1
|
Cervantes-Salazar JL, Pérez-Hernández N, Calderón-Colmenero J, Rodríguez-Pérez JM, González-Pacheco MG, Villamil-Castañeda C, Rosas-Tlaque AA, Ortega-Zhindón DB. Genetic Insights into Congenital Cardiac Septal Defects-A Narrative Review. BIOLOGY 2024; 13:911. [PMID: 39596866 PMCID: PMC11592229 DOI: 10.3390/biology13110911] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Congenital heart diseases (CHDs) are a group of complex diseases characterized by structural and functional malformations during development in the human heart; they represent an important problem for public health worldwide. Within these malformations, septal defects such as ventricular (VSD) and atrial septal defects (ASD) are the most common forms of CHDs. Studies have reported that CHDs are the result of genetic and environmental factors. Here, we review and summarize the role of genetics involved in cardiogenesis and congenital cardiac septal defects. Moreover, treatment regarding these congenital cardiac septal defects is also addressed.
Collapse
Affiliation(s)
- Jorge L. Cervantes-Salazar
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
| | - Juan Calderón-Colmenero
- Department of Pediatric Cardiology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico;
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
| | | | - Clara Villamil-Castañeda
- Department of Molecular Biology, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (N.P.-H.); (J.M.R.-P.); (C.V.-C.)
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Angel A. Rosas-Tlaque
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
- Dirección General de Calidad y Educación en Salud, Secretaría de Salud, Mexico City 06600, Mexico
| | - Diego B. Ortega-Zhindón
- Department of Pediatric Cardiac Surgery and Congenital Heart Disease, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (J.L.C.-S.); (A.A.R.-T.)
- Programa de Maestría y Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Almonaem ERA, Soliman DR, El Sayed MAM, Ahmed IA, Abdelrahman EG. Association between SNP rs59382073 in TBX2 3′ UTR and susceptibility to congenital heart diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Ma J, Chen S, Hao L, Sheng W, Chen W, Ma X, Zhang B, Ma D, Huang G. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2. Front Med 2020; 15:91-100. [PMID: 32820380 DOI: 10.1007/s11684-020-0778-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 03/14/2020] [Indexed: 12/25/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defect worldwide. Long non-coding RNAs (lncRNAs) have been implicated in many diseases. However, their involvement in CHD is not well understood. This study aimed to investigate the role of dysregulated lncRNAs in CHD. We used Gene Expression Omnibus data mining, bioinformatics analysis, and analysis of clinical tissue samples and observed that the novel lncRNA SAP30-2:1 with unknown function was significantly downregulated in damaged cardiac tissues from patients with CHD. Knockdown of lncRNA SAP30-2:1 inhibited the proliferation of human embryonic kidney and AC16 cells and decreased the expression of heart and neural crest derivatives expressed 2 (HAND2). Moreover, lncRNA SAP30-2:1 was associated with HAND2 by RNA immunoprecipitation. Overall, these results suggest that lncRNA SAP30-2:1 may be involved in heart development through affecting cell proliferation via targeting HAND2 and may thus represent a novel therapeutic target for CHD.
Collapse
Affiliation(s)
- Jing Ma
- ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.,Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Shiyu Chen
- Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Lili Hao
- Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Weicheng Chen
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Bowen Zhang
- Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Duan Ma
- Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Children's Hospital of Fudan University, Shanghai, 201102, China.
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, 201102, China.
| |
Collapse
|
4
|
Ma J, Chen S, Hao L, Sheng W, Chen W, Ma X, Zhang B, Ma D, Huang G. Hypermethylation-mediated down-regulation of lncRNA TBX5-AS1:2 in Tetralogy of Fallot inhibits cell proliferation by reducing TBX5 expression. J Cell Mol Med 2020; 24:6472-6484. [PMID: 32368852 PMCID: PMC7294119 DOI: 10.1111/jcmm.15298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/06/2019] [Accepted: 03/28/2020] [Indexed: 12/26/2022] Open
Abstract
Tetralogy of Fallot (TOF) is the most common complex congenital heart disease (CHD) with uncertain cause. Although long non‐coding RNAs (lncRNAs) have been implicated in heart development and several CHDs, their role in TOF is not well understood. This study aimed to investigate how dysregulated lncRNAs contribute to TOF. Using Gene Expression Omnibus data mining, bioinformatics analysis and clinical heart tissue sample detecting, we identified a novel antisense lncRNA TBX5‐AS1:2 with unknown function that was significantly down‐regulated in injured cardiac tissues from TOF patients. LncRNA TBX5‐AS1:2 was mainly located in the nucleus of the human embryonic kidney 293 (HEK293T) cells and formed an RNA‐RNA double‐stranded structure in the overlapping region with its sense mRNA T‐box transcription factor 5 (TBX5), which is an important regulator in heart development. Knock‐down of lncRNA TBX5‐AS1:2 via promoter hypermethylation reduced TBX5 expression at both the mRNA and protein levels by affecting its mRNA stability through RNA‐RNA interaction. Moreover, lncRNA TBX5‐AS1:2 knock‐down inhibited the proliferation of HEK293T cells. In conclusion, these results indicated that lncRNA TBX5‐AS1:2 may be involved in TOF by affecting cell proliferation by targeting TBX5.
Collapse
Affiliation(s)
- Jing Ma
- Department of Facial Plastic and Reconstructive Surgery, ENT Institute, Eye & ENT Hospital, Fudan University, Shanghai, China.,Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shiyu Chen
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lili Hao
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Sheng
- Children's Hospital of Fudan University, Shanghai, China
| | - WeiCheng Chen
- Children's Hospital of Fudan University, Shanghai, China
| | - Xiaojing Ma
- Children's Hospital of Fudan University, Shanghai, China
| | - Bowen Zhang
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Duan Ma
- Department of Biochemistry and Molecular Biology, Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
5
|
Wang F. Insights Figure for ''Susceptibility to congenital heart defects associated with a polymorphism in TBX2 3' untranslated region in the Han Chinese population''. Pediatr Res 2019; 85:255. [PMID: 30538264 DOI: 10.1038/s41390-018-0244-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 11/16/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Feng Wang
- Children's Hospital of Fudan University, Cardiology, Shanghai, China.
| |
Collapse
|