1
|
Luo S, Tian X, Xu T, Wang J. Type III pleuropulmonary blastoma: A case report. Oncol Lett 2025; 29:117. [PMID: 39807108 PMCID: PMC11726280 DOI: 10.3892/ol.2025.14864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
Pleuropulmonary blastoma (PPB) is an uncommon malignant neoplasm occurring in infants. The disease is intimately linked to mutations in the Dcr-1 homolog and ribonuclease type III (DICER1) genes. Imaging techniques are crucial for diagnosing PPB, yet distinguishing PPB from other pulmonary masses proves challenging. Early detection of PPB is problematic, and it is often diagnosed at an advanced pathological stage with a poor prognosis. The present report discusses a PPB case and evaluates its clinical manifestations, imaging characteristics, pathological features and molecular genetic changes. The patient was a 3-year-old female who presented to Affiliated Hospital of Zunyi Medical University (Zunyi, China) with an unexplained cough. Chest computed tomography revealed a mass in the right thoracic cavity, which was identified as a neoplastic lesion and considered a potential PPB. Surgical intervention was performed. The postoperative pathological examination confirmed PPB (type III) with rhabdomyomatous and chondroid differentiation. After surgery, the patient was treated with regular chemotherapy and at follow-up was doing well without recurrence. In conclusion, PPB represents a rare pathological diagnosis. The present report highlights the significance of noting clinical symptoms in infants, promptly performing pulmonary imaging and pathological examinations, and performing genetic testing when required. Furthermore, long-term surveillance of families with DICER1 syndrome is vital for infants diagnosed with PPB.
Collapse
Affiliation(s)
- Shuai Luo
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxue Tian
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Ting Xu
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Jinjing Wang
- Department of Pathology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
2
|
Rathe SK, White JP, Sachs Z, Largaespada DA. DEAPR: Differential Expression and Pathway Ranking Tool Demonstrates NRASG12V and NRASG12D Mutations Have Differing Effects in THP-1 Cells. Cancers (Basel) 2025; 17:467. [PMID: 39941834 PMCID: PMC11816133 DOI: 10.3390/cancers17030467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
Background/Objectives: NRAS mutations are found in approximately 10% of patients with acute myeloid leukemia (AML), with nearly half of those occurring at codon 12, but little is known about how differing G12 mutants affect cancer cell activity. Methods: A novel bioinformatic technique, differential expression and pathway ranking (DEAPR), was used to identify the most prominent changes in terms of both individual genes and associated pathways when comparing AML THP-1 cells containing an NRASG12D mutation with B11 cells, which are THP-1-derived cells with the NRASG12D allele removed and a dox-inducible NRASG12V allele introduced. Results: In total, 1456 differentially expressed (DE) protein-coding genes were uniquely associated to the NRASG12D mutation, while 585 DE protein-coding genes were specific to the NRASG12V mutation. The innate immune system pathway was prominent in both mutant-specific lists, even though the genes involved were not in both lists. Furthermore, the two calprotectin genes (S100A8 and S100A9), also associated with innate immunity, were upregulated in the NRASG12D mutant and downregulated in the NRASG12V mutant. Conclusions: This study, using the DEAPR strategy, clearly demonstrates the dramatic changes associated with two seemingly similar NRAS mutations, suggesting the deployment of different treatment strategies based on the type of NRAS mutation present.
Collapse
Affiliation(s)
- Susan K. Rathe
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jeremy P. White
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zohar Sachs
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Wang F, Liu W, Liang J, Wang H, Tang J, Zeng J, Huang D, Yang Q, Li L. Proteomic methods identified P75 as marker of poor prognosis in pleuropulmonary blastoma. Pathol Res Pract 2022; 238:154067. [PMID: 36067610 DOI: 10.1016/j.prp.2022.154067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/31/2022] [Accepted: 08/07/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES To study the causes of the rapid progression of pleuropulmonary blastoma and to identify molecular markers related to its prognosis. MATERIALS AND METHODS Three pairs of fresh frozen samples of pleuropulmonary blastoma tumors and adjacent normal tissues were analyzed for proteomics, focusing on the protein molecules with significantly increased expression in tumor tissues and related to the cell cycle and DNA replication. The top five protein molecules were selected and verified by immunohistochemistry. To analyze the correlation between the expression of verified protein molecules in pleuropulmonary blastoma and early recurrence/metastasis of pleuropulmonary blastoma. RESULTS Compared with the adjacent normal tissues, 1759 proteins were upregulated and 967 proteins were downregulated in pleuropulmonary blastoma. The top five proteins related to the cell cycle and DNA replication were ORC2, P75, Skp2, MCM4 and PCNA. However, only P75, MCM4 and PCNA were upregulated in pleuropulmonary blastoma as determined by immunohistochemistry. Further analysis showed that the expression of P75 in the recurrence/metastasis group was significantly higher than that in the no recurrence/metastasis group, while the expression of MCM4 and PCNA was not significantly different between the recurrence/metastasis group and the no recurrence/metastasis group. CONCLUSIONS MCM4, PCNA and P75 may all play an important role in the progression of pleuropulmonary blastoma. Among them, P75 is related to the prognosis and may be used as a marker to predict the prognosis of pleuropulmonary blastoma.
Collapse
Affiliation(s)
- Fenghua Wang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Wei Liu
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Jianhua Liang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Hui Wang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Jue Tang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Jiahang Zeng
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Dongmei Huang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Qinglin Yang
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China
| | - Le Li
- Department of Thoracic Surgery, Guangzhou Women and Children's Medical Centre, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Sarafidis M, Lambrou GI, Zoumpourlis V, Koutsouris D. An Integrated Bioinformatics Analysis towards the Identification of Diagnostic, Prognostic, and Predictive Key Biomarkers for Urinary Bladder Cancer. Cancers (Basel) 2022; 14:cancers14143358. [PMID: 35884419 PMCID: PMC9319344 DOI: 10.3390/cancers14143358] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Bladder cancer is evidently a challenge as far as its prognosis and treatment are concerned. The investigation of potential biomarkers and therapeutic targets is indispensable and still in progress. Most studies attempt to identify differential signatures between distinct molecular tumor subtypes. Therefore, keeping in mind the heterogeneity of urinary bladder tumors, we attempted to identify a consensus gene-related signature between the common expression profile of bladder cancer and control samples. In the quest for substantive features, we were able to identify key hub genes, whose signatures could hold diagnostic, prognostic, or therapeutic significance, but, primarily, could contribute to a better understanding of urinary bladder cancer biology. Abstract Bladder cancer (BCa) is one of the most prevalent cancers worldwide and accounts for high morbidity and mortality. This study intended to elucidate potential key biomarkers related to the occurrence, development, and prognosis of BCa through an integrated bioinformatics analysis. In this context, a systematic meta-analysis, integrating 18 microarray gene expression datasets from the GEO repository into a merged meta-dataset, identified 815 robust differentially expressed genes (DEGs). The key hub genes resulted from DEG-based protein–protein interaction and weighted gene co-expression network analyses were screened for their differential expression in urine and blood plasma samples of BCa patients. Subsequently, they were tested for their prognostic value, and a three-gene signature model, including COL3A1, FOXM1, and PLK4, was built. In addition, they were tested for their predictive value regarding muscle-invasive BCa patients’ response to neoadjuvant chemotherapy. A six-gene signature model, including ANXA5, CD44, NCAM1, SPP1, CDCA8, and KIF14, was developed. In conclusion, this study identified nine key biomarker genes, namely ANXA5, CDT1, COL3A1, SPP1, VEGFA, CDCA8, HJURP, TOP2A, and COL6A1, which were differentially expressed in urine or blood of BCa patients, held a prognostic or predictive value, and were immunohistochemically validated. These biomarkers may be of significance as prognostic and therapeutic targets for BCa.
Collapse
Affiliation(s)
- Michail Sarafidis
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
- Correspondence: ; Tel.: +30-210-772-2430
| | - George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece;
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 8 Thivon & Levadeias Str., 11527 Athens, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Konstantinou Ave., 11635 Athens, Greece;
| | - Dimitrios Koutsouris
- Biomedical Engineering Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str., 15780 Athens, Greece;
| |
Collapse
|
5
|
Miyama Y, Makise N, Miyakawa J, Kume H, Fukayama M, Ushiku T. An autopsy case of prostatic rhabdomyosarcoma with DICER1 hotspot mutation. Pathol Int 2020; 71:102-108. [PMID: 33112496 DOI: 10.1111/pin.13042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/13/2020] [Indexed: 12/23/2022]
Abstract
Somatic hotspot DICER1 mutations, which frequently coexist with germline inactivating mutation (i.e., DICER1 syndrome), have been identified in various types of benign and malignant conditions. Herein, we report an autopsy case of prostatic rhabdomyosarcoma (RMS) with a hotspot DICER1 c.5125G>A (p.D1709N) mutation. A 26 year-old man presented with a prostatic mass, hematuria, and urinary retention. He underwent total pelvic exenteration, colostomy, ileal conduit construction and partial urethrectomy. Five months postoperatively, he developed multiple metastases to the lungs, brain, iliopsoas muscles and bones. He died of respiratory failure, and autopsy was performed. Microscopically, the tumor was primarily composed of uniform primitive mesenchymal cells infiltrating to the prostate with cambium layer. Rhabdomyoblasts and anaplastic cells were focally observed. Immunohistochemically, tumor cells were positive for desmin, myogenin, PAX7, HMGA2. Multinodular goiter was detected at autopsy. Because the morphology is similar to pleuropulmonary blastoma and DICER1-mutant RMS of the female genital tract, we tested and identified a hotspot DICER1 mutation with Sanger sequencing. Recognizing DICER1-mutant tumor is important because of its frequent association with germline DICER1 inactivation and potential therapeutic implication. Further research is needed to clarify whether this case can be classified as embryonal RMS with anaplasia or 'DICER1-associated sarcoma'.
Collapse
Affiliation(s)
- Yu Miyama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Diagnostic Pathology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Naohiro Makise
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jimpei Miyakawa
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruki Kume
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Asahi Tele-Pathology Center, Asahi General Hospital, Chiba, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
6
|
Song T, Zhou H, Wei X, Meng Y, Guo Q. Downregulation of microRNA-324-3p inhibits lung cancer by blocking the NCAM1-MAPK axis through ALX4. Cancer Gene Ther 2020; 28:455-470. [PMID: 33087824 DOI: 10.1038/s41417-020-00231-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 09/01/2020] [Accepted: 09/21/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer remains the principal cause of cancer-related death worldwide. As microRNAs (miRNAs) are critically involved in lung cancer, we investigated the potential role of miR-324-3p in lung cancer via the ALX4/NCAM1/MAPK axis. The expression of miR-324-3p and ALX4 was detected in clinical samples, and their interaction confirmed by miRNA-targeted luciferase reporter assay. The mechanisms involved in the miR-324-3p-ALX4 interaction in lung cancer cell biological processes were analyzed through gain- and loss-of function approaches. In addition, cultured lung cancer cells were treated with the p38MAPK pathway activator P79350 in order to explore the role of this pathway in the abovementioned axis. Further, a tumor xenograft model in nude mice was constructed to confirm the in vitro findings. miR-324-3p was highly expressed in lung cancer tissues and cells, and inhibited the expression of ALX4 in A549 cells. After confirming the targeted inhibition of ALX4 by miR-324-3p, we showed that this interaction upregulated the expression of NCAM1 and activated the MAPK pathway. The inhibition of miR-324-3p could suppress lung cancer cell invasion, migration, and autophagy, and retarded the growth of subcutaneous tumors in nude mice. Downregulation of ALX4 or NCAM1 overexpression reversed these favorable effects of decreased miR-324-3p. Our study demonstrated the promotive effect of miR-324-3p on the development and progression of lung cancer, thus suggesting a new target for treatment of this devastating disease.
Collapse
Affiliation(s)
- Tieniu Song
- Department of Thoracic Surgery, West China Hospital, Sichuan University, 610000, Chengdu, P.R. China.
| | - Hui Zhou
- Department of Nephrology (2nd Section), Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Xiaoping Wei
- Department of Thoracic Surgery, Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Yuqi Meng
- Department of Thoracic Surgery, Lanzhou University Second Hospital, 730030, Lanzhou, P.R. China
| | - Quanwei Guo
- Department of Thoracic Surgery, Shenzhen Hospital of Southern Medical University, 518000, Shenzhen, P.R. China
| |
Collapse
|