1
|
Zou Q, Chen Y, Liu D, Du Q, Zhang C, Mai Q, Wang X, Lin X, Chen Q, Wei M, Chi C, Yao S, Liu J. Cuproptosis inhibits tumor progression and enhances cisplatin toxicity in ovarian cancer. FASEB J 2025; 39:e70484. [PMID: 40119652 PMCID: PMC11929041 DOI: 10.1096/fj.202500047r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/03/2025] [Accepted: 03/14/2025] [Indexed: 03/24/2025]
Abstract
Cuproptosis is a novel form of regulated cell death triggered by copper ion and copper ionophore. While cuproptosis has been actively explored as a potential target for cancer therapy, its role in ovarian cancer (OC) still remains unclear. In this study, we demonstrate that cuproptosis inhibits OC cell proliferation, migration, and invasion through FDX1 regulation and suppresses tumor growth in a mouse model. We also confirm that cuproptosis enhances OC sensitivity to cisplatin treatment both in vivo and in vitro. Moreover, our findings reveal that cuproptosis affects cholesterol biosynthesis in OC cells, with cholesterol playing a crucial role in its cytotoxic effect. Taken together, our results elucidate the effect of cuproptosis in OC and suggest it as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Qiaojian Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Yili Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Duo Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Qiqiao Du
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Qiuwen Mai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xiaojun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xiaoying Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Qianrun Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Mengxun Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Chudan Chi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Junxiu Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Obstetrics and Gynecology, Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| |
Collapse
|
2
|
Jia Y, Zhang L, Zhou W, Chen S, Zhang H, Liu L, Guo H, Wang Z, Cui Y, Niu R, Zhang F. Rack1 promotes breast cancer stemness properties and tumorigenesis through the E2F1-SOX2 axis. Cancer Cell Int 2025; 25:40. [PMID: 39939870 PMCID: PMC11823217 DOI: 10.1186/s12935-025-03678-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Breast cancer remains the most prevalent malignancy and the leading cause of cancer-related mortality among women worldwide. The primary factors contributing to the deterioration and death of patients with breast cancer are metastasis, recurrence, and drug resistance. These phenomena are closely related to the presence of breast cancer stem cells; however, the exact mechanisms regulating stemness remain to be elucidated. Rack1 (Receptor for Activated C Kinase 1), a well-known versatile scaffold protein, has been implicated in tumorigenesis and progression in numerous cancer types; however, its specific role in breast cancer stemness remains to be elucidated. METHODS Using bioinformatic and immunohistochemical approaches, we validated that the expression level of Rack1 is associated with cancer stemness and affects the prognosis of patients. Through a series of experimental methods including mammosphere formation assay, flow cytometry, qPCR, Western blotting, and CHX assays, we validated at the molecular and cellular levels the mechanism by which Rack1 influences cancer stemness via the E2F1/SOX2 axis. Furthermore, by designing and utilizing lentiviral constructs to establish xenograft tumor models in mice, we further confirmed in vivo the impact of the Rack1/E2F1/SOX2 axis on the tumorigenic capacity of breast cancer cells. RESULTS Our findings indicate that Rack1 plays a critical role in preserving the stemness characteristics of breast cancer cells. Mechanistically, the observed effects of Rack1 are achieved through the modulation of SOX2 expression, a master transcription factor that regulates cancer cell stemness and maintenance. We further demonstrate that Rack1 increases the stability of the E2F1 protein by inhibiting its ubiquitination and subsequent proteasome-mediated degradation, which in turn transcriptionally upregulates SOX2, thereby maintaining breast cancer cell stemness and tumorigenesis. CONCLUSION This study thus unveils a novel mechanism through which Rack1 executes its oncogenic function. This study also demonstrates that targeting the Rack1-E2F-SOX2 axis may be a potential strategy to inhibit breast cancer development and progression.
Collapse
Affiliation(s)
- Yidi Jia
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Luoming Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Wei Zhou
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Shuhua Chen
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Liming Liu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Hui Guo
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Yanfen Cui
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
3
|
Xu Y, Li C, Cheng L, Wang S, Wu Y, Li S, Liu M, Tao X. Prognostic and diagnostic value of circRNA expression in cervical cancer: a meta analysis. Front Oncol 2025; 14:1488040. [PMID: 39871946 PMCID: PMC11769824 DOI: 10.3389/fonc.2024.1488040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/13/2024] [Indexed: 01/29/2025] Open
Abstract
Introduction Cervical cancer (CC) is a highly prevalent malignancy of the reproductive system. This study aimed to methodically assess the function of circular RNAs (circRNAs) as possible indicators of CC, with a specific emphasis on their usefulness in the identification, prediction, and correlation with clinicopathological elements. Methods A comprehensive literature search was conducted using databases such as PubMed, Cochrane Library, Web of Science, Embase, and the China National Knowledge Infrastructure (CNKI). The latest data were extracted on May 3rd, 2024. The diagnostic potential of circRNA expression was evaluated using a range of metrics including sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). The importance of circRNAs was further evaluated in terms of clinical relevance, pathological features, and prognostic value using pooled odds ratios (ORs) and hazard ratios (HRs). Results The meta-analysis included 27 studies, which were categorised based on diagnostic applications (n=3), clinicopathological correlations (n=15), and prognostic evaluations (n=23). Elevated expression levels of oncogenic circRNAs were significantly associated with poor clinical indicators, including tumour size (odds ratio [OR] = 0.425, 95% confidence interval [CI]: 0.267-0.676), International Federation of Gynaecology and Obstetrics (FIGO) stage (OR = 0.315, 95% CI: 0.224-0.443), and lymph node metastasis (OR = 2.975, 95% CI: 1.816-4.872). This upregulation of oncogenic circRNA was also identified as a predictor of worse survival outcomes, with a hazard ratio (HR) of 2.13 (95% CI: 1.73-2.62, P < 0.001). The downregulation of circRNAs with tumour-suppressor properties was similarly associated with poor clinical parameters, such as tumour size (OR = 0.310, 95% CI: 0.102-0.941), FIGO stage (OR = 0.231, 95% CI: 0.101-0.527), and lymph node metastasis (OR = 2.430, 95% CI: 1.156-5.110), and was indicative of a worsened prognosis (HR = 2.20, 95% CI: 1.03-4.70, P = 0.042). In terms of diagnostic value, the pooled sensitivity, specificity, and area under the curve (AUC) were calculated to be 0.85, 0.83, and 0.91, respectively. Conclusion The results of our meta-analysis indicate that circRNAs have the potential to serve as promising biomarkers for CC diagnosis, prognosis, and clinicopathology. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier CRD42024544997.
Collapse
Affiliation(s)
- Yi Xu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
- Third Clinical Medical College, Nanchang University, Nanchang, China
| | - Changxia Li
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
- Third Clinical Medical College, Nanchang University, Nanchang, China
| | - Lifang Cheng
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Shaoheng Wang
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Yuqing Wu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Shiyang Li
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Mingqiang Liu
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Tao
- Dermatology Hospital of Jiangxi Province, Jiangxi Provincial Clinical Research Center For Skin Diseases, Candidate Branch of National Clinical Research Center for Skin Diseases, Dermatology Institute of Jiangxi Province, The Affiliated Dermatology Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Zhang C, Yuan L, Wen W, Shao C, Liao Y, Jia Y, Zhao X, Liao Y, Xu D, Chen L, Yang G, Jiang H, Wang W, Yao S. LNMAC Promotes Cervical Squamous Cell Carcinoma Lymphatic Metastasis via Epigenetic Regulation of FGF2-Induced Lymphangiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404645. [PMID: 39119899 PMCID: PMC11481257 DOI: 10.1002/advs.202404645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/16/2024] [Indexed: 08/10/2024]
Abstract
The lymph node is the most common site of distant metastasis of cervical squamous cell carcinoma (CSCC), which elicits dismal prognosis and limited efficiency for treatment. Elucidation of the mechanisms underlying CSCC lymphatic metastasis would provide potential therapeutic strategies for nodal metastatic of CSCC. Here, based on in vivo lymphatic metastasis screening model, a circular RNA is identified that is termed as lymph node metastasis associated circRNA (LNMAC), is markedly upregulated in lymphatic metastatic CSCC and correlated with lymph node metastasis. Overexpression of LNMAC dramatically augments the metastatic capability of CSCC cells to the lymph node via inducing lymphangiogenesis. Mechanistically, LNMAC epigenetically upregulates fibroblast growth factor 2 (FGF2) expression by directly associating with histone acacetylase 1 (HDAC1), preventing Importin α6/8-mediated nuclear translocation of HDAC1 and eliciting histone H3K27ac-induced FGF2 transcriptional activation. Treatment with 3F12E7, an anti-FGF2 monoclonal antibody, effectively inhibits LNMAC-induced CSCC lymphatic metastasis. Taken together, these findings indicate that LNMAC plays a crucial role in FGF2-mediated lymphangiogenesis and lymphatic metastasis, highlighting that LNMAC might be a therapeutic target for lymph node metastasis in CSCC patients.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Li Yuan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Weijia Wen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Caixia Shao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Yan Jia
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Yan Liao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Dingze Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Linna Chen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Guofen Yang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Wei Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong, 510080, P. R. China
| |
Collapse
|
5
|
Yuan L, Jiang H, Jia Y, Liao Y, Shao C, Zhou Y, Li J, Liao Y, Huang H, Pan Y, Wen W, Zhao X, Chen L, Jing X, Pan C, Wang W, Yao S, Zhang C. Fatty Acid Oxidation Supports Lymph Node Metastasis of Cervical Cancer via Acetyl-CoA-Mediated Stemness. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308422. [PMID: 38520724 DOI: 10.1002/advs.202308422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/18/2024] [Indexed: 03/25/2024]
Abstract
Accumulating evidence indicates that metabolic reprogramming of cancer cells supports the energy and metabolic demands during tumor metastasis. However, the metabolic alterations underlying lymph node metastasis (LNM) of cervical cancer (CCa) have not been well recognized. In the present study, it is found that lymphatic metastatic CCa cells have reduced dependency on glucose and glycolysis but increased fatty acid oxidation (FAO). Inhibition of carnitine palmitoyl transferase 1A (CPT1A) significantly compromises palmitate-induced cell stemness. Mechanistically, FAO-derived acetyl-CoA enhances H3K27 acetylation (H3K27Ac) modification level in the promoter of stemness genes, increasing stemness and nodal metastasis in the lipid-rich nodal environment. Genetic and pharmacological loss of CPT1A function markedly suppresses the metastatic colonization of CCa cells in tumor-draining lymph nodes. Together, these findings propose an effective method of cancer therapy by targeting FAO in patients with CCa and lymph node metastasis.
Collapse
Affiliation(s)
- Li Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yuandong Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Caixia Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yijia Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Jiaying Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yan Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Hua Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Yuwen Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Weijia Wen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Linna Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, 17165, Sweden
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| | - Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, 510080, China
| |
Collapse
|
6
|
Shen R, Ge Y, Qin Y, Gao H, Yu H, Wu H, Song H. Sporoderm-broken spores of Ganoderma lucidum modulate hepatoblastoma malignancy by regulating RACK1-mediated autophagy and tumour immunity. J Cell Mol Med 2024; 28:e18223. [PMID: 38451046 PMCID: PMC10919157 DOI: 10.1111/jcmm.18223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/15/2024] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Hepatoblastoma (HB), a primary liver tumour, is notorious for its high metastatic potential and poor prognosis. Ganoderma lucidum, an edible mushroom species utilized in traditional Chinese medicine for addressing various tumour types, presents an intriguing avenue for HB treatment. However, the effectiveness of G. lucidum in managing HB and its underlying molecular mechanism necessitates further exploration. Standard in vitro assays were conducted to evaluate the impact of sporoderm-broken spores of G. lucidum (SBSGL) on the malignant characteristics of HB cells. The mechanism of SBSGL in treating HB and its tumour immunomodulatory effects were explored and validated by various experiments, including immunoprecipitation, Western blotting, mRFP-GFP-LC3 adenovirus transfection and co-localization analysis, as well as verified with in vivo experiments in this regard. The results showed that SBSGL effectively inhibited the malignant traits of HB cells and suppressed the O-GlcNAcylation of RACK1, thereby reducing its expression. In addition, SBSGL inhibited immune checkpoints and regulated cytokines. In conclusion, SBSGL had immunomodulatory effects and regulated the malignancy and autophagy of HB by regulating the O-GlcNAcylation of RACK1. These findings suggest that SBSGL holds promise as a potential anticancer drug for HB treatment.
Collapse
Affiliation(s)
- Rui Shen
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yang Ge
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yunpeng Qin
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Hang Gao
- Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Hongyan Yu
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Huazhang Wu
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Heidari-Ezzati S, Moeinian P, Ahmadian-Nejad B, Maghbbouli F, Abbasi S, Zahedi M, Afkhami H, Shadab A, Sajedi N. The role of long non-coding RNAs and circular RNAs in cervical cancer: modulating miRNA function. Front Cell Dev Biol 2024; 12:1308730. [PMID: 38434620 PMCID: PMC10906305 DOI: 10.3389/fcell.2024.1308730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024] Open
Abstract
Cervical cancer (CC) is a primary global health concern, ranking as the fourth leading cause of cancer-related death in women. Despite advancements in prognosis, long-term outcomes remained poor. Beyond HPV, cofactors like dietary deficiencies, immunosuppression, hormonal contraceptives, co-infections, and genetic variations are involved in CC progression. The pathogenesis of various diseases, including cancer, has brought to light the critical regulatory roles of microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The aberrant expression of these miRNAs, lncRNAs, and circRNAs plays a pivotal role in the initiation and progression of CC. This review provides a comprehensive summary of the recent literature regarding the involvement of lncRNAs and circRNAs in modulating miRNA functions in cervical neoplasia and metastasis. Studies have shown that lncRNAs and circRNAs hold great potential as therapeutic agents and innovative biomarkers in CC. However, more clinical research is needed to advance our understanding of the therapeutic benefits of circRNAs and lncRNAs in CC.
Collapse
Affiliation(s)
- Sama Heidari-Ezzati
- School of Nursing and Midwifery, Bonab University of Medical Sciences, Bonab, Iran
| | - Parisa Moeinian
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahar Ahmadian-Nejad
- School of Nursing and Midwifery, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | | | - Sheida Abbasi
- Department of obstetrics and gynecology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahlagha Zahedi
- Department of Pathology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Alireza Shadab
- Department of Immunology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Iran University of Medical Sciences, Deputy of Health, Tehran, Iran
| | - Nayereh Sajedi
- Department of Anatomy, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
8
|
Zhang C, Yuan L, Zou Q, Shao C, Jia Y, Li J, Liao Y, Zhao X, Wen W, Jing X, Yang G, Wang W, Jiang H, Yao S. CircMAST1 inhibits cervical cancer progression by hindering the N4-acetylcytidine modification of YAP mRNA. Cell Mol Biol Lett 2024; 29:25. [PMID: 38331765 PMCID: PMC10854152 DOI: 10.1186/s11658-024-00540-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Cervical cancer (CCa) is the fourth most common cancer among females, with high incidence and mortality rates. Circular RNAs (circRNAs) are key regulators of various biological processes in cancer. However, the biological role of circRNAs in cervical cancer (CCa) remains largely unknown. This study aimed to elucidate the role of circMAST1 in CCa. METHODS CircRNAs related to CCa progression were identified via a circRNA microarray. The relationship between circMAST1 levels and clinicopathological features of CCa was evaluated using the clinical specimens and data of 131 patients with CCa. In vivo and in vitro experiments, including xenograft animal models, cell proliferation assay, transwell assay, RNA pull-down assay, whole-transcriptome sequencing, RIP assay, and RNA-FISH, were performed to investigate the effects of circMAST1 on the malignant behavior of CCa. RESULTS CircMAST1 was significantly downregulated in CCa tissues, and low expression of CircMAST1 was correlated with a poor prognosis. Moreover, our results demonstrated that circMAST1 inhibited tumor growth and lymph node metastasis of CCa. Mechanistically, circMAST1 competitively sequestered N-acetyltransferase 10 (NAT10) and hindered Yes-associated protein (YAP) mRNA ac4C modification to promote its degradation and inhibit tumor progression in CCa. CONCLUSIONS CircMAST1 plays a major suppressive role in the tumor growth and metastasis of CCa. In particular, circMAST1 can serve as a potential biomarker and novel target for CCa.
Collapse
Affiliation(s)
- Chunyu Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Li Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Qiaojian Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Caixia Shao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Yan Jia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Jiaying Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Yan Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xueyuan Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Weijia Wen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Guofen Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China
| | - Wei Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Hongye Jiang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| | - Shuzhong Yao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, China.
| |
Collapse
|
9
|
Hu Z, Zhao X, Wu Z, Qu B, Yuan M, Xing Y, Song Y, Wang Z. Lymphatic vessel: origin, heterogeneity, biological functions, and therapeutic targets. Signal Transduct Target Ther 2024; 9:9. [PMID: 38172098 PMCID: PMC10764842 DOI: 10.1038/s41392-023-01723-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/03/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
Lymphatic vessels, comprising the secondary circulatory system in human body, play a multifaceted role in maintaining homeostasis among various tissues and organs. They are tasked with a serious of responsibilities, including the regulation of lymph absorption and transport, the orchestration of immune surveillance and responses. Lymphatic vessel development undergoes a series of sophisticated regulatory signaling pathways governing heterogeneous-origin cell populations stepwise to assemble into the highly specialized lymphatic vessel networks. Lymphangiogenesis, as defined by new lymphatic vessels sprouting from preexisting lymphatic vessels/embryonic veins, is the main developmental mechanism underlying the formation and expansion of lymphatic vessel networks in an embryo. However, abnormal lymphangiogenesis could be observed in many pathological conditions and has a close relationship with the development and progression of various diseases. Mechanistic studies have revealed a set of lymphangiogenic factors and cascades that may serve as the potential targets for regulating abnormal lymphangiogenesis, to further modulate the progression of diseases. Actually, an increasing number of clinical trials have demonstrated the promising interventions and showed the feasibility of currently available treatments for future clinical translation. Targeting lymphangiogenic promoters or inhibitors not only directly regulates abnormal lymphangiogenesis, but improves the efficacy of diverse treatments. In conclusion, we present a comprehensive overview of lymphatic vessel development and physiological functions, and describe the critical involvement of abnormal lymphangiogenesis in multiple diseases. Moreover, we summarize the targeting therapeutic values of abnormal lymphangiogenesis, providing novel perspectives for treatment strategy of multiple human diseases.
Collapse
Affiliation(s)
- Zhaoliang Hu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Xushi Zhao
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Zhonghua Wu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Bicheng Qu
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Minxian Yuan
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China
| | - Yanan Xing
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Yongxi Song
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University; Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, 155 North Nanjing Street, Heping District, Shenyang, 110001, China.
| |
Collapse
|
10
|
Pi Y, Feng Q, Sun F, Wang Z, Zhao Y, Chen D, Liu Y, Lou G. Loss of SMURF2 expression enhances RACK1 stability and promotes ovarian cancer progression. Cell Death Differ 2023; 30:2382-2392. [PMID: 37828084 PMCID: PMC10657365 DOI: 10.1038/s41418-023-01226-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/09/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023] Open
Abstract
Receptor for activated C kinase 1 (RACK1) has been confirmed to take part in multiple biological events and the mechanism supporting abnormal RACK1 expression in ovarian cancer (OC) remains to be characterized. Here, we identified Smad ubiquitin regulatory factor 2 (SMURF2) as a bona fide E3 ligase of RACK1 in OC. SMURF2 effectively added the K6, K33 and K48 ubiquitin chains to the RACK1, resulting in polyubiquitination and instability of RACK1. PCAF promoted acetylation of RACK1 at K130, leading to SMURF2-mediated RACK1 ubiquitination inhibited and promote OC progression. The expression levels of SMURF2 and RACK1 were negatively correlated. SMURF2 was abnormal low expression in human ovarian cancer, resulting in decreased ubiquitination of RACK1 and increased stability, which promoted OC progression, and strongly associated with poor patients' prognosis. In general, our results demonstrated that SMURF2 plays a pivotal role in stabilizing RACK1, which in turn facilitates tumorigenesis in OC, suggesting that SMURF2-RACK1 axis may prove to be potential targets for the treatment of OC.
Collapse
Affiliation(s)
- Yanan Pi
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Qiushi Feng
- Heilongjiang Academy of Chinese Medical Sciences, Harbin, 150036, P. R. China
| | - Fusheng Sun
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Zhiqiang Wang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Yue Zhao
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Dejia Chen
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Yiming Liu
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China
| | - Ge Lou
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, 150086, P. R. China.
| |
Collapse
|
11
|
He XF, Hu X, Wen GJ, Wang Z, Lin WJ. O-GlcNAcylation in cancer development and immunotherapy. Cancer Lett 2023; 566:216258. [PMID: 37279852 DOI: 10.1016/j.canlet.2023.216258] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
O-linked β-D-N-acetylglucosamine (O-GlcNAc), as a posttranslational modification (PTM), is a reversible reaction that attaches β-N-GlcNAc to Ser/Thr residues on specific proteins by O-GlcNAc transferase (OGT). O-GlcNAcase (OGA) removes the O-GlcNAc from O-GlcNAcylated proteins. O-GlcNAcylation regulates numerous cellular processes, including signal transduction, the cell cycle, metabolism, and energy homeostasis. Dysregulation of O-GlcNAcylation contributes to the development of various diseases, including cancers. Accumulating evidence has revealed that higher expression levels of OGT and hyper-O-GlcNAcylation are detected in many cancer types and governs glucose metabolism, proliferation, metastasis, invasion, angiogenesis, migration and drug resistance. In this review, we describe the biological functions and molecular mechanisms of OGT- or O-GlcNAcylation-mediated tumorigenesis. Moreover, we discuss the potential role of O-GlcNAcylation in tumor immunotherapy. Furthermore, we highlight that compounds can target O-GlcNAcylation by regulating OGT to suppress oncogenesis. Taken together, targeting protein O-GlcNAcylation might be a promising strategy for the treatment of human malignancies.
Collapse
Affiliation(s)
- Xue-Fen He
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Xiaoli Hu
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Gao-Jing Wen
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhiwei Wang
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical College, Anhui, China; Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Wen-Jing Lin
- Department of Obstetrics and Gynecology, Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|