1
|
Brink GJ, Hami N, Mertens S, Nijman HW, van Lonkhuijzen LRCW, Roes EM, Lok CAR, de Kroon CD, Piek JMJ, Hofhuis W, Snippert HJG, Groeneweg JW, Witteveen PO, Zweemer RP. Response to Systemic Therapies in Patient-Derived Cell Lines from Primary and Recurrent Adult Granulosa Cell Tumors. Mol Cancer Ther 2025; 24:628-638. [PMID: 39600124 DOI: 10.1158/1535-7163.mct-24-0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/08/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
In patients with the rare adult-type granulosa cell tumor (aGCT), surgery is the primary treatment for both primary and recurrent disease. In cases of inoperable disease, systematic therapy is administered, but variable response rates and drug resistance complicate predicting the most effective therapy. Drug screen testing on patient-derived cell lines may offer a solution. In a national prospective study on aGCT, fresh tissue was cultured into 2D cell lines, testing 27 clinical and experimental drugs. Dose-response curves and synergy were calculated using GraphPad Prism and CompuSyn software. We established 34 patient-derived cell lines from tissue of 20 patients with aGCT. Of these, seven patients had a primary diagnosis of aGCT and 13 patients had recurrent disease. In eight patients, multiple tumor locations were cultured. On each cell line, 10 monotherapies and 17 combinations of drugs were tested. Carboplatin/gemcitabine showed efficacy and synergy in almost all patient-derived cell lines. Synergy could not be detected in the regular carboplatin/paclitaxel and carboplatin/etoposide combinations. Experimental combinations alpelisib/fulvestrant and alpelisib/gemcitabine showed efficacy of more than 75%. Drug screens on patient-derived tumor cell lines reflect the reality of the variable response of systemic therapy in patients with aGCT. In future research, this technique may be used to personalize the systemic treatment of patients with aGCT in a clinical study. The good response to carboplatin/gemcitabine in our patient-derived cell lines can then be confirmed in a clinical setting.
Collapse
Affiliation(s)
- Geertruid J Brink
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nizar Hami
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sander Mertens
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans W Nijman
- Department of Obstetrics and Gynecology, University Medical Center Groningen, Groningen, the Netherlands
| | - Luc R C W van Lonkhuijzen
- Department of Gynecological Oncology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Eva Maria Roes
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Christine A R Lok
- Department of Gynecological Oncology, Center Gynaecologic Oncology Amsterdam, Amsterdam, the Netherlands
| | - Cornelis D de Kroon
- Department of Gynecology, Leiden University Medical Center, Leiden, the Netherlands
| | - Jurgen M J Piek
- Department of Obstetrics and Gynecology, Catharina Hospital, Eindhoven, the Netherlands
| | - Ward Hofhuis
- Department of Obstetrics and Gynecology, Franciscus Gasthuis en Vlietland, Rotterdam, the Netherlands
| | - Hugo J G Snippert
- Department of Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jolijn W Groeneweg
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Petronella O Witteveen
- Department of Medical Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ronald P Zweemer
- Department of Gynecologic Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
2
|
Cao L, Duan Q, Zhu Z, Xu X, Liu J, Li B. Liquid biopsy technologies: innovations and future directions in breast cancer biomarker detection. Biomed Microdevices 2025; 27:4. [PMID: 39849252 DOI: 10.1007/s10544-025-00734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Globally, breast cancer is the most frequent type of cancer, and its early diagnosis and screening can significantly improve the probability of survival and quality of life of those affected. Liquid biopsy-based targets such as circulating tumor cells, circulating tumor DNA, and exosomes have been instrumental in the early discovery of cancer, and have been found to be effective in stage therapy, recurrence monitoring, and drug selection. Biosensors based on these target related biomarkers convert the tested substances into quantifiable signals such as electrical and optical signals through signal transduction, which has the advantages of high sensitivity, simple operation, and low invasiveness. This review provides an overview of the latest progress of liquid biopsy biomarkers in the diagnosis, prognosis and treatment of breast cancer, compares the application and advantages of different biosensors based on these biomarkers in the diagnosis of breast cancer, and analyzes the limitations and solutions of biosensor based methods.
Collapse
Affiliation(s)
- Linhong Cao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Qingli Duan
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Zixin Zhu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Xuejing Xu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China.
| | - Baolin Li
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, 25 Taiping Street, Luzhou, 646000, Sichuan, People's Republic of China.
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China.
- Molecular Diagnosis of Clinical Diseases Key Laboratory, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Cejalvo Andújar JM, Ayala de la Peña F, Margeli Vila M, Pascual J, Tolosa P, Pages C, Cuenca M, Guerrero Zotano Á. Optimizing therapeutic approaches for HR+/HER2- advanced breast cancer: clinical perspectives on biomarkers and treatment strategies post-CDK4/6 inhibitor progression. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:5. [PMID: 39935426 PMCID: PMC11810462 DOI: 10.20517/cdr.2024.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/23/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025]
Abstract
This review offers an expert perspective on biomarkers, CDK4/6 inhibitor efficacy, and therapeutic approaches for managing hormone receptor-positive (HR+), human epidermal growth factor receptor-negative (HER2-) advanced breast cancer (ABC), particularly after CDK4/6 inhibitor progression. Key trials have demonstrated that combining CDK4/6 inhibitors with endocrine therapy (ET) significantly improves progression-free survival (PFS), with median durations ranging from 14.8 to 26.7 months, and overall survival (OS), with median durations reaching up to 53.7 months. Actionable biomarkers, such as PIK3CA and ESR1 mutations, have emerged as pivotal tools to guide second-line treatment decisions, enabling the use of targeted therapies like alpelisib and elacestrant and emphasizing the important role of biomarkers in guiding the selection of therapy. This overview aims to provide clinicians with a practical and up-to-date framework to inform treatment decisions and improve patient care in the context of this challenging disease. Additionally, we review emerging biomarkers and novel treatment strategies to address this difficult clinical landscape.
Collapse
Affiliation(s)
- Juan Miguel Cejalvo Andújar
- Medical Oncology Department, Hospital Clínico Universitario de Valencia, Valencia 46010, Spain
- INCLIVA Biomedical Research Institute, Valencia 46010, Spain
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid 28019, Spain
| | | | - Mireia Margeli Vila
- Medical Oncology Department, Instituto Catalán de Oncología, Badalona 08916, Spain
- CARE, the Translational Program in Cancer Research of Germans Trias i Pujol Research Institute (IGTP), Badalona 08916, Spain
| | - Javier Pascual
- Center for Biomedical Network Research on Cancer (CIBERONC), Madrid 28019, Spain
- Medical Oncology Department, UGC Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga 29010, Spain
| | - Pablo Tolosa
- Medical Oncology Department, Hospital Universitario 12 de octubre, Madrid 28041, Spain
| | - Cristina Pages
- Medical Department, Pfizer Oncology, Madrid 28108, Spain
| | - Mónica Cuenca
- Medical Department, Pfizer Oncology, Madrid 28108, Spain
| | - Ángel Guerrero Zotano
- Medical Oncology Department, Instituto Valenciano de Oncología, Valencia 46009, Spain
| |
Collapse
|
4
|
Jhaveri KL, Accordino MK, Bedard PL, Cervantes A, Gambardella V, Hamilton E, Italiano A, Kalinsky K, Krop IE, Oliveira M, Schmid P, Saura C, Turner NC, Varga A, Cheeti S, Hilz S, Hutchinson KE, Jin Y, Royer-Joo S, Peters U, Shankar N, Schutzman JL, Juric D. Phase I/Ib Trial of Inavolisib Plus Palbociclib and Endocrine Therapy for PIK3CA-Mutated, Hormone Receptor-Positive, Human Epidermal Growth Factor Receptor 2-Negative Advanced or Metastatic Breast Cancer. J Clin Oncol 2024; 42:3947-3956. [PMID: 39236276 PMCID: PMC11575912 DOI: 10.1200/jco.24.00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 05/06/2024] [Indexed: 09/07/2024] Open
Abstract
PURPOSE To investigate the safety, tolerability, pharmacokinetics (PK), and preliminary antitumor activity of inavolisib, a potent and selective small-molecule inhibitor of p110α that promotes the degradation of mutated p110α, in combination with palbociclib and endocrine therapy (ET), in a phase I/Ib study in patients with PIK3CA-mutated, hormone receptor-positive/human epidermal growth factor receptor 2-negative locally advanced/metastatic breast cancer (ClinicalTrials.gov identifier: NCT03006172). METHODS Women ≥18 years of age received inavolisib, palbociclib, and letrozole (Inavo + Palbo + Letro arm) or fulvestrant (Inavo + Palbo + Fulv arm) until unacceptable toxicity or disease progression. The primary objective was to evaluate safety or tolerability. RESULTS Fifty-three patients were included, 33 in the Inavo + Palbo + Letro arm and 20 in the Inavo + Palbo + Fulv arm. Median duration of inavolisib treatment was 15.7 and 20.8 months (cutoff: March 27, 2023), respectively. Treatment-related adverse events (TRAEs) occurred in all patients; the most frequent were stomatitis, hyperglycemia, and diarrhea; grade ≥3 any TRAE rates were 87.9% and 85.0%; 6.1% and 10.0% discontinued any treatment due to TRAEs in the Inavo + Palbo + Letro and Inavo + Palbo + Fulv arms, respectively. No PK drug-drug interactions (DDIs) were observed among the study treatments when administered. Confirmed objective response rates were 52.0% and 40.0% in patients with measurable disease, and median progression-free survival was 23.3 and 35.0 months in the Inavo + Palbo + Letro and Inavo + Palbo + Fulv arms, respectively. Available paired pre- and on-treatment tumor tissue and circulating tumor DNA analyses confirmed the effects of study treatment on pharmacodynamic and pathophysiologic biomarkers of response. CONCLUSION Inavolisib plus palbociclib and ET demonstrated a manageable safety profile, lack of DDIs, and promising preliminary antitumor activity.
Collapse
Affiliation(s)
- Komal L. Jhaveri
- Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY
| | | | - Philippe L. Bedard
- Princess Margaret Cancer Centre—University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andrés Cervantes
- Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Valentina Gambardella
- Biomedical Research Institute INCLIVA, University of Valencia, Valencia, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Kevin Kalinsky
- Winship Cancer Institute at Emory University, Atlanta, GA
| | | | - Mafalda Oliveira
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Peter Schmid
- Barts Cancer Institute, Queen Mary University, London, United Kingdom
| | - Cristina Saura
- Vall d’Hebron University Hospital and Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Nicholas C. Turner
- Royal Marsden Hospital and Institute of Cancer Research, London, United Kingdom
| | | | | | | | | | - Yanling Jin
- F. Hoffmann-La Roche Ltd, Mississauga, ON, Canada
| | | | | | | | | | | |
Collapse
|
5
|
De Moura A, Loirat D, Vaillant S, Korbi S, Kiavue N, Bello Roufai D, Escalup L, Desmaris R, Vaflard P, Cottu P, Pierga JY, Bidard FC, Cabel L, Acramel A. Sacituzumab govitecan in metastatic triple-negative breast cancer patients treated at Institut Curie Hospitals: efficacy, safety, and impact of brain metastases. Breast Cancer 2024; 31:572-580. [PMID: 38600429 PMCID: PMC11194191 DOI: 10.1007/s12282-024-01565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Sacituzumab govitecan (SG) has been approved by FDA in April 2021 for pre-treated metastatic triple-negative breast cancer (mTNBC), following the ASCENT trial results. METHODS We set up an ambispective bicentric cohort study to assess the real-world effectiveness and safety of SG in patients with mTNBC treated at Institut Curie Hospitals, with a focus on patients with brain metastases. RESULTS This study included 99 patients treated through the French Early Access Program to SG from May 2021 to January 2023. Median age was 55 years [26-89], N = 8 patients (8%) had BRCA1/2 mutation, N = 12 (12%) de novo stage IV disease and N = 31 (31%) brain metastases. Patients had previously received a median of two [1-10] lines of treatment in advanced setting. After a median follow-up of 9.7 months, the median progression-free survival (PFS) and overall survival (OS) were 3.9 months (95%CI[3.4-5.0]) and 8.6 months (95%CI[7.1-11.9]), respectively, while objective response rate was 29% (95%CI[21-39]). Among patients with brain metastases, median PFS and OS were 3.7 months (95%CI[2.6-6.2]) and 6.7 months (95%CI[6.3-NR]), respectively, with intracranial tumor responses. Dose reductions were required in N = 17 patients (17%) within a median of three [2-11] cycles, due to gastrointestinal toxicity (N = 6; 6%), hematological toxicity (N = 9; 9%) including febrile neutropenia (N = 2; 2%), liver enzyme elevation (N = 1; 1%), and physical deterioration (N = 1; 1%). There was no related death to SG. CONCLUSIONS The observed response rate and safety of SG are consistent with the results of the ASCENT trial, with efficacy observed in patients with brain metastases, but observed PFS and OS are numerically shorter.
Collapse
Affiliation(s)
- Alexandre De Moura
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France.
| | - Delphine Loirat
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Sarah Vaillant
- Department of Pharmacy, Institut Curie, Paris & Saint-Cloud, France
| | - Sinen Korbi
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Nicolas Kiavue
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
- UVSQ, Université Paris-Saclay, Saint-Cloud, France
| | - Diana Bello Roufai
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Laurence Escalup
- Department of Pharmacy, Institut Curie, Paris & Saint-Cloud, France
| | - Romain Desmaris
- Department of Pharmacy, Institut Curie, Paris & Saint-Cloud, France
| | - Pauline Vaflard
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
- Université Paris Cité, Paris, France
| | - François-Clément Bidard
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
- UVSQ, Université Paris-Saclay, Saint-Cloud, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Alexandre Acramel
- Department of Pharmacy, Institut Curie, Paris & Saint-Cloud, France
- Université Paris Cité, CiTCoM, CNRS UMR 8038, Inserm U1268, Paris, France
| |
Collapse
|
6
|
Qiu S, Zhang K, Chen S, Yin S. Circular RNA PRKCI (hsa_circ_0067934): a potential target in the pathogenesis of human malignancies. Front Oncol 2024; 14:1365032. [PMID: 38741779 PMCID: PMC11089142 DOI: 10.3389/fonc.2024.1365032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/29/2024] [Indexed: 05/16/2024] Open
Abstract
Circular RNAs (circRNAs) are a new type of endogenous non-coding RNA formed by a covalent closed loop. CircRNAs are characterized by specificity, universality, conservation, and stability. They are abundant in eukaryotic cells and have biological regulatory roles at various transcriptional and post-transcriptional levels. The upregulation of circPRKCI has been observed in a variety of tumors and is directly related to the clinicopathological characteristics of tumors and prognosis. More importantly, circPRKCI can participate in the tumorigenesis, progression, recurrence, and metastasis of various tumors through many functional mechanisms, including the activation of signaling pathways, such as the phosphatidylinositol-3-kinase (PI3K)/AKT pathway, and sponging of many microRNAs (miRNAs). This review summarizes the progress achieved in understanding the biological functions of circRNA PRKCI in various tumors. The goal is to inform the discovery of more functional mechanisms and new anticancer molecular targets.
Collapse
Affiliation(s)
- Shipei Qiu
- Department of General Surgery, Southeast University Affiliated Zhongda Hospital, Nanjing, China
| | - Kefan Zhang
- Department of Cardiothoracic Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Siyu Chen
- Department of Intensive Care Unit, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shuting Yin
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Browne IM, André F, Chandarlapaty S, Carey LA, Turner NC. Optimal targeting of PI3K-AKT and mTOR in advanced oestrogen receptor-positive breast cancer. Lancet Oncol 2024; 25:e139-e151. [PMID: 38547898 DOI: 10.1016/s1470-2045(23)00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 04/02/2024]
Abstract
The growing availability of targeted therapies for patients with advanced oestrogen receptor-positive breast cancer has improved survival, but there remains much to learn about the optimal management of these patients. The PI3K-AKT and mTOR pathways are among the most commonly activated pathways in breast cancer, whose crucial role in the pathogenesis of this tumour type has spurred major efforts to target this pathway at specific kinase hubs. Approvals for oestrogen receptor-positive advanced breast cancer include the PI3K inhibitor alpelisib for PIK3CA-mutated tumours, the AKT inhibitor capivasertib for tumours with alterations in PIK3CA, AKT1, or PTEN, and the mTOR inhibitor everolimus, which is used irrespective of mutation status. The availability of different inhibitors leaves physicians with a potentially challenging decision over which of these therapies should be used for individual patients and when. In this Review, we present a comprehensive summary of our current understanding of the pathways and the three inhibitors and discuss strategies for the optimal sequencing of therapies in the clinic, particularly after progression on a CDK4/6 inhibitor.
Collapse
Affiliation(s)
- Iseult M Browne
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK; Ralph Lauren Centre for Breast Cancer Research and Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK
| | - Fabrice André
- Department of Medical Oncology, INSERM U981, Institut Gustave Roussy, Université Paris Saclay, Villejuif, France
| | | | - Lisa A Carey
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Nicholas C Turner
- Breast Cancer Now Research Centre, Institute of Cancer Research, London, UK; Ralph Lauren Centre for Breast Cancer Research and Breast Unit, The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
Vasseur A, Cabel L, Hego C, Takka W, Trabelsi Grati O, Renouf B, Lerebours F, Loirat D, Brain E, Cottu P, Sablin MP, Pierga JY, Callens C, Renault S, Bidard FC. Fulvestrant and everolimus efficacy after CDK4/6 inhibitor: a prospective study with circulating tumor DNA analysis. Oncogene 2024; 43:1214-1222. [PMID: 38413796 PMCID: PMC11014798 DOI: 10.1038/s41388-024-02986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
In a prospective study (NCT02866149), we assessed the efficacy of fulvestrant and everolimus in CDK4/6i pre-treated mBC patients and circulating tumor DNA (ctDNA) changes throughout therapy. Patients treated with fulvestrant and everolimus had their ctDNA assessed at baseline, after 3-5 weeks and at disease progression. Somatic mutations were identified in archived tumor tissues by targeted NGS and tracked in cell-free DNA by droplet digital PCR. ctDNA detection was then associated with clinicopathological characteristics and patients' progression-free survival (PFS), overall survival (OS) and best overall response (BOR). In the 57 included patients, median PFS and OS were 6.8 (95%CI [5.03-11.5]) and 38.2 (95%CI [30.0-not reached]) months, respectively. In 47 response-evaluable patients, BOR was a partial response or stable disease in 15 (31.9%) and 11 (23.4%) patients, respectively. Among patients with trackable somatic mutation and available plasma sample, N = 33/47 (70.2%) and N = 19/36 (52.8%) had ctDNA detected at baseline and at 3 weeks, respectively. ctDNA detection at baseline and PIK3CA mutation had an adverse prognostic impact on PFS and OS in multivariate analysis. This prospective cohort study documents the efficacy of fulvestrant and everolimus in CDK4/6i-pretreated ER + /HER2- mBC and highlights the clinical validity of early ctDNA changes as pharmacodynamic biomarker.
Collapse
Affiliation(s)
- Antoine Vasseur
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Luc Cabel
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Caroline Hego
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Wissam Takka
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France
| | - Olfa Trabelsi Grati
- Department of Genetics, Institut Curie, Paris Sciences & Lettres University, Paris, France
| | | | - Florence Lerebours
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Delphine Loirat
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Etienne Brain
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Paul Cottu
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Marie-Paule Sablin
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
| | - Jean-Yves Pierga
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France
- Université Paris Cité, Paris, France
| | - Céline Callens
- Department of Genetics, Institut Curie, Paris Sciences & Lettres University, Paris, France
| | - Shufang Renault
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France.
| | - François-Clément Bidard
- Department of Medical Oncology, Institut Curie, Paris & Saint-Cloud, France.
- Circulating Tumor Biomarkers Laboratory, INSERM CIC BT-1428, Institut Curie, Paris, France.
- UVSQ, Paris-Saclay University, Saint Cloud, France.
| |
Collapse
|
9
|
Luo KF, Zhou LX, Wu ZW, Tian Y, Jiang J, Wang MH. Molecular mechanisms and therapeutic applications of huaier in breast cancer treatment. Front Pharmacol 2024; 14:1269096. [PMID: 38313074 PMCID: PMC10836597 DOI: 10.3389/fphar.2023.1269096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
Breast cancer is one of the most common female malignant tumors today and represents a serious health risk for women. Although the survival rate and quality of life of patients with breast cancer are improving with the continuous development of medical technology, metastasis, recurrence, and drug resistance of breast cancer remain a significant problem. Huaier, a traditional Chinese medicine (TCM) fungus, is a type of Sophora embolism fungus growing on old Sophora stems. The polysaccharides of Trametes robiniophila Murr (PS-T) are the main active ingredient of Huaier. There is increasing evidence that Huaier has great potential in breast cancer treatment, and its anti-cancer mechanism may be related to a variety of biological activities, such as the inhibition of cell proliferation, metastasis, tumor angiogenesis, the promotion of cancer cell death, and regulation of tumor-specific immunity. There is growing evidence that Huaier may be effective in the clinical treatment of breast cancer. This review systematically summarizes the basic and clinical studies on the use of Huaier in the treatment of breast cancer, providing useful information to guide the clinical application of Huaier and future clinical studies.
Collapse
Affiliation(s)
- Ke-fei Luo
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Lin-xi Zhou
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Zi-wei Wu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Yuan Tian
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
- Department of Emergency Surgery, Linyi People’s Hospital, Linyi, China
| | - Jun Jiang
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| | - Ming-hao Wang
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of The Army Medical University, Chongqing, China
| |
Collapse
|
10
|
Buckbinder L, St. Jean DJ, Tieu T, Ladd B, Hilbert B, Wang W, Alltucker JT, Manimala S, Kryukov GV, Brooijmans N, Dowdell G, Jonsson P, Huff M, Guzman-Perez A, Jackson EL, Goncalves MD, Stuart DD. STX-478, a Mutant-Selective, Allosteric PI3Kα Inhibitor Spares Metabolic Dysfunction and Improves Therapeutic Response in PI3Kα-Mutant Xenografts. Cancer Discov 2023; 13:2432-2447. [PMID: 37623743 PMCID: PMC10618743 DOI: 10.1158/2159-8290.cd-23-0396] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/24/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Phosphoinositide 3-kinase α (PIK3CA) is one of the most mutated genes across cancers, especially breast, gynecologic, and head and neck squamous cell carcinoma tumors. Mutations occur throughout the gene, but hotspot mutations in the helical and kinase domains predominate. The therapeutic benefit of isoform-selective PI3Kα inhibition was established with alpelisib, which displays equipotent activity against the wild-type and mutant enzyme. Inhibition of wild-type PI3Kα is associated with severe hyperglycemia and rash, which limits alpelisib use and suggests that selectively targeting mutant PI3Kα could reduce toxicity and improve efficacy. Here we describe STX-478, an allosteric PI3Kα inhibitor that selectively targets prevalent PI3Kα helical- and kinase-domain mutant tumors. STX-478 demonstrated robust efficacy in human tumor xenografts without causing the metabolic dysfunction observed with alpelisib. Combining STX-478 with fulvestrant and/or cyclin-dependent kinase 4/6 inhibitors was well tolerated and provided robust and durable tumor regression in ER+HER2- xenograft tumor models. SIGNIFICANCE These preclinical data demonstrate that the mutant-selective, allosteric PI3Kα inhibitor STX-478 provides robust efficacy while avoiding the metabolic dysfunction associated with the nonselective inhibitor alpelisib. Our results support the ongoing clinical evaluation of STX-478 in PI3Kα-mutated cancers, which is expected to expand the therapeutic window and mitigate counterregulatory insulin release. See related commentary by Kearney and Vasan, p. 2313. This article is featured in Selected Articles from This Issue, p. 2293.
Collapse
Affiliation(s)
| | - David J. St. Jean
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Trang Tieu
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Brendon Ladd
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Brendan Hilbert
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Weixue Wang
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | - Samantha Manimala
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | | | - Gregory Dowdell
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Philip Jonsson
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | - Michael Huff
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| | | | - Erica L. Jackson
- Department of Biology, Scorpion Therapeutics, South San Francisco, California
| | - Marcus D. Goncalves
- Division of Endocrinology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Darrin D. Stuart
- Research and Development, Scorpion Therapeutics, Boston, Massachusetts
| |
Collapse
|