1
|
Andrews A, McMinimee K. Navigating social determinants of health barriers in the management of phenylketonuria. Mol Genet Metab Rep 2024; 39:101080. [PMID: 39309540 PMCID: PMC11412925 DOI: 10.1016/j.ymgmr.2024.101080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 09/25/2024] Open
Abstract
Phenylketonuria (PKU) is an inborn error of amino acid metabolism that is typically identified by newborn screening. With lifelong treatment consisting of dietary management, frequent laboratory monitoring, and regular metabolic clinic visits, patients with PKU can maintain good health and metabolic control. Here, we describe the case of an 8-year-old patient with PKU who has been followed by a metabolic clinic since birth. Despite responsiveness to sapropterin, this patient has had periods of poor metabolic control throughout her life due to her family's economic hardships, including limited access to transportation, housing, food, and health insurance. This case illustrates how social determinants of health may negatively affect rare disease management and potential strategies for addressing barriers to care.
Collapse
Affiliation(s)
- Ashley Andrews
- The University of Utah, 30 N Mario Capecchi Dr, Salt Lake City, UT 84112, USA
| | - Kate McMinimee
- The University of Utah, 30 N Mario Capecchi Dr, Salt Lake City, UT 84112, USA
| |
Collapse
|
2
|
Piombarolo A, Ialongo C, Bizzarri M, Angeloni A. Systems Biology and Inborn Error of Metabolism: Analytical Strategy in Investigating Different Biochemical/Genetic Parameters. Methods Mol Biol 2024; 2745:191-210. [PMID: 38060187 DOI: 10.1007/978-1-0716-3577-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Inborn errors of metabolism (IEM) are a group of about 500 rare genetic diseases with large diversity and complexity due to number of metabolic pathways involved in. Establishing a correct diagnosis and identifying the specific clinical phenotype is consequently a difficult task. However, an inclusive diagnosis able in capturing the different clinical phenotypes is mandatory for successful treatment. However, in contrast with Garrod's basic assumption "one-gene one-disease," no "simple" correlation between genotype-phenotype can be vindicated in IEMs. An illustrative example of IEM is Phenylketonuria (PKU), an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism, ascribed to variants of the phenylalanine hydroxylase (PAH) gene encoding for the enzyme complex phenylalanine-hydroxylase. Blood values of Phe allow classifying PKU into different clinical phenotypes, albeit the participation of other genetic/biochemical pathways in the pathogenetic mechanisms remains elusive. Indeed, it has been shown that the most serious complications, such as cognitive impairment, are not only related to the gene dysfunction but also to the patient's background and the participation of several nongenetic factors.Therefore, a Systems Biology-based strategy is required in addressing IEM complexity, and in identifying the interplay between different pathways in shaping the clinical phenotype. Such an approach should entail the concerted investigation of genomic, transcriptomics, proteomics, metabolomics profiles altogether with phenylalanine and amino acids metabolism. Noticeably, this "omic" perspective could be instrumental in planning personalized treatment, tailored accordingly to the disease profile and prognosis.
Collapse
Affiliation(s)
- Aurora Piombarolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cristiano Ialongo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Mariano Bizzarri
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy.
| |
Collapse
|
3
|
Vela-Amieva M, Alcántara-Ortigoza MA, González-del Angel A, Ibarra-González I, Fernández-Hernández L, Guillén-López S, López-Mejía L, Fernández-Lainez C. In Silico Structural Protein Evaluation of the Phenylalanine Hydroxylase p.(Tyr77His) Variant Associated with Benign Hyperphenylalaninemia as Identified through Mexican Newborn Screening. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1865. [PMID: 38136067 PMCID: PMC10742057 DOI: 10.3390/children10121865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023]
Abstract
Hyperphenylalaninemia (HPA), which includes phenylketonuria (PKU), is a genetic autosomal recessive disorder arising from a deficiency in the enzyme named phenylalanine hydroxylase (PAH). Affected patients can experience severe and irreversible neurological impairments when phenylalanine (Phe) blood concentration exceeds 360 μmol/L (6 mg/dL). Here, we describe a female HPA patient who was born in Mexico to Cuban non-consanguineous parents and identified by newborn screening, and who bears the previously unreported PAH NM_000277.3(PAH):c.[229T>C];[1222C>T] or p.[Tyr77His];[Arg408Trp] genotype. At diagnosis, the patient showed a Phe blood level of 321 μmol/L (5.3 mg/dL), indicative of mild HPA. Neither of the PAH variants found in this patient had been previously reported in the mutational PAH spectrum of the Mexican population. The c.229T>C or p.(Tyr77His) PAH variant was previously related to mild HPA in the Swedish population. Our in silico structural analysis and molecular docking showed that mutated His 77 residue is located in the allosteric site of PAH at the interface of the two monomers. The PDBsum in silico tool predicted that this variant would cause minimal structural disturbance of the protein interface in the presence of Phe at the allosteric site. Docking studies revealed that these structural changes might be attenuated by the allosteric effect of Phe. Given the classic PKU phenotype conditioned by the "Celtic" or c.[1222C>T] or p.(Arg408Trp) PAH variant, which is the second variant in this patient, we propose that p.(Tyr77His) has a hypomorphic feature that could explain her mild HPA phenotype. Our results show the importance of following up on cases detected by NBS and the value of genetic studies and in silico tools that aid in the establishment of correct therapeutic strategies.
Collapse
Affiliation(s)
- Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.)
| | - Miguel Angel Alcántara-Ortigoza
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.A.A.-O.); (A.G.-d.A.); (L.F.-H.)
- Centro de Alta Especialidad en Genética Humana DNA-GEN S.C., Ciudad de México 14070, Mexico
| | - Ariadna González-del Angel
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.A.A.-O.); (A.G.-d.A.); (L.F.-H.)
- Centro de Alta Especialidad en Genética Humana DNA-GEN S.C., Ciudad de México 14070, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas UNAM, Ciudad de México 04510, Mexico;
| | - Liliana Fernández-Hernández
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.A.A.-O.); (A.G.-d.A.); (L.F.-H.)
| | - Sara Guillén-López
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.)
| | - Lizbeth López-Mejía
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.)
| | - Cynthia Fernández-Lainez
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México 04530, Mexico; (M.V.-A.); (S.G.-L.); (L.L.-M.)
| |
Collapse
|
4
|
Periñán MT, Brolin K, Bandres‐Ciga S, Blauwendraat C, Klein C, Gan‐Or Z, Singleton A, Gomez‐Garre P, Swanberg M, Mir P, Noyce A. Effect Modification between Genes and Environment and Parkinson's Disease Risk. Ann Neurol 2022; 92:715-724. [PMID: 35913124 PMCID: PMC9588606 DOI: 10.1002/ana.26467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD) is a complex neurodegenerative condition in which genetic and environmental factors interact to contribute to its etiology. Remarkable progress has been made in deciphering disease etiology through genetic approaches, but there is limited data about how environmental and genetic factors interact to modify penetrance, risk, and disease severity. Here, we provide insights into environmental modifiers of PD, discussing precedents from other neurological and non-neurological conditions. Based on these examples, we outline genetic and environmental factors contributing to PD and review potential environmental modifiers of penetrance and clinical variability in monogenic and idiopathic PD. We also highlight the potential challenges and propose how future studies might tackle these important questions. ANN NEUROL 2022;92:715-724.
Collapse
Affiliation(s)
- Maria Teresa Periñán
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaMadridSpain
| | - Kajsa Brolin
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Sara Bandres‐Ciga
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Cornelis Blauwendraat
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Christine Klein
- Institute of Neurogenetics and Department of NeurologyUniversity of Lübeck and University Hospital Schleswig‐HolsteinLübeckGermany
| | - Ziv Gan‐Or
- The Neuro (Montreal Neurological Institute‐Hospital)McGill UniversityMontrealQuebecCanada,Department of Neurology and NeurosurgeryMcGill UniversityMontrealQuebecCanada,Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Andrew Singleton
- Laboratory of Neurogenetics, Molecular Genetics Section, National Institute on AgingNational Institutes of HealthBethesdaMarylandUSA
| | - Pilar Gomez‐Garre
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaMadridSpain
| | - Maria Swanberg
- Translational Neurogenetics Unit, Wallenberg Neuroscience Center, Department of Experimental Medical ScienceLund UniversityLundSweden
| | - Pablo Mir
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de SevillaHospital Universitario Virgen del Rocío/CSIC/Universidad de SevillaMadridSpain
| | - Alastair Noyce
- Department of Clinical and Movement NeurosciencesUCL Queen Square Institute of NeurologyLondonUK,Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population HealthQueen Mary University of LondonLondonUK
| |
Collapse
|
5
|
Dobrowolski SF, Phua YL, Vockley J, Goetzman E, Blair HC. Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity. Mol Genet Metab 2022; 136:111-117. [PMID: 35379539 PMCID: PMC9832337 DOI: 10.1016/j.ymgme.2022.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/13/2023]
Abstract
Phenylalanine hydroxylase (PAH) deficient phenylketonuria (PKU) is rightfully considered the paradigm treatable metabolic disease. Dietary substrate restriction (i.e. phenylalanine (Phe) restriction) was applied >60 years ago and remains the primary PKU management means. The traditional model of PKU neuropathophysiology dictates blood Phe over-representation directs asymmetric blood:brain barrier amino acid transport through the LAT1 transporter with subsequent increased cerebral Phe concentration and low concentrations of tyrosine (Tyr), tryptophan (Trp), leucine (Leu), valine (Val), and isoleucine (Ile). Low Tyr and Trp concentrations generate secondary serotonergic and dopaminergic neurotransmitter paucities, widely attributed as drivers of PKU neurologic phenotypes. White matter disease, a central PKU characteristic, is ascribed to Phe-mediated tissue toxicity. Impaired cerebral protein synthesis, by reduced concentrations of non-Phe large neutral amino acids, is another cited pathological mechanism. The PKU amino acid transport model suggests Phe management should be more efficacious than is realized, as even early identified, continuously treated patients that retain therapy compliance into adulthood, demonstrate neurologic disease elements. Reduced cerebral metabolism was an early-recognized element of PKU pathology. Legacy data (late 1960's to mid-1970's) determined the Phe catabolite phenylpyruvate inhibits mitochondrial pyruvate transport. Respirometry of Pahenu2 cerebral mitochondria have attenuated respiratory chain complex 1 induction in response to pyruvate substrate, indicating reduced energy metabolism. Oxidative stress is intrinsic to PKU and Pahenu2 brain tissue presents increased reactive oxygen species. Phenylpyruvate inhibits glucose-6-phosphate dehydrogenase that generates reduced niacinamide adenine dinucleotide phosphate the obligatory cofactor of glutathione reductase. Pahenu2 brain tissue metabolomics identified increased oxidized glutathione and glutathione disulfide. Over-represented glutathione disulfide argues for reduced glutathione reductase activity secondary to reduced NADPH. Herein, we review evidence of energy and oxidative stress involvement in PKU pathology. Data suggests energy deficit and oxidative stress are features of PKU pathophysiology, providing intervention-amenable therapeutic targets to ameliorate disease elements refractory to standard of care.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States of America.
| | - Yu Leng Phua
- Division of Medical Genetics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Jerry Vockley
- Division of Medical Genetics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Eric Goetzman
- Division of Medical Genetics, Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, United States of America
| | - Harry C Blair
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States of America; Veteran's Affairs Medical Center, Pittsburgh, PA, United States of America
| |
Collapse
|
6
|
Schoen MS, Singh RH. Plasma metabolomic profile changes in females with phenylketonuria following a camp intervention. Am J Clin Nutr 2022; 115:811-821. [PMID: 34864852 PMCID: PMC8895208 DOI: 10.1093/ajcn/nqab400] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 11/29/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND There remains a limited understanding of the metabolic perturbations, beyond phenylalanine (Phe) metabolism, that contribute to phenotypic variability in phenylketonuria (PKU). OBJECTIVES This study aimed to characterize changes in the PKU plasma metabolome following a 5-d metabolic camp intervention and to compare PKU profiles with those of matched healthy controls. METHODS In 28 females (aged 12-57 y), fasting plasma samples were collected on the first (day 1) and final (day 5) days of camp to measure metabolic control and to complete untargeted metabolomic profiling. Three-day dietary records were collected to assess changes in dietary adherence and composition. Univariate (Wilcoxon signed-rank and Mann-Whitney U test) and multivariate (random forest, hierarchical clustering) analyses were performed to identify clinical and metabolic features that were associated with the intervention and disease state. RESULTS Relative to healthy controls, Phe catabolites, ketones, and carnitine- and glycine-conjugated fatty acids were elevated in females with PKU at baseline, whereas fatty acylcholine metabolites were substantially lower. After the camp intervention, plasma Phe concentrations decreased [median change: -173 µmol/L (IQR: -325, -28 µmol/L)] and 70% of PKU participants demonstrated improved dietary adherence by decreasing Phe intake and/or increasing medical food consumption. This was accompanied by a shift in abundance for 223 metabolites (q < 0.05). Compounds associated with the metabolism of Phe, fatty acids, and choline contributed most to profile differences between camp days 1 and 5. CONCLUSIONS In females with PKU, untargeted metabolomics identified prominent perturbations in amino acid and lipid metabolites associated with bioenergetic impairment and oxidative stress. Choline-conjugated lipids could have fundamental roles in these pathways and they have not been previously evaluated in PKU. A short-term camp intervention was effective for improving or fully normalizing the abundance of the identified discriminatory metabolites.
Collapse
Affiliation(s)
- Meriah S Schoen
- Nutrition and Health Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Rani H Singh
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
7
|
Borges AC, Broersen K, Leandro P, Fernandes TG. Engineering Organoids for in vitro Modeling of Phenylketonuria. Front Mol Neurosci 2022; 14:787242. [PMID: 35082602 PMCID: PMC8784555 DOI: 10.3389/fnmol.2021.787242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Phenylketonuria is a recessive genetic disorder of amino-acid metabolism, where impaired phenylalanine hydroxylase function leads to the accumulation of neurotoxic phenylalanine levels in the brain. Severe cognitive and neuronal impairment are observed in untreated/late-diagnosed patients, and even early treated ones are not safe from life-long sequelae. Despite the wealth of knowledge acquired from available disease models, the chronic effect of Phenylketonuria in the brain is still poorly understood and the consequences to the aging brain remain an open question. Thus, there is the need for better predictive models, able to recapitulate specific mechanisms of this disease. Human induced pluripotent stem cells (hiPSCs), with their ability to differentiate and self-organize in multiple tissues, might provide a new exciting in vitro platform to model specific PKU-derived neuronal impairment. In this review, we gather what is known about the impact of phenylalanine in the brain of patients and highlight where hiPSC-derived organoids could contribute to the understanding of this disease.
Collapse
Affiliation(s)
- Alice C. Borges
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Kerensa Broersen
- Department of Applied Stem Cell Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, Netherlands
| | - Paula Leandro
- Faculty of Pharmacy, iMed.ULisboa - Research Institute for Medicines, Universidade de Lisboa, Lisbon, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB – Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Tiago G. Fernandes,
| |
Collapse
|
8
|
Urine Phenylacetylglutamine Determination in Patients with Hyperphenylalaninemia. J Clin Med 2021; 10:jcm10163674. [PMID: 34441968 PMCID: PMC8396897 DOI: 10.3390/jcm10163674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
Phenylketonuria (PKU), an autosomal-recessive inborn error of phenylalanine (Phe) metabolism is the most prevalent disorder of amino acid metabolism. Currently, clinical follow-up relies on frequent monitoring of Phe levels in blood. We hypothesize that the urine level of phenylacetylglutamine (PAG), a phenyl-group marker, could be used as a non-invasive biomarker. In this cross-sectional study, a validated liquid chromatography coupled to tandem mass spectrometry (LC-MS) method was used for urinary PAG quantification in 35 participants with hyperphenylalaninemia (HPA) and 33 age- and sex-matched healthy controls. We have found that (a) PKU patients present higher urine PAG levels than healthy control subjects, and that (b) there is a significant correlation between urine PAG and circulating Phe levels in patients with HPA. In addition, we show a significant strong correlation between Phe levels from venous blood samples and from capillary finger-prick dried blood spot (DBS) samples collected at the same time in patients with HPA. Further research in order to assess the potential role of urine PAG as a non-invasive biomarker in PKU is warranted.
Collapse
|
9
|
Bortoluzzi VT, Dutra Filho CS, Wannmacher CMD. Oxidative stress in phenylketonuria-evidence from human studies and animal models, and possible implications for redox signaling. Metab Brain Dis 2021; 36:523-543. [PMID: 33580861 DOI: 10.1007/s11011-021-00676-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/24/2021] [Indexed: 01/11/2023]
Abstract
Phenylketonuria (PKU) is one of the commonest inborn error of amino acid metabolism. Before mass neonatal screening was possible, and the success of introducing diet therapy right after birth, the typical clinical finds in patients ranged from intellectual disability, epilepsy, motor deficits to behavioral disturbances and other neurological and psychiatric symptoms. Since early diagnosis and treatment became widespread, usually only those patients who do not strictly follow the diet present psychiatric, less severe symptoms such as anxiety, depression, sleep pattern disturbance, and concentration and memory problems. Despite the success of low protein intake in preventing otherwise severe outcomes, PKU's underlying neuropathophysiology remains to be better elucidated. Oxidative stress has gained acceptance as a disturbance implicated in the pathogenesis of PKU. The conception of oxidative stress has evolved to comprehend how it could interfere and ultimately modulate metabolic pathways regulating cell function. We summarize the evidence of oxidative damage, as well as compromised antioxidant defenses, from patients, animal models of PKU, and in vitro experiments, discussing the possible clinical significance of these findings. There are many studies on oxidative stress and PKU, but only a few went further than showing macromolecular damage and disturbance of antioxidant defenses. In this review, we argue that these few studies may point that oxidative stress may also disturb redox signaling in PKU, an aspect few authors have explored so far. The reported effect of phenylalanine on the expression or activity of enzymes participating in metabolic pathways known to be responsive to redox signaling might be mediated through oxidative stress.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Carlos Severo Dutra Filho
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
10
|
Singh K, Cornell CS, Jackson R, Kabiri M, Phipps M, Desai M, Fogle R, Ying X, Anarat-Cappillino G, Geller S, Johnson J, Roberts E, Malley K, Devlin T, DeRiso M, Berthelette P, Zhang YV, Ryan S, Rao S, Thurberg BL, Bangari DS, Kyostio-Moore S. CRISPR/Cas9 generated knockout mice lacking phenylalanine hydroxylase protein as a novel preclinical model for human phenylketonuria. Sci Rep 2021; 11:7254. [PMID: 33790381 PMCID: PMC8012645 DOI: 10.1038/s41598-021-86663-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 03/18/2021] [Indexed: 02/01/2023] Open
Abstract
Phenylketonuria (PKU) is an autosomal recessive inborn error of L-phenylalanine (Phe) metabolism. It is caused by a partial or complete deficiency of the enzyme phenylalanine hydroxylase (PAH), which is necessary for conversion of Phe to tyrosine (Tyr). This metabolic error results in buildup of Phe and reduction of Tyr concentration in blood and in the brain, leading to neurological disease and intellectual deficits. Patients exhibit retarded body growth, hypopigmentation, hypocholesterolemia and low levels of neurotransmitters. Here we report first attempt at creating a homozygous Pah knock-out (KO) (Hom) mouse model, which was developed in the C57BL/6 J strain using CRISPR/Cas9 where codon 7 (GAG) in Pah gene was changed to a stop codon TAG. We investigated 2 to 6-month-old, male, Hom mice using comprehensive behavioral and biochemical assays, MRI and histopathology. Age and sex-matched heterozygous Pah-KO (Het) mice were used as control mice, as they exhibit enough PAH enzyme activity to provide Phe and Tyr levels comparable to the wild-type mice. Overall, our findings demonstrate that 6-month-old, male Hom mice completely lack PAH enzyme, exhibit significantly higher blood and brain Phe levels, lower levels of brain Tyr and neurotransmitters along with lower myelin content and have significant behavioral deficit. These mice exhibit phenotypes that closely resemble PKU patients such as retarded body growth, cutaneous hypopigmentation, and hypocholesterolemia when compared to the age- and sex-matched Het mice. Altogether, biochemical, behavioral, and pathologic features of this novel mouse model suggest that it can be used as a reliable translational tool for PKU preclinical research and drug development.
Collapse
Affiliation(s)
- Kuldeep Singh
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA ,Present Address: WuXi AppTec Inc., 8th Floor, 55 Cambridge Parkway, Cambridge, MA 02142 USA
| | - Cathleen S. Cornell
- grid.417555.70000 0000 8814 392XGenomic Medicine Unit, Sanofi, 49 New York Avenue, Framingham, MA 01701 USA
| | - Robert Jackson
- grid.417555.70000 0000 8814 392XGenomic Medicine Unit, Sanofi, 49 New York Avenue, Framingham, MA 01701 USA
| | - Mostafa Kabiri
- grid.420214.1Transgenic Model and Technology, Translational In-Vivo Research Platform, Industrie Park Hoechst, Sanofi, Frankfurt, Germany
| | - Michael Phipps
- grid.417555.70000 0000 8814 392XTransgenic Model and Technology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Mitul Desai
- grid.417555.70000 0000 8814 392XGlobal Bioimaging, Translational In-Vivo Models Research Platform, Sanofi, Framingham, MA 01701 USA
| | - Robert Fogle
- grid.417555.70000 0000 8814 392XGlobal Bioimaging, Translational In-Vivo Models Research Platform, Sanofi, Framingham, MA 01701 USA
| | - Xiaoyou Ying
- grid.417555.70000 0000 8814 392XGlobal Bioimaging, Translational In-Vivo Models Research Platform, Sanofi, Framingham, MA 01701 USA
| | - Gulbenk Anarat-Cappillino
- grid.417555.70000 0000 8814 392XPre-Development Sciences NA, Analytical R&D, Sanofi, Framingham, MA 01701 USA
| | - Sarah Geller
- grid.417555.70000 0000 8814 392XPre-Development Sciences NA, Analytical R&D, Sanofi, Framingham, MA 01701 USA
| | - Jennifer Johnson
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Errin Roberts
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Katie Malley
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Tim Devlin
- grid.417555.70000 0000 8814 392XTransgenic Model and Technology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Matthew DeRiso
- grid.417555.70000 0000 8814 392XTransgenic Model and Technology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Patricia Berthelette
- grid.417555.70000 0000 8814 392XGenomic Medicine Unit, Sanofi, 49 New York Avenue, Framingham, MA 01701 USA
| | - Yao V. Zhang
- grid.417555.70000 0000 8814 392XGenomic Medicine Unit, Sanofi, 49 New York Avenue, Framingham, MA 01701 USA
| | - Susan Ryan
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Srinivas Rao
- grid.417555.70000 0000 8814 392XTranslational In-Vivo Models Research Platform, Sanofi, 49 New York Avenue, Framingham, MA 01701 USA
| | - Beth L. Thurberg
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Dinesh S. Bangari
- grid.417555.70000 0000 8814 392XGlobal Discovery Pathology, Translational In-Vivo Models Research Platform, Sanofi, 5 The Mountain Road, Framingham, MA 01701 USA
| | - Sirkka Kyostio-Moore
- grid.417555.70000 0000 8814 392XGenomic Medicine Unit, Sanofi, 49 New York Avenue, Framingham, MA 01701 USA
| |
Collapse
|
11
|
The rs113883650 variant of SLC7A5 (LAT1) gene may alter brain phenylalanine content in PKU. Mol Genet Metab Rep 2021; 27:100751. [PMID: 33868932 PMCID: PMC8040326 DOI: 10.1016/j.ymgmr.2021.100751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Functional alteration of the LAT1 amino acid transporter may be responsible for interindividual differences in cerebral phenylalanine content and the lack of intellectual disability in some patients with untreated phenylketonuria. We assessed the effect of the common variant rs113883650 of the SLC7A5 (LAT1) gene on brain phenylalanine content, as measured with use of magnetic resonance spectroscopy. Our results suggest that the presence of this variant could influence the amount of phenylalanine in the brain.
Collapse
|
12
|
Zhang W, Lyu J, Xu J, Zhang P, Zhang S, Chen Y, Wang Y, Chen G. The related mechanism of complete Freund's adjuvant-induced chronic inflammation pain based on metabolomics analysis. Biomed Chromatogr 2020; 35:e5020. [PMID: 33159321 PMCID: PMC7988654 DOI: 10.1002/bmc.5020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 11/08/2022]
Abstract
Chronic inflammation pain is a debilitating disease, and its mechanism still remains poorly understood. This study attempted to illuminate the metabolic mechanism of chronic inflammation pain induced by complete Freund’s adjuvant (CFA) injection, especially at spinal level. The chronic inflammation pain model was established by CFA administration. Behavioral testing including mechanical allodynia and thermal hyperalgesia was performed. Meanwhile, a liquid chromatography–mass spectrometry‐based metabolomics approach was applied to analyze potential metabolic biomarkers. The orthogonal partial least squares discrimination analysis mode was employed for determining metabolic changes, and a western blot was performed to detect the protein expression change. The results showed that 27 metabolites showed obviously abnormal expression and seven metabolic pathways were significantly enriched, comprising aminoacyl‐tRNA biosynthesis, arginine and proline metabolism, histidine metabolism, purine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, glutathione metabolism, and phenylalanine metabolism. Meanwhile, the results showed that the expression of arginase I and nitric oxide levels were elevated in the CFA group compared with the control group, while the argininosuccinate synthetase and argininosuccinatelyase proteins were not significantly different between the groups. These findings demonstrate that metabolic changes of the spinal cord may be implicated in neurotransmitter release and pain conductivity following CFA administration.
Collapse
Affiliation(s)
- Weibo Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Jie Lyu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Juxiang Xu
- Department of Radiotherapy Nursing Unit, Sir Run Run Shaw Hospital, School of Medicine Zhejiang University, Hangzhou, China
| | - Piao Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Shuxia Zhang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Yongjie Wang
- Institute of Neuroscience and Collaborative Innovation Center for Brain Science, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, Hangzhou, China
| |
Collapse
|
13
|
Lowe TB, DeLuca J, Arnold GL. Similarities and differences in key diagnosis, treatment, and management approaches for PAH deficiency in the United States and Europe. Orphanet J Rare Dis 2020; 15:266. [PMID: 32977849 PMCID: PMC7519570 DOI: 10.1186/s13023-020-01541-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/10/2020] [Indexed: 11/21/2022] Open
Abstract
Background Individuals with phenylalanine hydroxylase (PAH) deficiency lack an enzyme needed to metabolize the amino acid, phenylalanine. This leads to an increase of phenylalanine in the blood, which is associated with changes in cognitive and psychological functioning. Skilled clinical management is essential for preventing complications and providing comprehensive care to patients. In the last decade, the American College of Genetics and Genomics (ACMG) and a group of European experts developed separate guidelines to provide recommendations for the management and care of persons with PAH deficiency. The purpose of this paper was to compare and contrast these guidelines in order to understand the different approaches to PAH deficiency care. Methods We examined the procedures used to develop both guidelines, then evaluated key areas in PAH deficiency care which included screening, diagnostic approaches, dietary treatment (initiation and duration), ongoing phenylalanine level/ nutritional monitoring, neurocognitive screening, adherence issues in treatment, and special populations (women and maternal PKU, late or untreated PAH deficiency, and transitioning to adult services). We conducted a scoping review of four key topics in PAH deficiency care to explore recent research studies performed since the publication of the guidelines. Results The ACMG and European expert group identified limited numbers of high quality studies to use as evidence for their recommendations. The ACMG and European guidelines had many similarities in their respective approaches PAH deficiency care and recommendations for the diagnosis, treatment, and management for persons with PAH deficiency. There were also a number of differences between the guidelines regarding the upper range for phenylalanine levels in adolescents and adults, the types of instruments used and frequency of neuropsychiatric examinations, and monitoring of bone health. Treatment adherence can be associated with a number of challenges, such as aversions to medical foods and formulas, as well as factors related to educational, social, and psychosocial issues. From the scoping review, there were many new studies addressing issues in treatment and management including new research on sapropterin adherence and increased dietary protein tolerance and pegvaliase on the reduction in phenylalanine levels and hypersensitivity reactions. Conclusions In the last decade, ACMG and European experts developed comprehensive guidelines for the clinical management of phenylalanine hydroxylase deficiency. The guidelines offered background and recommendations for clinical care of patients with PAH deficiency throughout the lifespan. New research evidence is available and updates to guidelines can keep pace with new developments. Evidence-based guidelines for diagnosis and treatment are important for providing expert care to patients.
Collapse
Affiliation(s)
| | | | - Georgianne L Arnold
- Medical Genetics Clinical Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Wang L, Ye F, Zou H, Wang K, Chen Z, Hui Q, Han B, He C, Li X, Shen M. The first study of successful pregnancies in Chinese patients with Phenylketonuria. BMC Pregnancy Childbirth 2020; 20:253. [PMID: 32345238 PMCID: PMC7189601 DOI: 10.1186/s12884-020-02941-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 04/13/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Since the inception of newborn screening programs in China in the 1990s, pregnancy among patients with inherited, metabolic disorders has become more common. This study explores the management and outcomes of planned, full-term pregnancies in patients with phenylketonuria (PKU). METHOD Married patients with PKU from 2012 to 2017 were enrolled to receive prenatal counseling and regular health assessments. Study-related assessments included the timing of Phe-restricted diets, maternal weight gain, gestational age, pregnancy complications, and blood Phe concentrations (both pre-conception and during pregnancy), obstetrical data, and offspring outcomes(e.g. anthropomorphic measurements and developmental quotients [DQs]). RESULTS A total of six offspring were successfully delivered. The mean ± SD (range) age of the mother at delivery was 26.3 ± 4.7 (range: 21.1-32.5) years. The mean duration of Phe control before pregnancy was 5.5 ± 1.3(range: 3.1-6.5) months. During pregnancy, the proportion of blood Phe concentrations within the clinically-recommended target range (120-360 μmol/L) ranged from 63.2-83.5%. Low birth weight (< 2500 g) offspring occurred in two women who experienced suboptimal metabolic control. In addition, offspring DQ was related to the proportion of blood Phe levels per trimester that were within the recommended range (r = 0.886, p = 0.016). CONCLUSION This is the first report of women in China with PKU who successfully gave birth to clinically healthy babies. Infant outcomes were related to maternal blood Phe management prior to and during pregnancy. In maternal PKU patients with poor compliance to dietary treatment, sapropterin dihydrochloride (6R-BH4) may be an option to improve the management of blood Phe levels.
Collapse
Affiliation(s)
- Lin Wang
- Department of Preventive Health Care, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China
| | - Fang Ye
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China
| | - Hui Zou
- Newborn Screening Center, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Kundi Wang
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China
| | - Zhihua Chen
- Clinical Research Institute, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China
| | - Qin Hui
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China
| | - Bingjuan Han
- Newborn Screening Center, Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| | - Chun He
- Clinical Research Institute, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China
| | - Xiaowen Li
- Department of Nutrition, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China.
| | - Ming Shen
- Department of Pediatrics, China-Japan Friendship Hospital, No. 2, Yinghua East Street, Chaoyang district, Beijing, 100029, China.
| |
Collapse
|
15
|
Vardy ERLC, MacDonald A, Ford S, Hofman DL. Phenylketonuria, co-morbidity, and ageing: A review. J Inherit Metab Dis 2020; 43:167-178. [PMID: 31675115 DOI: 10.1002/jimd.12186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
Phenylketonuria (PKU) is a metabolic condition which, left untreated, results in severe and irreversible brain damage. Newborn screening and the development of the low phenylalanine (Phe) diet have transformed the outcomes for people with PKU. Those who have benefited from early treatment are now approaching their fifth and sixth decade. It is therefore timely to consider multi-morbidity in PKU and the effects of ageing, in parallel with the wider benefits of emerging treatment options in addition to dietary relaxation. We have conducted the first literature review of co-morbidity and ageing in the context of PKU. Avenues explored have emerged from limited study of multi-morbidity to date and the knowledge and critical enquiry of the authors. Findings suggest PKU to have a wider impact than brain development, and result in several intriguing questions that require investigation to attain the best outcomes for people with PKU in adulthood moving through to older age. We recognise the difficulty in studying longitudinal outcomes in rare diseases and emphasise the necessity to develop PKU registries and cohorts that facilitate well-designed studies to answer some of the questions raised in this review. Whilst awaiting new information in these areas we propose that clinicians engage with patients to make personalised and well-informed decisions around Phe control and assessment for co-morbidity.
Collapse
Affiliation(s)
- Emma R L C Vardy
- Department of Ageing and Complex Medicine, Salford Royal NHS Foundation Trust, Salford Care Organisation, Part of Northern Care Alliance NHS Group, Salford, UK
| | - Anita MacDonald
- Department of dietetics, Birmingham Women's and Children's NHS Trust, Birmingham, UK
| | - Suzanne Ford
- National Society for Phenylketonuria, Preston, UK
| | | |
Collapse
|
16
|
Bortoluzzi VT, Brust L, Preissler T, de Franceschi ID, Wannmacher CMD. Creatine plus pyruvate supplementation prevents oxidative stress and phosphotransfer network disturbances in the brain of rats subjected to chemically-induced phenylketonuria. Metab Brain Dis 2019; 34:1649-1660. [PMID: 31352540 DOI: 10.1007/s11011-019-00472-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 07/14/2019] [Indexed: 12/13/2022]
Abstract
Phenylketonuria (PKU) is the most common inborn error of amino acid metabolism. Usually diagnosed within the first month of birth, it is essential that the patient strictly follow the dietary restriction of natural protein intake. Otherwise, PKU impacts the development of the brain severely and may result in microcephaly, epilepsy, motor deficits, intellectual disability, and psychiatric and behavioral disorders. The neuropathology associated with PKU includes defects of myelination, insufficient synthesis of monoamine neurotransmitters, amino acid imbalance across the blood-brain barrier, and involves intermediary metabolic pathways supporting energy homeostasis and antioxidant defenses in the brain. Considering that the production of reactive oxygen species (ROS) is inherent to energy metabolism, we investigated the association of creatine+pyruvate (Cr + Pyr), both energy substrates with antioxidants properties, as a possible treatment to mitigate oxidative stress and phosphotransfer network impairment elicited in the brain of young Wistar rats by chemically-induced PKU. We induced PKU through the administration of α-methyl-L-phenylalanine and phenylalanine for 7 days, with and without Cr + Pyr supplementation, until postpartum day 14. The cotreatment with Cr + Pyr administered concurrently with PKU induction prevented ROS formation and part of the alterations observed in antioxidants defenses and phosphotransfer network enzymes in the cerebral cortex, hippocampus, and cerebellum. If such prevention also occurs in PKU patients, supplementing the phenylalanine-restricted diet with antioxidants and energetic substrates might be beneficial to these patients.
Collapse
Affiliation(s)
- Vanessa Trindade Bortoluzzi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil.
| | - Letícia Brust
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Thales Preissler
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Itiane Diehl de Franceschi
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| | - Clovis Milton Duval Wannmacher
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, CEP 90.035-003, Brazil
| |
Collapse
|
17
|
Massaro AN, Wu YW, Bammler TK, MacDonald JW, Mathur A, Chang T, Mayock D, Mulkey SB, van Meurs K, Afsharinejad Z, Juul SE. Dried blood spot compared to plasma measurements of blood-based biomarkers of brain injury in neonatal encephalopathy. Pediatr Res 2019; 85:655-661. [PMID: 30661082 DOI: 10.1038/s41390-019-0298-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Data correlating dried blood spots (DBS) and plasma concentrations for neonatal biomarkers of brain injury are lacking. We hypothesized that candidate biomarker levels determined from DBS can serve as a reliable surrogate for plasma levels. METHODS In the context of a phase II multi-center trial evaluating erythropoietin for neuroprotection in neonatal encephalopathy (NE), DBS were collected at enrollment ( < 24 h), day 2, 4, and 5. Plasma was collected with the first and last DBS. The relationship between paired DBS-plasma determinations of brain-specific proteins and cytokines was assessed by correlation and Bland-Altman analyses. For analytes with consistent DBS-plasma associations, DBS-derived biomarker levels were related to brain injury by MRI and 1-year outcomes. RESULTS We enrolled 50 newborns with NE. While S100B protein, tumor necrosis factor α, interleukin (IL)1 β, IL-6, IL-8 demonstrated significant DBS-plasma correlations, Bland-Altman plots demonstrated that the methods are not interchangeable, with a 2 to 4-fold error between measurements. No significant relationships were found between DBS levels of TNFα, IL-6, and IL-8 and outcomes. CONCLUSION Further work is needed to optimize elution and assay methods before using DBS specimens as a reliable surrogate for plasma levels of candidate brain injury biomarkers in NE.
Collapse
Affiliation(s)
- An N Massaro
- Pediatrics - Division of Neonatology, Children's National Health Systems and The George Washington University School of Medicine, Washington, DC, USA.
| | - Yvonne W Wu
- Neurology and Pediatrics, UCSF, San Francisco, CA, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - James W MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Amit Mathur
- Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Taeun Chang
- Neurology and Pediatrics, Children's National Health Systems and The George Washington University School of Medicine, Washington, DC, USA
| | - Dennis Mayock
- Pediatrics-Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Sarah B Mulkey
- Neurology and Pediatrics, Children's National Health Systems and The George Washington University School of Medicine, Washington, DC, USA
| | | | - Zahra Afsharinejad
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sandra E Juul
- Pediatrics-Division of Neonatology, University of Washington, Seattle, WA, USA
| |
Collapse
|