1
|
Peña R, Baulida J. Snail1 as a key prognostic biomarker of cancer-associated fibroblasts in breast tumors. Biochim Biophys Acta Rev Cancer 2025:189316. [PMID: 40222423 DOI: 10.1016/j.bbcan.2025.189316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Accurate cancer diagnosis is crucial for selecting optimal treatments, yet current classification systems often include non-responders who receive ineffective therapies. Cancer-associated fibroblasts (CAFs) play a central role in tumor progression, and CAF biomarkers are increasingly recognized for their prognostic value. Recent studies have revealed significant heterogeneity within CAF populations, with distinct subtypes linked to different tumors and stages of disease. In this review, we summarize recent findings from patient samples and mouse models of breast cancer, focusing on gene signatures identified by single-cell RNA sequencing that define CAF subtypes and predict cancer prognosis. Additionally, we explore the genes and pathways regulated by Snail1, a transcription factor whose expression in breast and colon CAFs is associated with malignancy. Altogether these data emphasize the fibrotic and immunosuppressive roles of Snail1-expressing fibroblasts and unveil an undescribed streamlined Snail1-related gene signature in CAFs with prognostic potential in breast cancer and other solid tumors.
Collapse
Affiliation(s)
- Raúl Peña
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain
| | - Josep Baulida
- Cancer Research Program, associated unit IIBB-CSIC, Hospital del Mar Research Institute, Barcelona, Spain.
| |
Collapse
|
2
|
Turlej E, Domaradzka A, Radzka J, Drulis-Fajdasz D, Kulbacka J, Gizak A. Cross-Talk Between Cancer and Its Cellular Environment-A Role in Cancer Progression. Cells 2025; 14:403. [PMID: 40136652 PMCID: PMC11940884 DOI: 10.3390/cells14060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/27/2025] Open
Abstract
The tumor microenvironment is a dynamic and complex three-dimensional network comprising the extracellular matrix and diverse non-cancerous cells, including fibroblasts, adipocytes, endothelial cells and various immune cells (lymphocytes T and B, NK cells, dendritic cells, monocytes/macrophages, myeloid-derived suppressor cells, and innate lymphoid cells). A constantly and rapidly growing number of studies highlight the critical role of these cells in shaping cancer survival, metastatic potential and therapy resistance. This review provides a synthesis of current knowledge on the modulating role of the cellular microenvironment in cancer progression and response to treatment.
Collapse
Affiliation(s)
- Eliza Turlej
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Aleksandra Domaradzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Justyna Radzka
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Dominika Drulis-Fajdasz
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| | - Julita Kulbacka
- Departament of Molecular and Cellular Biology, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania
| | - Agnieszka Gizak
- Departament of Molecular Physiology and Neurobiology, University of Wrocław, ul. Sienkiewicza 21, 50-335 Wrocław, Poland; (E.T.); (A.D.); (J.R.)
| |
Collapse
|
3
|
Kopec K, Quaranto D, DeSouza NR, Jarboe T, Islam HK, Moscatello A, Li XM, Geliebter J, Tiwari RK. The HOX Gene Family's Role as Prognostic and Diagnostic Biomarkers in Hematological and Solid Tumors. Cancers (Basel) 2025; 17:262. [PMID: 39858044 PMCID: PMC11763641 DOI: 10.3390/cancers17020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The HOX gene family encodes for regulatory transcription factors that play a crucial role in embryogenesis and differentiation of adult cells. This highly conserved family of genes consists of thirty-nine genes in humans that are located in four clusters, A-D, on different chromosomes. While early studies on the HOX gene family have been focused on embryonic development and its related disorders, research has shifted to examine aberrant expression of HOX genes and the subsequent implication in cancer prediction and progression. Due to their role of encoding master regulatory transcription factors, the abnormal expression of HOX genes has been shown to affect all stages of tumorigenesis and metastasis. This review highlights the novel role of the HOX family's clinical relevance as both prognostic and diagnostic biomarkers in hematological and solid tumors.
Collapse
Affiliation(s)
- Kaci Kopec
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Danielle Quaranto
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Nicole R. DeSouza
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Tara Jarboe
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
| | - Humayun K. Islam
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Augustine Moscatello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
- Department of Dermatology, New York Medical College, Valhalla, NY 10595, USA
| | - Jan Geliebter
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| | - Raj K. Tiwari
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA; (K.K.); (D.Q.); (N.R.D.); (T.J.); (H.K.I.); (A.M.); (X.-M.L.); (R.K.T.)
- Department of Otolaryngology, New York Medical College, Valhalla, NY 10595, USA
| |
Collapse
|
4
|
Han W, Yu L, Liu Z, Wang C, Zhang Q, Li H, Xu Y, Liu F, Sun S. NIR Enhanced pH-Responsive Microneedles for Synergetic Therapy of Melanoma. ChemMedChem 2025; 20:e202400537. [PMID: 39349408 DOI: 10.1002/cmdc.202400537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/02/2024]
Abstract
Melanoma has emerged as a significant threat to human life and health. Microneedle (MN)-mediated transdermal drug delivery (TDD) has garnered attention in melanoma treatment for bypassing the first-pass effect. However, the propensity of melanoma to metastasize presents substantial challenges for MN mediated local treatment. Developing systemic therapies, such as immunotherapy in combination with TDD, is crucial for achieving effective melanoma treatment. Herein, a polyvinyl alcohol (PVA) MN-mediated multifunctional TDD system, designated MN@PDA@1-MT/CUR/DOX@HA (MN@PMCDH), was developed for synergetic chemotherapy/photothermal/immunotherapy of melanoma. PMCDH nanomedicines penetrate deep skin layers through MNs, accumulate at tumor sites guided by hyaluronic acid (HA), and selectively release drugs in response to the acidic tumor microenvironment and near-infrared (NIR) stimulation. Released curcumin (CUR) significantly enhances the efficacy of photothermal therapy (PTT) and chemotherapy, as well as improves the induction of immunogenic cell death (ICD) by increasing melanoma sensitivity to polydopamine (PDA)-mediated photothermal effects and doxorubicin (DOX). Moreover, the incorporation of 1-methyltryptophan (1-MT) to reverse the tumor immunosuppressive microenvironment can further enhance the effects of immunotherapy. In vitro studies revealed that the MN@PMCDH system can effectively induce ICD and inhibit tumor cell growth. Additionally, remarkable deep tumor cell inhibition effects are also achieved in 3D tumor models.
Collapse
Affiliation(s)
- Weiqiang Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Lan Yu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Zhuo Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Chaofan Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Qi Zhang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian, 116023, PR China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, China
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, 518000, China
| |
Collapse
|
5
|
Etzi F, Griñán-Lisón C, Fenu G, González-Titos A, Pisano A, Farace C, Sabalic A, Picon-Ruiz M, Marchal JA, Madeddu R. The Role of miR-486-5p on CSCs Phenotypes in Colorectal Cancer. Cancers (Basel) 2024; 16:4237. [PMID: 39766136 PMCID: PMC11674241 DOI: 10.3390/cancers16244237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third diagnosed cancer worldwide. Forty-four percent of metastatic colorectal cancer patients were diagnosed at an early stage. Despite curative resection, approximately 40% of patients will develop metastases within a few years. Previous studies indicate the presence of cancer stem cells (CSCs) and their contribution to CRC progression and metastasis. miRNAs deregulation plays a role in CSCs formation and in tumor development. In light of previous studies, we investigated the role of miR-486-5p to understand its role in CSC better. METHODS The expression of miR-486-5p was assessed in adherent cells and spheres generated from two CRC cell lines to observe the difference in expression in CSC-enriched spheroids. Afterward, we overexpressed and underexpressed this miRNA in adherent and sphere cultures through the transfection of a miR-486-5p mimic and a mimic inhibitor. RESULTS The results demonstrated that miR-486-5p exhibited a notable downregulation in CSC models, and its overexpression led to a significant decrease in colony size. CONCLUSIONS In this study, we confirmed that miR-486-5p plays an oncosuppressive role in CRC, thereby advancing our understanding of the role of this microRNA in the CSC phenotype.
Collapse
Affiliation(s)
- Federica Etzi
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Carmen Griñán-Lisón
- Department of Biochemistry and Molecular Biology 2, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18071 Granada, Spain
- Centre for Genomics and Oncological Research, GENYO, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
| | - Grazia Fenu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Aitor González-Titos
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
| | - Andrea Pisano
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Cristiano Farace
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Angela Sabalic
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
| | - Manuel Picon-Ruiz
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan Antonio Marchal
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada, University of Granada, 18012 Granada, Spain; (A.G.-T.); (M.P.-R.); (J.A.M.)
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
| | - Roberto Madeddu
- Department of Biomedical Science, University of Sassari, 07100 Sassari, Italy or (F.E.); (G.F.); (C.F.); (A.S.); (R.M.)
- National Institute of Biostructures and Biosystems, 00136 Rome, Italy
| |
Collapse
|
6
|
Šitum Čeprnja Z, Kelam N, Ogorevc M, Racetin A, Vukoja M, Čeprnja T, Filipović N, Saraga-Babić M, Vukojević K. Expression of LOXL3, NES, and SNAI1 in Melanoma Genesis and Progression. Cells 2024; 13:1450. [PMID: 39273022 PMCID: PMC11394338 DOI: 10.3390/cells13171450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most severe type of skin cancer and among the most malignant neoplasms in humans. With the growing incidence of melanoma, increased numbers of therapeutic options, and the potential to target specific proteins, understanding the basic mechanisms underlying the disease's progression and resistance to treatment has never been more important. LOXL3, SNAI1, and NES are key factors in melanoma genesis, regulating tumor growth, metastasis, and cellular differentiation. In our study, we explored the potential role of LOXL3, SNAI1, and NES in melanoma progression and metastasis among patients with dysplastic nevi, melanoma in situ, and BRAF+ and BRAF- metastatic melanoma, using immunofluorescence and qPCR analysis. Our results reveal a significant increase in LOXL3 expression and the highest NES expression in BRAF+ melanoma compared to BRAF-, dysplastic nevi, and melanoma in situ. As for SNAI1, the highest expression was observed in the metastatic melanoma group, without significant differences among groups. We found co-expression of LOXL3 and SNAI1 in the perinuclear area of all investigated subgroups and NES and SNAI1 co-expression in melanoma cells. These findings suggest a codependence or collaboration between these markers in melanoma EMT, suggesting new potential therapeutic interventions to block the EMT cascade that could significantly affect survival in many melanoma patients.
Collapse
Affiliation(s)
- Zdenka Šitum Čeprnja
- Department of Dermatovenerology, University Hospital of Split, 21000 Split, Croatia;
| | - Nela Kelam
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Marin Ogorevc
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Anita Racetin
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Martina Vukoja
- Laboratory of Morphology, Department of Histology and Embryology, School of Medicine, University of Mostar, 88 000 Mostar, Bosnia and Herzegovina;
| | - Toni Čeprnja
- Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| | - Natalija Filipović
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Mirna Saraga-Babić
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, University of Split School of Medicine, 21000 Split, Croatia; (N.K.); (M.O.); (A.R.); (N.F.); (K.V.)
- Center for Translational Research in Biomedicine, University of Split School of Medicine, 21000 Split, Croatia
| |
Collapse
|
7
|
Zhou Q, Jin X, Zhao Y, Wang Y, Tao M, Cao Y, Yin X. Melanoma-associated fibroblasts in tumor-promotion flammation and antitumor immunity: novel mechanisms and potential immunotherapeutic strategies. Hum Mol Genet 2024; 33:1186-1193. [PMID: 38538564 PMCID: PMC11190611 DOI: 10.1093/hmg/ddae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 06/22/2024] Open
Abstract
Melanoma, renowned for its aggressive behavior and resistance to conventional treatments, stands as a formidable challenge in the oncology landscape. The dynamic and complex interplay between cancer cells and the tumor microenvironment has gained significant attention, revealing Melanoma-Associated Fibroblasts (MAFs) as central players in disease progression. The heterogeneity of MAFs endows them with a dual role in melanoma. This exhaustive review seeks to not only shed light on the multifaceted roles of MAFs in orchestrating tumor-promoting inflammation but also to explore their involvement in antitumor immunity. By unraveling novel mechanisms underlying MAF functions, this review aims to provide a comprehensive understanding of their impact on melanoma development. Additionally, it delves into the potential of leveraging MAFs for innovative immunotherapeutic strategies, offering new avenues for enhancing treatment outcomes in the challenging realm of melanoma therapeutics.
Collapse
Affiliation(s)
- Qiujun Zhou
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Xiaoliang Jin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Ying Zhao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Yueping Wang
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, #548 Binwen Road, Binjiang District, Hangzhou, Zhejiang 310000, China
| | - Maocan Tao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| | - Yi Cao
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| | - Xiaohu Yin
- Department of Dermatology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), #54 Youdian Road, Shangcheng District, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
8
|
García de Herreros A. Dual role of Snail1 as transcriptional repressor and activator. Biochim Biophys Acta Rev Cancer 2024; 1879:189037. [PMID: 38043804 DOI: 10.1016/j.bbcan.2023.189037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Snail1 transcriptional factor plays a key role in the control of epithelial to mesenchymal transition, a process that remodels tumor cells increasing their invasion and chemo-resistance as well as reprograms their metabolism and provides stemness properties. During this transition, Snail1 acts as a transcriptional repressor and, as growing evidences have demonstrated, also as a direct activator of mesenchymal genes. In this review, I describe the different proteins that interact with Snail1 and are responsible for these two different functions on gene expression; I focus on the transcriptional factors that associate to Snail1 in their target promoters, both activated and repressed. I also present working models for Snail1 action both as repressor and activator and raise some issues that still need to be investigated.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Hospital del Mar Research Institute (IMIM), Unidad Asociada al CSIC, Barcelona, Spain; Departament de Medicina i Ciències de la Vida, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
Melchionna R, Trono P, Di Carlo A, Di Modugno F, Nisticò P. Transcription factors in fibroblast plasticity and CAF heterogeneity. J Exp Clin Cancer Res 2023; 42:347. [PMID: 38124183 PMCID: PMC10731891 DOI: 10.1186/s13046-023-02934-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
In recent years, research focused on the multifaceted landscape and functions of cancer-associated fibroblasts (CAFs) aimed to reveal their heterogeneity and identify commonalities across diverse tumors for more effective therapeutic targeting of pro-tumoral stromal microenvironment. However, a unified functional categorization of CAF subsets remains elusive, posing challenges for the development of targeted CAF therapies in clinical settings.The CAF phenotype arises from a complex interplay of signals within the tumor microenvironment, where transcription factors serve as central mediators of various cellular pathways. Recent advances in single-cell RNA sequencing technology have emphasized the role of transcription factors in the conversion of normal fibroblasts to distinct CAF subtypes across various cancer types.This review provides a comprehensive overview of the specific roles of transcription factor networks in shaping CAF heterogeneity, plasticity, and functionality. Beginning with their influence on fibroblast homeostasis and reprogramming during wound healing and fibrosis, it delves into the emerging insights into transcription factor regulatory networks. Understanding these mechanisms not only enables a more precise characterization of CAF subsets but also sheds light on the early regulatory processes governing CAF heterogeneity and functionality. Ultimately, this knowledge may unveil novel therapeutic targets for cancer treatment, addressing the existing challenges of stromal-targeted therapies.
Collapse
Affiliation(s)
- Roberta Melchionna
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy.
| | - Paola Trono
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Anna Di Carlo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Francesca Di Modugno
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
10
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|