRIM28 as the principal proteins in the response of mesenchymal stem cells to Mg 2+ ions. Comput Struct Biotechnol J 2024; 23:1773-1785. [PMID: 38689715 PMCID: PMC11058716 DOI: 10.1016/j.csbj.2024.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
Magnesium (Mg)-based implants have emerged as a promising alternative for orthopedic applications, owing to their bioactive properties and biodegradability. As the implants degrade, Mg2+ ions are released, influencing all surrounding cell types, especially mesenchymal stem cells (MSCs). MSCs are vital for bone tissue regeneration, therefore, it is essential to understand their molecular response to Mg2+ ions in order to maximize the potential of Mg-based biomaterials. In this study, we conducted a gene regulatory network (GRN) analysis to examine the molecular responses of MSCs to Mg2+ ions. We used time-series proteomics data collected at 11 time points across a 21-day period for the GRN construction. We studied the impact of Mg2+ ions on the resulting networks and identified the key proteins and protein interactions affected by the application of Mg2+ ions. Our analysis highlights MYL1, MDH2, GLS, and TRIM28 as the primary targets of Mg2+ ions in the response of MSCs during 1-21 days phase. Our results also identify MDH2-MYL1, MDH2-RPS26, TRIM28-AK1, TRIM28-SOD2, and GLS-AK1 as the critical protein relationships affected by Mg2+ ions. By offering a comprehensive understanding of the regulatory role of Mg2+ ions on MSCs, our study contributes valuable insights into the molecular response of MSCs to Mg-based materials, thereby facilitating the development of innovative therapeutic strategies for orthopedic applications.
Collapse
Affiliation(s)
- Jalil Nourisa
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | - Farhad Shakeri
- Institute of Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Bonn, Germany
| | - Maryam Omidi
- Institute of Clinical Chemistry/Central Laboratories, University Medical Center Hamburg, Hamburg, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz Zentrum Hereon, Geesthacht, Germany
| | | | | | - Sven Tomforde
- Department of Computer Science, Intelligent Systems, University of Kiel, Kiel, Germany
| | - Hartmuth Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine Diagnostic Center, University of Hamburg, Hamburg, Germany
| | | | - Christian J. Cyron
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | - Roland C. Aydin
- Institute of Material Systems Modeling, Helmholtz Zentrum Hereon, Geesthacht, Germany
- Institute for Continuum and Material Mechanics, Hamburg University of Technology, Hamburg, Germany
| | | | | |
Collapse
|
5
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
6
|
Li K, Wang H, Jiang B, Jin X. TRIM28 in cancer and cancer therapy. Front Genet 2024; 15:1431564. [PMID: 39100077 PMCID: PMC11294089 DOI: 10.3389/fgene.2024.1431564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/01/2024] [Indexed: 08/06/2024] Open
Abstract
TRIM28 (tripartite motif protein 28) was initially believed to be a transcription inhibitor that plays an important role in DNA damage repair (DDR) and in maintaining cancer cellular stemness. As research has continued to deepen, several studies have found that TRIM28 not only has ubiquitin E3 ligase activity to promote degradation of substrates, but also can promote SUMOylation of substrates. Although TRIM28 is highly expressed in various cancer tissues and has oncogenic effects, there are still a few studies indicating that TRIM28 has certain anticancer effects. Additionally, TRIM28 is subject to complex upstream regulation. In this review, we have elaborated on the structure and regulation of TRIM28. At the same time, highlighting the functional role of TRIM28 in tumor development and emphasizing its impact on cancer treatment provides a new direction for future clinical antitumor treatment.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Haifeng Wang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Bitao Jiang
- Department of Oncology and Hematology, Beilun District People’s Hospital, Ningbo, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathphysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Li Z, Tian JM, Chu Y, Zhu HY, Wang JJ, Huang J. Long non-coding RNA PVT1 (PVT1) affects the expression of CCND1 and promotes doxorubicin resistance in osteosarcoma cells. J Bone Oncol 2023; 43:100512. [PMID: 38021073 PMCID: PMC10665705 DOI: 10.1016/j.jbo.2023.100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Acquired drug-resistance is the major risk factor for poor prognosis and short-term survival in patients with osteosarcoma (OS). Accumulating evidence has revealed that long noncoding RNAs (lncRNAs), including plasmacytoma variant translocation 1 (PVT1), play potential regulatory roles in the malignant development of OS. Considering the subcellular distribution of PVT1 as both nuclear and cytoplasmic lncRNA, a thorough exploration of its extensive mechanisms becomes essential. Methods The GEO database was utilized for the acquisition of gene expression data, which was subsequently analyzed to fulfill the research objectives. The subcellular localization of PVT1 in OS cells was determined using fluorescence in situ hybridization (FISH) and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, the sensitivity of OS cells to doxorubicin was comprehensively evaluated through measurements of cell viability, site-specific proliferation capacity, and the relative expression abundance of multidrug resistance-related proteins (MRPs). In order to investigate the differential response of OS cells with varying levels of PVT1 expression to doxorubicin, pulmonary metastasis mice models were established for in vivo studies. Molecular interactions were further examined using the dual-luciferase assay and RNA immunoprecipitation assay (RIP) to analyze the binding sites of miR-15a-5p and miR-15b-5p on PVT1 and G1/S-specific cyclinD1 (CCND1) mRNA. Furthermore, the chromatin immunoprecipitation (ChIP) and dual-luciferase assay were employed to assess the transcriptional activation of the proto-oncogene c-myc (MYC) on the CCND1 promoter and identify the corresponding binding sites. Results In doxorubicin resistant OS cells, transcription levels of PVT1, MYC and CCND1 were significantly higher than those in original cells. In vivo experiments demonstrated that OS cells rich in PVT1 expression exhibited enhanced tumorigenicity and resistance to doxorubicin. In vitro experiments, it has been observed that overexpression of PVT1 in OS cells is accompanied by an upregulation of CCND1, thereby facilitating resistance to doxorubicin. Nonetheless, this PVT1-induced resistance can be effectively attenuated by the knockdown of CCND1. Mechanistically, PVT1 functions as a competitive endogenous RNA (ceRNA) that influences the expression of CCND1 by inhibiting the degradation function of miR-15a-5p and miR-15b-5p on CCND1 mRNA. Additionally, as a neighboring gene of MYC, PVT1 plays a role in maintaining MYC protein stability, which further enhances MYC-dependent CCND1 transcriptional activity. Conclusion The resistance of OS cells to doxorubicin is facilitated by PVT1, which enhances the expression of CCND1 through a dual mechanism. This findings offer a novel perspective for comprehending the intricate regulatory mechanisms of long non-coding RNA in influencing the expression of coding genes.
Collapse
Affiliation(s)
- Zi Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jia-Ming Tian
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yi Chu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Yi Zhu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun-Jie Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jun Huang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
8
|
Kilinc OC, Ugurlu S. Clinical features of dermatomyositis patients with anti-TIF1 antibodies: A case based comprehensive review. Autoimmun Rev 2023; 22:103464. [PMID: 37863375 DOI: 10.1016/j.autrev.2023.103464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Dermatomyositis is chronic autoimmune disease primarily affecting skin and muscles. Antibodies are key players of pathogenesis and are in strong correlation with distinct clinical phenotypes. We present a case and a comprehensive review of the literature on dermatomyositis patients with Anti TIF1 antibodies. METHODS PubMed and Web of Science databases were reviewed. 166 articles were identified; 95 of them were evaluated; 79 of them included to the study. 45 of the included articles were case reports 9 were case series and 25 were research articles. In total 1065 patients were identified but number of patients with available information for different clinical features varied. RESULTS 69.6% of the patients with Anti TIF1-γ were female. Prevalence of malignancy was 42.6% among patients with Anti TIF1-γ. Muscle weakness (83%), Gottron sign (82.2%), heliotrope rash (73.7%), nailfold capillary changes (67.7%), dysphagia (38.4%), and joint involvement (31.1%) were the most common clinical features seen in patients with Anti TIF1-γ. Interstitial lung disease (ILD) was reported among 8.7% of patients with Anti TIF1-γ. Advanced age, male gender, dysphagia, and V-neck rash were significant risk factors for malignancy, whereas juvenile age, ILD, TIF1-β antibodies and joint involvement were associated with a decreased risk for malignancy. Advanced age, malignancy, dysphagia, and muscle involvement were associated with an increased risk for mortality. CONCLUSIONS Patients with advanced age, male gender, dysphagia, and V-neck rash require strict cancer screening. Patients with advanced age, malignancy, dysphagia, and muscle involvement have poor prognosis and should receive aggressive treatment.
Collapse
Affiliation(s)
- Ozgur C Kilinc
- Division of Rheumatology, Department of Internal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Serdal Ugurlu
- Division of Rheumatology, Department of Internal Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
9
|
Zhang F, Zhu T, Wu C, Shen D, Liu L, Chen X, Guan Y, Ding H, Tong X. TRIM28 recruits E2F1 to regulate CBX8-mediated cell proliferation and tumor metastasis of ovarian cancer. Hum Cell 2023; 36:2113-2128. [PMID: 37709991 DOI: 10.1007/s13577-023-00983-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
Chromobox protein homolog 8 (CBX8) is a transcriptional suppressor participated in various cancers. However, the function and mechanism of CBX8 in the progression of ovarian cancer (OC) are unclear. In this study, we found that CBX8 was upregulated in OC tissues originating from GEPIA and TNM databases, OC patients' samples from hospital, and OC cell lines. Furthermore, CBX8 knockdown by short hairpin RNA (shRNA) technology markedly inhibited proliferation and invasion, induced migration, cell cycle arrest, and apoptosis in vitro. Mechanistically, CBX8 activated PI3K/AKT/mTOR signaling pathway to take effect. In addition, TRIM28 and E2F1 were enriched in OC tissues from the TNM database and OC patients' samples similar to the results of CBX8. Correlation analysis indicated positive correlations among TRIM28, E2F1, and CBX8. E2F1 was proved to bind to the promoter regions of CBX8 and TRIM28, while TRIM28 recruited E2F1 to increase the expression of CBX8 to further increase cell viability, proliferation, and invasion, and decrease migration, apoptosis, and cell cycle progression. Finally, CBX8 or TRIM28 knockdown repressed tumor growth and metastasis of OC in vivo. Therefore, our study showed that the promoting effect of CBX8 on tumor growth and metastasis of OC was participated in the PI3K/AKT/mTOR signaling, TRIM28 and E2F1. Our findings suggested that CBX8 could serve as a potential marker and therapeutic target for OC patients.
Collapse
Affiliation(s)
- Fubin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Tianhong Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Chenghao Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Dongsheng Shen
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Xueqin Chen
- Department of Traditional Medicine, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China
| | - Yutao Guan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China.
| | - Huiqing Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Ningbo University, No. 59 Liuting Street, Ningbo, 315010, Zhejiang Province, China.
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, No. 389 Xincun Road, Shanghai, 200065, China.
| |
Collapse
|
10
|
Li K, Xia Y, He J, Wang J, Li J, Ye M, Jin X. The SUMOylation and ubiquitination crosstalk in cancer. J Cancer Res Clin Oncol 2023; 149:16123-16146. [PMID: 37640846 DOI: 10.1007/s00432-023-05310-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND The cancer occurrence and progression are largely affected by the post-translational modifications (PTMs) of proteins. Currently, it has been shown that the relationship between ubiquitination and SUMOylation is highly complex and interactive. SUMOylation affects the process of ubiquitination and degradation of substrates. Contrarily, SUMOylation-related proteins are also regulated by the ubiquitination process thus altering their protein levels or activity. Emerging evidence suggests that the abnormal regulation between this crosstalk may lead to tumorigenesis. PURPOSE In this review, we have discussed the study of the relationship between ubiquitination and SUMOylation, as well as the possibility of a corresponding application in tumor therapy. METHODS The relevant literatures from PubMed have been reviewed for this article. CONCLUSION The interaction between ubiquitination and SUMOylation is crucial for the occurrence and development of cancer. A greater understanding of the crosstalk of SUMOylation and ubiquitination may be more conducive to the development of more selective and effective SUMOylation inhibitors, as well as a promotion of synergy with other tumor treatment strategies.
Collapse
Affiliation(s)
- Kailang Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yongming Xia
- Department of Oncology, Yuyao People's Hospital of Zhejiang, Yuyao, 315400, Zhejiang, China
| | - Jian He
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jie Wang
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jingyun Li
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Meng Ye
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaofeng Jin
- Department of Oncology, The First Hospital of Ningbo University, Ningbo, 315020, China.
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
11
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Bahonar A, Nakhaee Z, Entezari M, Beig Goharrizi MAS, Salimimoghadam S, Ren J, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Tan SC, Hushmandi K. New emerging targets in osteosarcoma therapy: PTEN and PI3K/Akt crosstalk in carcinogenesis. Pathol Res Pract 2023; 251:154902. [PMID: 37922723 DOI: 10.1016/j.prp.2023.154902] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/19/2023] [Indexed: 11/07/2023]
Abstract
Osteosarcoma (OS) is a malignant bone carcinoma that affects people in childhood and adulthood. The heterogeneous nature and chromosomal instability represent certain characteristics of OS cells. These cancer cells grow and migrate abnormally, making the prognosis undesirable for patients. Conventional and current treatments fail to completely eradicate tumor cells, so new therapeutics targeting genes may be considered. PI3K/Akt is a regulator of events such as growth, cell death, migration, and differentiation, and its expression changes during cancer progression. PTEN reduces PI3K/Akt expression, and its mutations and depletions have been reported in various tumors. Experimental evidence shows that there is upregulation of PI3K/Akt and downregulation of PTEN in OS. Increasing PTEN expression may suppress PI3K/Akt to minimize tumorigenesis. In addition, PI3K/Akt shows a positive association with growth, metastasis, EMT and metabolism of OS cells and inhibits apoptosis. Importantly, overexpression of PI3K/Akt causes drug resistance and radio-resistance and its level can be modulated by miRNAs, lncRNAs and circRNAs. Silencing PI3K/Akt by compounds and drugs can suppress OS. Here, we review in detail the function of the PTEN/PI3K/Akt in OS, revealing its biological function, function in tumor progression, resistance to therapy, and pharmacological significance.
Collapse
Affiliation(s)
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Bahonar
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Zahra Nakhaee
- Medical School, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
12
|
Wu H, Xie L, Wang S, Yu T, Zhang Y. Synthesis of an "all-in-one" nanotherapeutic platform for triple-amplification chemodynamic therapy of osteosarcoma. Colloids Surf A Physicochem Eng Asp 2023; 673:131788. [DOI: 10.1016/j.colsurfa.2023.131788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
13
|
Murai T, Matsuda S. Fatty Acid Metabolites and the Tumor Microenvironment as Potent Regulators of Cancer Stem Cell Signaling. Metabolites 2023; 13:709. [PMID: 37367867 DOI: 10.3390/metabo13060709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Individual cancer cells are not equal but are organized into a cellular hierarchy in which only a rare few leukemia cells can self-renew in a manner reminiscent of the characteristic stem cell properties. The PI3K/AKT pathway functions in a variety of cancers and plays a critical role in the survival and proliferation of healthy cells under physiologic conditions. In addition, cancer stem cells might exhibit a variety of metabolic reprogramming phenotypes that cannot be completely attributed to the intrinsic heterogeneity of cancer. Given the heterogeneity of cancer stem cells, new strategies with single-cell resolution will become a powerful tool to eradicate the aggressive cell population harboring cancer stem cell phenotypes. Here, this article will provide an overview of the most important signaling pathways of cancer stem cells regarding their relevance to the tumor microenvironment and fatty acid metabolism, suggesting valuable strategies among cancer immunotherapies to inhibit the recurrence of tumors.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women's University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
14
|
Zhu Q, Liang P, Chu C, Zhang A, Zhou W. Protein sumoylation in normal and cancer stem cells. Front Mol Biosci 2022; 9:1095142. [PMID: 36601585 PMCID: PMC9806136 DOI: 10.3389/fmolb.2022.1095142] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Stem cells with the capacity of self-renewal and differentiation play pivotal roles in normal tissues and malignant tumors. Whereas stem cells are supposed to be genetically identical to their non-stem cell counterparts, cell stemness is deliberately regulated by a dynamic network of molecular mechanisms. Reversible post-translational protein modifications (PTMs) are rapid and reversible non-genetic processes that regulate essentially all physiological and pathological process. Numerous studies have reported the involvement of post-translational protein modifications in the acquirement and maintenance of cell stemness. Recent studies underscore the importance of protein sumoylation, i.e., the covalent attachment of the small ubiquitin-like modifiers (SUMO), as a critical post-translational protein modification in the stem cell populations in development and tumorigenesis. In this review, we summarize the functions of protein sumoylation in different kinds of normal and cancer stem cells. In addition, we describe the upstream regulators and the downstream effectors of protein sumoylation associated with cell stemness. We also introduce the translational studies aiming at sumoylation to target stem cells for disease treatment. Finally, we propose future directions for sumoylation studies in stem cells.
Collapse
Affiliation(s)
- Qiuhong Zhu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Panpan Liang
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Cuiying Chu
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Aili Zhang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| | - Wenchao Zhou
- Intelligent Pathology Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China,*Correspondence: Aili Zhang, ; Wenchao Zhou,
| |
Collapse
|