1
|
Corradi C, Gentiluomo M, Adsay V, Sainz J, Camisa PR, Wlodarczyk B, Crippa S, Tavano F, Capurso G, Campa D. Multi-omic markers of intraductal papillary mucinous neoplasms progression into pancreatic cancer. Semin Cancer Biol 2025; 109:25-43. [PMID: 39733817 DOI: 10.1016/j.semcancer.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal and common form of pancreatic cancer, it has no specific symptoms, and most of the patients are diagnosed when the disease is already at an advanced stage. Chemotherapy typically has only a modest effect, making surgery the most effective treatment option. However, only a small percentage of patients are amenable to surgery. One viable strategy to reduce PDAC death burden associated with the disease is to focus on precursor lesions and identify markers able to predict who will evolve into PDAC. While most PDACs are believed to be preceded by pancreatic intraepithelial neoplasms (PanINs), 5-10 % arise from Intraductal papillary mucinous neoplasms (IPMNs), which are mass-forming cystic lesions that are very common in the general population. IPMNs offer an invaluable model of pancreatic carcinogenesis for researchers to analyse, as well as a target population for PDAC early detection by clinicians. The evolution of IPMN into cancer is a complex and multistep process, therefore the identification of individual markers will not be the solution. In recent years, multiple omics technologies have been instrumental to identify possible biomarkers of IPMN progression and carcinogenesis. The only foreseeable strategy will be to integrate multi-omics data, alongside clinical and morphological features, into a progression score or signature using either standard epidemiologic tools or artificial intelligence. The aim of this manuscript is to review the current knowledge on genetic biomarkers and to briefly mention also additional omics, such as metabolomics, the exposome, the miRNome and epigenomics of IPMNs.
Collapse
Affiliation(s)
| | | | - Volkan Adsay
- Department of Pathology, Koç University School of Medicine and Koç University Research Center for Translational Medicine, Istanbul, Turkey
| | - Juan Sainz
- Department of Biochemistry and Molecular Biology, University of Granada, Granada, Spain
| | - Paolo Riccardo Camisa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Wlodarczyk
- Department of Digestive Tract Diseases, Medical University of Lodz, Lodz, Poland
| | - Stefano Crippa
- Division of Pancreatic Surgery and Transplantation, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Francesca Tavano
- Division of Gastroenterology and Research Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza" Hospital, San Giovanni Rotondo, Italy
| | - Gabriele Capurso
- Vita-Salute San Raffaele University, Milan, Italy; Pancreato-Biliary Endoscopy and Endosonography Division, Pancreas Translational and Clinical Research Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy.
| |
Collapse
|
2
|
Samara M, Vlachostergios PJ, Thodou E, Zachos I, Mitrakas L, Evmorfopoulos K, Tzortzis V, Giakountis A. Characterization of a miRNA Signature with Enhanced Diagnostic and Prognostic Power for Patients with Bladder Carcinoma. Int J Mol Sci 2023; 24:16243. [PMID: 38003433 PMCID: PMC10671612 DOI: 10.3390/ijms242216243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Bladder carcinoma is globally among the most prevalent cancers and is associated with a high mortality rate at advanced stages. Its detection relies on invasive diagnostic methods that are unpleasant for the patient. Non-invasive molecular biomarkers, such as miRNAs, could serve as alternatives for early detection and prognosis of this malignancy. We designed a computational approach that combines transcriptome profiling, survival analyses, and calculation of diagnostic power in order to isolate miRNA signatures with high diagnostic and prognostic utility. Our analysis of TCGA-BLCA data from 429 patients yielded one miRNA signature, consisting of five upregulated and three downregulated miRNAs with cumulative diagnostic power that outperforms current diagnostic methods. The same miRNAs have a strong prognostic significance since their expression is associated with the overall survival of bladder cancer patients. We evaluated the expression of this signature in 19 solid cancer types, supporting its unique diagnostic utility for bladder carcinoma. We provide computational evidence regarding the functional implications of this miRNA signature in cell cycle regulation, demonstrating its abundance in body fluids, including peripheral blood and urine. Our study characterized a novel miRNA signature with the potential to serve as a non-invasive method for bladder cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece
| | - Panagiotis J. Vlachostergios
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41335 Larissa, Greece
| | - Ioannis Zachos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Lampros Mitrakas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Konstantinos Evmorfopoulos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Vassilios Tzortzis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, 41335 Larissa, Greece
| | - Antonis Giakountis
- Department of Biochemistry and Biotechnology, University of Thessaly, 41335 Larissa, Greece
| |
Collapse
|
3
|
Stabile R, Cabezas MR, Verhagen MP, Tucci FA, van den Bosch TPP, De Herdt MJ, van der Steen B, Nigg AL, Chen M, Ivan C, Shimizu M, Koljenović S, Hardillo JA, Verrijzer CP, Baatenburg de Jong RJ, Calin GA, Fodde R. The deleted in oral cancer (DOC1 aka CDK2AP1) tumor suppressor gene is downregulated in oral squamous cell carcinoma by multiple microRNAs. Cell Death Dis 2023; 14:337. [PMID: 37217493 DOI: 10.1038/s41419-023-05857-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023]
Abstract
Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1; also known as deleted in oral cancer or DOC1) is a tumor suppressor gene known to play functional roles in both cell cycle regulation and in the epigenetic control of embryonic stem cell differentiation, the latter as a core subunit of the nucleosome remodeling and histone deacetylation (NuRD) complex. In the vast majority of oral squamous cell carcinomas (OSCC), expression of the CDK2AP1 protein is reduced or lost. Notwithstanding the latter (and the DOC1 acronym), mutations or deletions in its coding sequence are extremely rare. Accordingly, CDK2AP1 protein-deficient oral cancer cell lines express as much CDK2AP1 mRNA as proficient cell lines. Here, by combining in silico and in vitro approaches, and by taking advantage of patient-derived data and tumor material in the analysis of loss of CDK2AP1 expression, we identified a set of microRNAs, namely miR-21-5p, miR-23b-3p, miR-26b-5p, miR-93-5p, and miR-155-5p, which inhibit its translation in both cell lines and patient-derived OSCCs. Of note, no synergistic effects were observed of the different miRs on the CDK2AP1-3-UTR common target. We also developed a novel approach to the combined ISH/IF tissue microarray analysis to study the expression patterns of miRs and their target genes in the context of tumor architecture. Last, we show that CDK2AP1 loss, as the result of miRNA expression, correlates with overall survival, thus highlighting the clinical relevance of these processes for carcinomas of the oral cavity.
Collapse
Affiliation(s)
- Roberto Stabile
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mario Román Cabezas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs P Verhagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Francesco A Tucci
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- European Institute of Oncology IRCCS, Via Ripamonti 435, 20141, Milan, Italy
| | | | - Maria J De Herdt
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Berdine van der Steen
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alex L Nigg
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Meng Chen
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristina Ivan
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Caris Life Science, Irving, TX, USA
| | - Masayoshi Shimizu
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Senada Koljenović
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Pathology, Antwerp University Hospital, 2650, Edegem, Belgium
| | - Jose A Hardillo
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Robert J Baatenburg de Jong
- Department of Otorhinolaryngology and Head & Neck Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - George A Calin
- Department of Translational Molecular Pathology and Center of Department of Translational Molecular Pathology, and Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Riccardo Fodde
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Hussen BM, Abdullah SR, Rasul MF, Jawhar ZH, Faraj GSH, Kiani A, Taheri M. MiRNA-93: a novel signature in human disorders and drug resistance. Cell Commun Signal 2023; 21:79. [PMID: 37076893 PMCID: PMC10114484 DOI: 10.1186/s12964-023-01106-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023] Open
Abstract
miRNA-93 is a member of the miR-106b-25 family and is encoded by a gene on chromosome 7q22.1. They play a role in the etiology of various diseases, including cancer, Parkinson's disease, hepatic injury, osteoarthritis, acute myocardial infarction, atherosclerosis, rheumatoid arthritis, and chronic kidney disease. Different studies have found that this miRNA has opposing roles in the context of cancer. Recently, miRNA-93 has been downregulated in breast cancer, gastric cancer, colorectal cancer, pancreatic cancer, bladder cancer, cervical cancer, and renal cancer. However, miRNA-93 is up-regulated in a wide variety of malignancies, such as lung, colorectal, glioma, prostate, osteosarcoma, and hepatocellular carcinoma. The aim of the current review is to provide an overview of miRNA-93's function in cancer disorder progression and non-cancer disorders, with a focus on dysregulated signaling pathways. We also give an overview of this miRNA's function as a biomarker of prognosis in cancer and emphasize how it contributes to drug resistance based on in vivo, in vitro, and human studies. Video Abstract.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | - Zanko Hassan Jawhar
- Medical Laboratory Science, College of Health Sciences, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Arda Kiani
- Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Makler A, Asghar W. Exosomal miRNA Biomarker Panel for Pancreatic Ductal Adenocarcinoma Detection in Patient Plasma: A Pilot Study. Int J Mol Sci 2023; 24:ijms24065081. [PMID: 36982154 PMCID: PMC10049393 DOI: 10.3390/ijms24065081] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is rapidly becoming one of the leading causes of cancer-related deaths in the United States, and with its high mortality rate, there is a pressing need to develop sensitive and robust methods for detection. Exosomal biomarker panels provide a promising avenue for PDAC screening since exosomes are highly stable and easily harvested from body fluids. PDAC-associated miRNAs packaged within these exosomes could be used as diagnostic markers. We analyzed a series of 18 candidate miRNAs via RT-qPCR to identify the differentially expressed miRNAs (p < 0.05, t-test) between plasma exosomes harvested from PDAC patients and control patients. From this analysis, we propose a four-marker panel consisting of miR-93-5p, miR-339-3p, miR-425-5p, and miR-425-3p with an area under the curve (AUC) of the receiver operator characteristic curve (ROC) of 0.885 with a sensitivity of 80% and a specificity of 94.7%, which is comparable to the CA19-9 standard PDAC marker diagnostic.
Collapse
Affiliation(s)
- Amy Makler
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Electrical Engineering and Computer Science, College of Engineering and Science, Florida Atlantic University, Boca Raton, FL 33431, USA
- Correspondence:
| |
Collapse
|
6
|
Wang X, Li F, Cheng J, Hou N, Pu Z, Zhang H, Chen Y, Huang C. MicroRNA-17 Family Targets RUNX3 to Increase Proliferation and Migration of Hepatocellular Carcinoma. Crit Rev Eukaryot Gene Expr 2023; 33:71-84. [PMID: 37017671 DOI: 10.1615/critreveukaryotgeneexpr.v33.i3.70] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is one common cancer in the world. Previous studies have shown that miR-17 family members are elevated in most tumors and promote tumor progression. However, there is no comprehensive analysis of the expression and functional mechanism of the microRNA-17 (miR-17) family in HCC. The aim of this study is to comprehensively analyze the function of the miR-17 family in HCC and the molecular mechanism of its role. Bioinfoimatics analysis of the miR-17 family expression profile and its relationship to clinical significance using The Cancer Genome Atlas (TCGA) database, and this result was confirmed using quantitative real-time polymerase chain reaction. miR-17 family members were tested for functional effects through transfection of miRNA precursors and inhibitors, and monitoring cell viability and migration by cell count and wound healing assays. In addition, we using dual-luciferase assay and Western blot demonstrated the targeting relationship between the miRNA-17 family and RUNX3. These members of miR-17 family were highly expressed in HCC tissues, and the overexpression of the miR-17 family promoted the proliferation and migration of SMMC-7721 cells, whereas treatment with anti-miR17 inhibitors caused the opposite effects. Notably, we also found that inhibitors anti-each member of miR-17 can suppress the expression of the entire family member. In addition, they can bind to the 3' untranslated region of RUNX3 to regulate its expression at the translational level. Our results proved that miR-17 family has oncogenic characteristics, overexpression every member of the family contributed to HCC cell proliferation and migration by reducing the translation of RUNX3.
Collapse
Affiliation(s)
- Xiaofei Wang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China
| | - Fang Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Ni Hou
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Zhiying Pu
- College of Life Science and Food Engineering, Shaanxi Xueqian Normal University, Xi'an 710021, Shaanxi, China
| | - Hua Zhang
- First Affiliated Hospital of Xi'an Medical College, Xi'an 710077, Shaanxi, China
| | - Yanke Chen
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China
| | - Chen Huang
- Biomedical Experimental Center, Xi'an Jiaotong University, Xi'an 710061, Shaanxi, China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University School of Health Science Center, Xi'an 710061, Shaanxi, China; Environment and Genes Related to Diseases Key Laboratory of Education Ministry, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
7
|
Ferreira D, Moreira JN, Rodrigues LR. New Advances in Exosome-based Targeted Drug Delivery Systems. Crit Rev Oncol Hematol 2022; 172:103628. [PMID: 35189326 DOI: 10.1016/j.critrevonc.2022.103628] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, various drug nano-delivery platforms have emerged to enhance drug effectiveness in cancer treatment. However, their successful translation to clinics have been hampered by unwanted side effects, as well as associated toxicity. Therefore, there is an imperative need for drug delivery vehicles capable of surpassing cellular barriers and also efficiently transfer therapeutic payloads to tumor cells. Exosomes, a class of small extracellular vesicles naturally released from all cells, have been exploited as a favorable delivery vehicle due to their natural role in intracellular communication and biocompatibility. In this review, information on exosome biogenesis, contents, forms of isolation and their natural functions is discussed, further complemented with the various successful methodologies for therapeutic payloads encapsulation, including distinct loading approaches. In addition, grafting of molecules to improve pharmacokinetics, tumor homing-ligands, as well as stimuli-responsive elements to enhance cell specificity are also debated. In the end, the current status of clinical-grade exosome-based therapies is outlined.
Collapse
Affiliation(s)
- Débora Ferreira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Nuno Moreira
- CNC - Center for Neurosciences and Cell Biology, Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Faculty of Medicine (Polo 1), Rua Larga, 3004-504 Coimbra, Portugal; Univ Coimbra - University of Coimbra, CIBB, Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Lígia R Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
8
|
Role of miRNAs in diabetic neuropathy: mechanisms and possible interventions. Mol Neurobiol 2022; 59:1836-1849. [PMID: 35023058 DOI: 10.1007/s12035-021-02662-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/19/2021] [Indexed: 10/19/2022]
Abstract
Accelerating cases of diabetes worldwide have given rise to higher incidences of diabetic complications. MiRNAs, a much-explored class of non-coding RNAs, play a significant role in the pathogenesis of diabetes mellitus by affecting insulin release, β-cell proliferation, and dysfunction. Besides, disrupted miRNAs contribute to various complications, diabetic retinopathy, nephropathy, and neuropathy as well as severe conditions like diabetic foot. MiRNAs regulate various processes involved in diabetic complications like angiogenesis, vascularization, inflammations, and various signaling pathways like PI3K, MAPK, SMAD, and NF-KB signaling pathways. Diabetic neuropathy is the most common diabetic complication, characterized mainly by pain and numbness, especially in the legs and feet. MiRNAs implicated in diabetic neuropathy include mir-9, mir-106a, mir-146a, mir-182, miR-23a and b, miR-34a, and miR-503. The diabetic foot is the most common diabetic neuropathy, often leading to amputations. Mir-203, miR-23c, miR-145, miR-29b and c, miR-126, miR-23a and b, miR-503, and miR-34a are associated with diabetic foot. This review has been compiled to summarize miRNA involved in initiation, progression, and miRNAs affecting various signaling pathways involved in diabetic neuropathy including the diabetic foot. Besides, potential applications of miRNAs as biomarkers and therapeutic targets in this microvascular complication will also be discussed.
Collapse
|
9
|
Shi C, Weng M, Zhu H, Guo Y, Xu D, Jin H, Wei B, Cao Z. NUDCD1 knockdown inhibits the proliferation, migration, and invasion of pancreatic cancer via the EMT process. Aging (Albany NY) 2021; 13:18298-18309. [PMID: 34325402 PMCID: PMC8351729 DOI: 10.18632/aging.203276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
NudC domain containing 1 (NUDCD1) is an oncoprotein frequently activated or upregulated in various human cancers, but its role in pancreatic cancer (PC) remains unknown. Thus, we aimed to determine the function and mechanism of NUDCD1 in PC. We employed Western blot and quantitative real-time polymerase chain reaction to assess NUDCD1 expression in cells and PC tissues. NUDCD1 was knocked down in Patu8988 and PANC-1 cells. We conducted real-time cell analysis, wound healing assay, transwell assay and colony formation assay to evaluate the metastatic and proliferative abilities of PC cells. Western blot was conducted to assess the expression of markers associated with apoptosis and epithelial-mesenchymal transition (EMT). Also, we established a tumor xenograft model to determine the role of NUDCD1 in vivo. NUDCD1 was overexpressed in PC tissues and cells. NUDCD1 knockdown suppressed the invasion, migration, and proliferative abilities of the cells and induced PC cell apoptosis. The specific mechanism of NUDCD1 was related to the modulation of the EMT process. Data obtained from in vivo experiments revealed that NUDCD1 knockdown inhibited the tumor growth, proliferation, and metastasis by modulating the EMT and inducing the apoptosis of PC cells.
Collapse
Affiliation(s)
- Chunling Shi
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Min Weng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hengyue Zhu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yangyang Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Dongdong Xu
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Hairu Jin
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Binshuang Wei
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| | - Zhensheng Cao
- School of Stomatology, Wenzhou Medical University, Wenzhou 110013, China
| |
Collapse
|
10
|
Raimondi G, Gea-Sorlí S, Otero-Mateo M, Fillat C. Inhibition of miR-222 by Oncolytic Adenovirus-Encoded miRNA Sponges Promotes Viral Oncolysis and Elicits Antitumor Effects in Pancreatic Cancer Models. Cancers (Basel) 2021; 13:3233. [PMID: 34203557 PMCID: PMC8267801 DOI: 10.3390/cancers13133233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Oncolytic adenoviruses (OA) are envisioned as a therapeutic option for patients with cancer, designed to preferentially replicate in cancer cells. However, the high number of genetic alterations in tumors can generate a context in which adenoviruses have difficulties replicating. Abnormal miRNAs expression is a trademark of pancreatic cancer, with several oncogenic miRNAs playing essential roles in cancer-associated pathways. The perturbed miRNome induces reprogramming of gene expression in host cells that can impact the complex interplay between cellular processes and viral replication. We have studied the effects of overexpressed miRNAs on oncolytic adenoviral activity and identified miRNAs modulators of adenoviral oncolysis in pancreatic cancer cells. Inhibition of the highly upregulated miR-222 sensitized cancer cells to oncolysis. To provide a therapeutic application to this insight, we engineered the oncolytic adenovirus AdNuPARmE1A with miR-222 binding sites, working as sponges to withdraw the miRNA from the cellular environment. AdNuPAR-E-miR222-S mediated-decrease of miR-222 expression in pancreatic cancer cells strongly improved the viral yield and enhanced the adenoviral cytotoxic effects. Antitumoral studies confirmed a high activity for AdNuPARmE1A-miR222-S in vivo, controlling tumor progression more effectively than the scrambled control virus in xenografts. We demonstrated that the increased antitumor potency of the novel oncolytic virus resulted from the combinatory effects of miR-222 oncomiR inhibition and the restoration of miR-222 target genes activity enhancing viral fitness.
Collapse
Affiliation(s)
- Giulia Raimondi
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Sabrina Gea-Sorlí
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
| | - Marc Otero-Mateo
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
| | - Cristina Fillat
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; (G.R.); (S.G.-S.); (M.O.-M.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
11
|
Zhang X, He Y, Gu H, Liu Z, Li B, Yang Y, Hao J, Hua R. Construction of a Nine-MicroRNA-Based Signature to Predict the Overall Survival of Esophageal Cancer Patients. Front Genet 2021; 12:670405. [PMID: 34093662 PMCID: PMC8170160 DOI: 10.3389/fgene.2021.670405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Esophageal cancer (EC) is a common malignant tumor. MicroRNAs (miRNAs) play a key role in the occurrence and metastasis and are closely related to the prognosis of EC. Therefore, it will provide a powerful tool to predict the overall survival (OS) of EC patients based on miRNAs expression in EC tissues and blood samples. METHODS Five independent databases, TCGA, GSE106817, GSE113486, GSE122497, and GSE112264, were used to construct nine-miRna signature and nomograms for prognosis. The bioinformatics analysis was used to predict the enrichment pathways of targets. RESULTS A total of 132 overexpressed miRNAs and 23 suppressed miRNAs showed significant differential expression in both EC serum and tissue samples compared with normal samples. We also showed that nine miRNAs were related to the prognosis of EC. Higher levels of miR-15a-5p, miR-92a-3p, miR-92a-1-5p, miR-590-5p, miR-324-5p, miR-25-3p, miR-181b-5p, miR-421, and miR-93-5p were correlated to the shorter survival time in patients with EC. In addition, we constructed a risk prediction model based on the levels of nine differentially expressed miRNAs (DEMs) and found that the OS time of EC patients with high-risk score was shorter than that of EC patients with low-risk score. Furthermore, our results showed that the risk prediction scores of EC samples were higher than those of normal samples. Finally, the area under the curve (AUC) was used to analyze the risk characteristics of EC and normal controls. By calculating the AUC and the calibration curve, the RNA signature showed a good performance. Bioinformatics analysis showed that nine DEMs were associated with several crucial signaling, including p53, FoxO, PI3K-Akt, HIF-1, and TORC1 signaling. Finally, 14 messenger RNAs (mRNAs) were identified as hub targets of nine miRNAs, including BTRC, SIAH1, RNF138, CDC27, NEDD4L, MKRN1, RLIM, FBXO11, RNF34, MYLIP, FBXW7, RNF4, UBE3C, and RNF111. TCGA dataset validation showed that these hub targets were significantly differently expressed in EC tissues compared with normal samples. CONCLUSION We have constructed maps and nomograms of nine-miRna risk signals associated with EC prognosis. Bioinformatics analysis revealed that nine DEMs were associated with several crucial signaling, including p53, FoxO, PI3K-Akt, HIF-1, and TORC1 signaling, in EC. We think that this study will provide clinicians with an effective decision-making tool.
Collapse
Affiliation(s)
- Xiaobin Zhang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Cardiovascular Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi He
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haiyong Gu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhichao Liu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Rong Hua
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
MicroRNAs Deregulated in Intraductal Papillary Mucinous Neoplasm Converge on Actin Cytoskeleton-Related Pathways That Are Maintained in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2021; 13:cancers13102369. [PMID: 34069007 PMCID: PMC8155860 DOI: 10.3390/cancers13102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 11/17/2022] Open
Abstract
Intraductal papillary mucinous neoplasms (IPMN) are pancreatic cystic lesions that can develop into pancreatic ductal adenocarcinoma (PDAC). Although there is an increasing incidence of IPMN diagnosis, the mechanisms of formation and progression into invasive cancer remain unclear. MicroRNAs (miRNAs) are small non-coding RNAs, repressors of mRNA translation, and promising diagnostic biomarkers for IPMN and PDAC. Functional information on the role of early-altered miRNAs in this setting would offer novel strategies for tracking the IPMN-to-PDAC progression. In order to detect mRNAs that are likely to be under miRNA regulation in IPMNs, whole transcriptome and miRNome data from normal pancreatic tissue (n = 3) and IPMN lesions (n = 4) were combined and filtered according to negative correlation and miRNA-target prediction databases by using miRComb R package. Further comparison analysis with PDAC data allowed us to obtain a subset of miRNA-mRNA pairs shared in IPMN and PDAC. Functional enrichment analysis unravelled processes that are mainly related with cell structure, actin cytoskeleton, and metabolism. MiR-181a appeared as a master regulator of these processes. The expression of selected miRNA-mRNA pairs was validated by qRT-PCR in an independent cohort of patients (n = 40), and then analysed in different pancreatic cell lines. Finally, we generated a cellular model of HPDE cells stably overexpressing miR-181a, which showed a significant alteration of actin cytoskeleton structures accompanied by a significant downregulation of EPB41L4B and SEL1L expression. In situ hybridization of miR-181a and immunohistochemistry of EPB41L4B and SEL1L in pancreatic tissues (n = 4 Healthy; n = 3 IPMN; n = 4 PDAC) were also carried out. In this study, we offer insights on the potential implication of miRNA alteration in the regulation of structural and metabolic changes that pancreatic cells experience during IPMN establishment and that are maintained in PDAC.
Collapse
|
13
|
miR-93 regulates liver tumor initiating cells expansion and predicts chemotherapeutic response of patients. Arch Biochem Biophys 2021; 703:108871. [PMID: 33831356 DOI: 10.1016/j.abb.2021.108871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/17/2021] [Accepted: 03/30/2021] [Indexed: 01/27/2023]
Abstract
Tumor initiating cells (T-ICs) play an important role in tumorigenesis, progression, metastasis, recurrence and drug resistance, but the underlying mechanism was not clearly elucidated. In our study, we found that miR-93 was highly expressed in liver T-ICs. Self-renewal and tumorigenesis ability of liver T-ICs were enhanced by miR-93 overexpression and attenuated by miR-93 interference. Mechanically, miR-93 regulated liver T-ICs by binding to 3'-UTR of myotubularin-related protein 3 (MTMR3). In addition, miR-93 was found highly expressed in cisplatin or sorafenib-resistant liver cancer tissues. Interference of miR-93 sensitizes hepatoma cells to cisplatin or sorafenib treatment. Clinical cohort analysis showed that Hepatocellular carcinoma (HCC) patients with low miR-93 were benefit more from TACE or sorafenib treatment. In conclusion, our study demonstrates a new regulation mechanism of liver T-ICs, a new target for HCC, and a biomarker for postoperative TACE or sorafenib.
Collapse
|
14
|
Therapeutic Approaches for Metastases from Colorectal Cancer and Pancreatic Ductal Carcinoma. Pharmaceutics 2021; 13:pharmaceutics13010103. [PMID: 33466892 PMCID: PMC7830403 DOI: 10.3390/pharmaceutics13010103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Metastasis is the process of dissemination of a tumor, whereby cells from the primary site dislodge and find their way to other tissues where secondary tumors establish. Metastasis is the primary cause of death related to cancer. This process warrants changes in original tumoral cells and their microenvironment to establish a metastatic niche. Traditionally, cancer therapy has focused on metastasis prevention by systematic treatments or direct surgical re-sectioning. However, metastasis can still occur. More recently, new therapies direct their attention to targeting cancer stem cells. As they propose, these cells could be the orchestrators of the metastatic niche. In this review, we describe conventional and novel developments in cancer therapeutics for liver and lung metastasis. We further discuss the resistance mechanisms of targeted therapy, the advantages, and disadvantages of diverse treatment approaches, and future novel strategies to enhance cancer prognosis.
Collapse
|
15
|
Kim U, Kim N, Shin HY. Modeling Non-Alcoholic Fatty Liver Disease (NAFLD) Using "Good-Fit" Genome-Editing Tools. Cells 2020; 9:cells9122572. [PMID: 33271878 PMCID: PMC7760008 DOI: 10.3390/cells9122572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which affects both adults and children, is the most common liver disorder worldwide. NAFLD is characterized by excess fat accumulation in the liver in the absence of significant alcohol use. NAFLD is strongly associated with obesity, insulin resistance, metabolic syndrome, as well as specific genetic polymorphisms. Severe NAFLD cases can further progress to cirrhosis, hepatocellular carcinoma (HCC), or cardiovascular complications. Here, we describe the pathophysiological features and critical genetic variants associated with NAFLD. Recent advances in genome-engineering technology have provided a new opportunity to generate in vitro and in vivo models that reflect the genetic abnormalities of NAFLD. We review the currently developed NAFLD models generated using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) genome editing. We further discuss unique features of CRISPR/Cas9 and Cas9 variants, including base editors and prime editor, that are useful for replicating genetic features specific to NAFLD. We also compare advantages and limitations of currently available methods for delivering genome-editing tools necessary for optimal genome editing. This review should provide helpful guidance for selecting “good fit” genome-editing tools and appropriate gene-delivery methods for the successful development of NAFLD models and clinical therapeutics.
Collapse
|
16
|
Hydroxy-Propil-β-Cyclodextrin Inclusion Complexes of two Biphenylnicotinamide Derivatives: Formulation and Anti-Proliferative Activity Evaluation in Pancreatic Cancer Cell Models. Int J Mol Sci 2020; 21:ijms21186545. [PMID: 32906812 PMCID: PMC7576480 DOI: 10.3390/ijms21186545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with poor outcomes largely due to its unique microenvironment, which is responsible for the low response to drugs and drug-resistance phenomena. This clinical need led us to explore new therapeutic approaches for systemic PDAC treatment by the utilization of two newly synthesized biphenylnicotinamide derivatives, PTA73 and PTA34, with remarkable antitumor activity in an in vitro PDAC model. Given their poor water solubility, inclusion complexes of PTA34 and PTA73 in Hydroxy-Propil-β-Cyclodextrin (HP-β-CD) were prepared in solution and at the solid state. Complexation studies demonstrated that HP-β-CD is able to form stable host–guest inclusion complexes with PTA34 and PTA73, characterized by a 1:1 apparent formation constant of 503.9 M−1 and 369.2 M−1, respectively (also demonstrated by the Job plot), and by an increase in aqueous solubility of about 150 times (from 1.95 µg/mL to 292.5 µg/mL) and 106 times (from 7.16 µg/mL to 762.5 µg/mL), in the presence of 45% w/v of HP-β-CD, respectively. In vitro studies confirmed the high antitumor activity of the complexed PTA34 and PTA73 towards PDAC cells, the strong G2/M phase arrest followed by induction of apoptosis, and thus their eligibility for PDAC therapy.
Collapse
|