1
|
Castro-Navarro I, Pace RM, Williams JE, Pace CDW, Kaur H, Piaskowski J, Aragón A, Rodríguez JM, McGuire MA, Fernandez L, McGuire MK. Immunological composition of human milk before and during subclinical and clinical mastitis. Front Immunol 2025; 15:1532432. [PMID: 39896819 PMCID: PMC11782115 DOI: 10.3389/fimmu.2024.1532432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Mastitis, an inflammatory condition affecting more than 25% of breastfeeding women, is usually associated with reduced milk secretion, pain, and discomfort, which often leads to early cessation of breastfeeding. Although the etiology of mastitis is multifactorial, a pro-inflammatory state of the mammary gland might be a risk factor. However, changes in milk composition, and specifically in the milk immune profile, prior to and during mastitis have not been well described. To help close this research gap, we documented the immune profiles of milk produced by both breasts of 10 women experiencing clinical (CM) and 8 women experiencing subclinical (SCM) mastitis during the week of sign/symptom development as well as the week prior and compared them with milk produced by 14 healthy controls. CM was defined as having signs/symptoms of mastitis, whereas SCM was presumed if the participant did not have signs/symptoms of CM, but her milk had a somatic cell count >400,000 cell/mL and/or sodium-to-potassium (Na/K) ratio >1.0. Concentration of 36 immune factors (including immunoglobulins, cytokines, chemokines, and growth factors) was quantified via immunoassays. Milk produced by women who developed CM had distinct immune profiles the week prior to diagnosis, particularly elevated concentrations of pro-inflammatory cytokine IL-1β and regulatory cytokines IL-2, IL-4 and IL-10. In contrast, immune profiles in milk produced by women with SCM did not differ from that produced by healthy women or those with CM the week prior to mastitis onset. Once mastitis appeared, marked changes in milk's immune profile were observed in both CM and SCM groups. CM was characterized by elevated concentrations of 27 compounds, including pro-inflammatory cytokines (IL-1β, IL-1ra, and TNFα) and chemokines (including IL-8, eotaxin, IP-10, MCP-1, MIP1α, and MIP1β), compared to healthy controls. Milk's immune profile during SCM was intermediate, showing higher levels of IL-6, IFNγ, and MCP-1 compared to healthy controls, suggesting a milder, more controlled immune response compared to CM. Only milk produced by the mastitis-affected breast had altered immune profiles. Further research is needed to determine if these differences in milk's immune profiles can be used to improve mastitis risk prediction prior to onset of symptoms.
Collapse
Affiliation(s)
- Irma Castro-Navarro
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Ryan M. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
- College of Nursing, University of South Florida, Tampa, FL, United States
- Microbiomes Institute, University of South Florida, Tampa, FL, United States
| | - Janet E. Williams
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Christina D. W. Pace
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Harpreet Kaur
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Julia Piaskowski
- Statistical Programs, College of Agricultural and Life Sciences, University of Idaho, Moscow, ID, United States
| | - Alberto Aragón
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
| | - Juan M. Rodríguez
- Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | - Mark A. McGuire
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID, United States
| | - Leonides Fernandez
- Department of Galenic Pharmacy and Food Technology, Complutense University of Madrid, Madrid, Spain
- Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain
| | - Michelle K. McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
2
|
Ruiz-Carnicer Á, Segura V, Moreno MDL, Coronel-Rodríguez C, Sousa C, Comino I. Transfer of celiac disease-associated immunogenic gluten peptides in breast milk: variability in kinetics of secretion. Front Immunol 2024; 15:1405344. [PMID: 39034995 PMCID: PMC11257844 DOI: 10.3389/fimmu.2024.1405344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 07/23/2024] Open
Abstract
Background Exposure to antigens is crucial for child immune system development, aiding disease prevention and promoting infant health. Some common food antigen proteins are found in human breast milk. However, it is unclear whether gluten antigens linked to celiac disease (CD) are transmitted through breast milk, potentially impacting the development of the infant's immune system. Objective This study aimed to analyze the passage of gluten immunogenic peptides (GIP) into human breast milk. We evaluated the dynamics of GIP secretion after lactating mothers adopted a controlled gluten-rich diet. Methods We prospectively enrolled 96 non-CD and 23 CD lactating mothers, assessing total proteins and casein in breast milk, and GIP levels in breast milk and urine. Subsequently, a longitudinal study was conducted in a subgroup of 12 non-CD lactating mothers who adopted a controlled gluten-rich diet. GIP levels in breast milk and urine samples were assayed by multiple sample collections over 96 hours. Results Analysis of a single sample revealed that 24% of non-CD lactating mothers on a regular unrestricted diet tested positive for GIP in breast milk, and 90% tested positive in urine, with significantly lower concentrations in breast milk. Nevertheless, on a controlled gluten-rich diet and the collection of multiple samples, GIP were detected in 75% and 100% of non-CD participants in breast milk and urine, respectively. The transfer dynamics in breast milk samples were long-enduring and GIP secretion persisted from 0 to 72 h. In contrast, GIP secretion in urine samples was limited to the first 24 h, with inter-individual variations. In the cohort of CD mothers, 82.6% and 87% tested negative for GIP in breast milk and urine, respectively. Conclusions This study definitively established the presence of GIP in breast milk, with substantial inter-individual variations in secretion dynamics. Our findings provide insights into distinct GIP kinetics observed in sequentially collected breast milk and urine samples, suggesting differential gluten metabolism patterns depending on the organ or system involved. Future research is essential to understand whether GIP functions as sensitizing or tolerogenic agents in the immune system of breastfed infants.
Collapse
Affiliation(s)
- Ángela Ruiz-Carnicer
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Verónica Segura
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - María de Lourdes Moreno
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Carolina Sousa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Isabel Comino
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Melekoglu E, Yılmaz B, Çevik A, Gökyıldız Sürücü Ş, Avcıbay Vurgeç B, Gözüyeşil E, Sharma H, Boyan N, Ozogul F. The Impact of the Human Milk Microbiota in the Prevention of Disease and Infant Health. Breastfeed Med 2023. [PMID: 37140562 DOI: 10.1089/bfm.2022.0292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Background: Human milk is recognized as an ideal food for newborns and infants owing to the presence of various nutritive factors, including healthy bacteria. Aim/Objective: This review aimed to understand the effects of human milk microbiota in both the prevention of disease and the health of infants. Methods: Data were obtained from PubMed, Scopus, Web of Science, clinical trial registries, Dergipark, and Türk Atıf Dizini up to February 2023 without language restrictions. Results: It is considered that the first human milk microbiota ingested by the newborn creates the initial microbiome of the gut system, which in turn influences the development and maturation of immunity. Bacteria present in human milk modulate the anti-inflammatory response by releasing certain cytokines, protecting the newborn against certain infections. Therefore, certain bacterial strains isolated from human milk could serve as potential probiotics for various therapeutic applications. Conclusions: In this review, the origin and significance of human milk bacteria have been highlighted along with certain factors influencing the composition of human milk microbiota. In addition, it also summarizes the health benefits of human milk as a protective agent against certain diseases and ailments.
Collapse
Affiliation(s)
- Ebru Melekoglu
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Birsen Yılmaz
- Department of Nutrition and Dietetics, Cukurova University, Adana, Turkey
| | - Ayseren Çevik
- Department of Midwifery, Cukurova University, Adana, Turkey
| | | | | | - Ebru Gözüyeşil
- Department of Midwifery, Cukurova University, Adana, Turkey
| | - Heena Sharma
- Food Technology Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Neslihan Boyan
- Department of Anatomy, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| |
Collapse
|
4
|
Lyu Y, Chen Y. Digested Human Colostrum Reduces Interleukin-8 Production in Induced Human Intestinal Epithelial Cells. Nutrients 2022; 14:nu14142787. [PMID: 35889744 PMCID: PMC9324903 DOI: 10.3390/nu14142787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Little is known about the impact of human colostrum on infant intestinal health following digestion. The aim of this study was to compare the effect of digested versus undigested human colostrum on inflammation and cytotoxicity in human intestinal epithelial cells (Caco2BBe) stimulated with lipopolysaccharides (LPS) or tumor necrosis factor (TNF). Colostrum samples (days 2–8 postpartum) from ten mothers of preterm infant were applied. Caco2BBe cells were pretreated by digested or undigested colostrum before stimulation with LPS or TNF. The inflammatory response was determined by measuring the production of interleukin-8 (IL-8) from cells using enzyme linked immunosorbent assay (ELISA). Cytotoxicity was examined by measuring the release of lactate dehydrogenase (LDH) from the cells. Digested colostrum significantly reduced IL-8 production under LPS and TNF stimulation compared with undigested colostrum. Individual colostrum samples exhibited wide variance in the ability to suppress IL-8 production and cytotoxicity in Caco2BBe cells. In vitro-digested human colostrum suppressed an inflammatory response more than undigested human colostrum in an induced intestinal cell culture model.
Collapse
|